七年级数学核心题目赏析

合集下载

苏教版七年级下册期末数学重点初中题目精选解析

苏教版七年级下册期末数学重点初中题目精选解析

苏教版七年级下册期末数学重点初中题目精选解析一、选择题1.下列计算正确的是( )A .2a •3a =6aB .a 6÷a 3=a 2C .﹣2(a ﹣b )=2b ﹣2aD .(13a ³)²=919a 答案:C解析:C【分析】根据单项式乘单项式,同底数幂的除法,幂的乘方与积的乘方的运算法则逐项计算可判定求解.【详解】解:A .2a •3a =6a 2,故该选项不符合题意;B .a 6÷a 3=a 3,故该选项不符合题意;C .-2(a -b )=2b -2a ,故该选项符合题意;D .361139a a ⎛⎫= ⎪⎝⎭,故该选项不符合题意, 故选:C .【点睛】本题主要考查单项式乘单项式,同底数幂的除法,幂的乘方与积的乘方,掌握相关的性质是解题的关键.2.如图,直线a ,b 被直线c 所截,则下列符合题意的结论是( )A .13∠=∠B .14∠=∠C .24∠∠=D .34180∠+∠=︒ 答案:A解析:A【分析】利用对顶角、同位角、同旁内角定义解答即可.【详解】解:A 、∠1与∠3是对顶角,故原题说法正确,符合题意;B 、由条件不能得出∠1=∠4,故原题说法错误,不符合题意;C 、∠2与∠4是同位角,只有a //b 时,∠2=∠4,故原题说法错误,不符合题意;D 、∠3与∠4是同旁内角,只有a //b 时,∠3+∠4=180°故原题说法错误,不符合题意;【点睛】此题主要考查了对顶角、同位角、同旁内角,关键是掌握各种角的定义.3.已知1x =是不等式20x b -<的解,b 的值可以是( )A .4B .2C .0D .2-答案:A解析:A【分析】把x 的值代入不等式,求出b 的取值范围即可得解.【详解】解:∵1x =是不等式20x b -<的解,∴20b -<,解得,2b >所以,选项A 符合题意,故选:A .【点睛】此题主要考查了不等式的解和解不等式,熟练掌握不等式的解是解答此题的关键. 4.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 答案:B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.5.若关于x 的不等式组1420x a x -⎧⎨-≤⎩>的解集为x ≥2,则a 的取值范围为( ) A .a <2 B .a >1 C .a ≤1 D .a <1解析:D【分析】先分别解得两个不等式的解集,再根据不等式组的解集是x ≥2得出关于a 的不等式,解之可得答案.【详解】解:解不等式x ﹣a >1,得:x >1+a ,解不等式4﹣2x ≤0,得:x ≥2,∵关于x 的不等式组1420x a x -⎧⎨-≤⎩>的解集为x ≥2, ∴1+a <2,解得:a <1,故选:D .【点睛】主要考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的值. 6.下列命题:①同旁内角互补,两直线平行;②直角都相等;③直角三角形没有钝角;④若a b =,则22a b =.其中,它们的逆命题是真命题的个数是( )A .1B .2C .3D .4答案:A解析:A【详解】解析:本题考查的逆命题及真命题的判定.①同旁内角互补,两直线平行的逆命题是:两直线平行,同旁内角互补,是真命题;②直角都相等的逆命题:相等的角是直角,是假命题;③直角三角形没有钝角的逆命题:没有钝角的三角形是直角三角形;可能是锐角三角形,所以是假命题;④若a b =,则22a b =的逆命题:若22a b =,则a b =;有可能是互为相反数,是假命题.故答案为A .7.观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…,若最后三个数之和是300,则n 等于( )A .49B .50C .51D .102答案:C解析:C【分析】观察得出第n 个数为2n ,根据最后三个数的和为300,列出方程,求解即可.【详解】解:由题意,得第n 个数为2n ,那么2n +2(n ﹣1)+2(n ﹣2)=300,解得:n =51,故选:C .此题考查规律型:数字的变化类,找出数字的变化规律,得出第n 个数为2n 是解决问题的关键.8.如图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )A .180°B .270°C .360°D .无法确定 答案:C解析:C【详解】由题意知,∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A',∵∠B=∠B',∠C=∠C',∠A=∠A',∴∠1+∠2+∠3+∠4+∠5+∠6=2(∠B+∠C+∠A )=360°,故选C .二、填空题9.计算232162xy x y ⎛⎫-⋅ ⎪⎝⎭的结果是______. 解析:4732x y 【分析】 先根据乘方计算出2312xy ⎛⎫- ⎪⎝⎭,再根据单项式乘以单项式的运算法则进行计算即可. 【详解】 解:232162xy x y ⎛⎫-⋅ ⎪⎝⎭=622164x y x y ⋅ =4732x y , 故答案为:4732x y . 【点睛】本题考查了幂的乘方,单项式乘以单项式,掌握运算法则是解题关键.10.下列命题中:①带根号的数都是无理数;②直线外一点与直线上各点的连线段中,垂线段最短;③过一点有且只有一条直线与已知直线平行;④已知三条直线a ,b ,c ,若//a b ,//b c ,则//a c .真命题有______(填序号).解析:②④【分析】由无理数的定义、垂线段最短的性质、平行公理、平行线的推论分别进行判断,即可得到答案.【详解】2=是有理数,带根号的数都是无理数是错误的;则①错误;直线外一点与直线上各点的连线段中,垂线段最短;②正确;过直线外一点有且只有一条直线与已知直线平行;则③错误;已知三条直线a ,b ,c ,若//a b ,//b c ,则//a c ;④正确;故答案为:②④.【点睛】本题考查了无理数的定义、垂线段最短的性质、平行公理、平行线的推论,解题的关键是熟记所学的知识进行判断.11.一个多边形从一个顶点出发可引3条对角线,这个多边形的内角和等于________. 解析:720︒【分析】首先确定出多边形的边数,然后利用多边形的内角和公式计算即可.【详解】∵从一个顶点可引对角线3条,∴多边形的边数为3+3=6.多边形的内角和=(n−2)×180°=4×180°=720°故答案为720°.【点睛】此题考查多边形内角(和)与外角(和),多边形的对角线,解题关键在于掌握计算公式. 12.已知x +y =﹣2,xy =4,则x 2y +xy 2=______解析:-8【分析】先提出公因式,进行因式分解,再代入,即可求解.【详解】解:()22x y xy xy x y +=+∵x +y =﹣2,xy =4,∴()22428x y xy +=⨯-=-.故答案为:8- .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并会根据多项式的特征选用合适的方法是解题的关键.13.已知11x y =⎧⎨=⎩是方程组3,.x y m x my n -=⎧⎨+=⎩的解,则3m n -=____________ 解析:7-【分析】把11x y =⎧⎨=⎩代入到方程组3x y m x my n -=⎧⎨+=⎩中得到关于m n ,的方程组,求出m n ,的值,再求出3m n -的值即可.【详解】解:∵11x y =⎧⎨=⎩是方程组3x y m x my n -=⎧⎨+=⎩的解, ∴31111m m n ⨯-=⎧⎨+⨯=⎩,解得:=2=3m n ⎧⎨⎩, ∴3=233=7m n --⨯-,故答案为:7-.【点睛】本难主要考查了二元一次方程组的解,解二元一次方程组和求代数式的值,明白解的定义和正确求出m n ,的值是解决此题的关键.14.在边长为8cm 的正方形ABCD 底座中,放置两张大小相同的正方形纸板,边EF 在AB 上,点K ,I 分别在BC ,CD 上,若区域Ⅰ的周长比区域Ⅱ与区域Ⅲ的周长之和还大4cm ,则正方形纸板的边长为______cm .答案:G 解析:143【分析】过点O 作OG ⊥EF 于点G ,作OH ⊥BC 于点H ,可得区域Ⅰ的周长等于长方形ADIG 的周长,区域Ⅱ与区域Ⅲ的周长之和等于正方形纸板的周长,然后设正方形纸板的边长为xcm ,则DI =(8-x )cm ,可得区域Ⅰ的周长为()322x cm -,再根据区域Ⅰ的周长比区域Ⅱ与区域Ⅲ的周长之和还大4cm ,即可求解.【详解】如图,过点O 作OG ⊥EF 于点G ,作OH ⊥BC 于点H ,则区域Ⅰ的周长等于长方形ADIG 的周长,区域Ⅱ与区域Ⅲ的周长之和等于正方形纸板的周长,设正方形纸板的边长为xcm ,则DI =(8-x )cm ,∴长方形ADIG 的周长为()()288322x x cm +-=- ,即区域Ⅰ的周长为()322x cm -∵区域Ⅰ的周长比区域Ⅱ与区域Ⅲ的周长之和还大4cm ,∴32244x x --= , 解得:143x = . 故答案为:143. 【点睛】本题主要考查了平移的性质,利用平移的性质得到区域Ⅰ的周长等于长方形ADIG 的周长,区域Ⅱ与区域Ⅲ的周长之和等于正方形纸板的周长是解题的关键.15.如果三条线段a 、b 、c 可组成三角形,且a =3,b =5、c 为偶数,则c 的值为____. 答案:4或6.【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得:2<c <8.又因为c 为偶数,从而可得答案.【详解】解:∵三条线段a 、b 、c 可组成三角形,且a=3,b=5,∴解析:4或6.【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得:2<c <8.又因为c 为偶数,从而可得答案.【详解】解:∵三条线段a 、b 、c 可组成三角形,且a=3,b=5,∴2<c <8,又∵c 为偶数,∴c 的值为4或6.故答案为:4或6.【点睛】此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.解题时还要注意题目的要求,要按题意解题.16.如图,在△ABC中,D为BC边上的一点,且BD=3DC,连接AD,E为AD的中点,连接BE并延长交AC于点F,若△BDE与△AEF的面积之和为9cm2,则△ABC的面积为___cm2答案:21【分析】连接DF,根据中线的性质得到S△BDE=S△BAE,S△AEF=S△DEF,则有S△BDE+S△DEF=S△ABE+S△AEF=9,再根据BD和CD的关系求出S△CDF=3,从而可得解析:21【分析】连接DF,根据中线的性质得到S△BDE=S△BAE,S△AEF=S△DEF,则有S△BDE+S△DEF=S△ABE+S△AEF=9,再根据BD和CD的关系求出S△CDF=3,从而可得结果.【详解】解:如图,连接DF,∵△BDE与△AEF的面积之和为9cm2,点E为AD中点,∴S△BDE=S△BAE,S△AEF=S△DEF,∴S△BDE+S△DEF=S△ABE+S△AEF=9,∵BD=3DC,∴S△BDF=3S△CDF,∴S△CDF=3,∴S△ABC=S△BDE+S△DEF+S△ABE+S△AEF+S△CDF=9+9+3=21,故答案为:21.【点睛】本题考查三角形的面积、中线的性质、等高模型等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考填空题中的压轴题.17.计算:(1)2202101(1)(3)2π-⎛⎫-+-+- ⎪⎝⎭; (2)()22334369x y xy x y -⋅÷. 答案:(1)4;(2)【分析】(1)先算乘方,零指数幂,负整数指数幂,再算加减法,即可;(2)先算积的乘方,再算乘除法,即可求解.【详解】解:(1)原式==4;(2)原式===.【点睛解析:(1)4;(2)26x y【分析】(1)先算乘方,零指数幂,负整数指数幂,再算加减法,即可;(2)先算积的乘方,再算乘除法,即可求解.【详解】解:(1)原式=(1)14-++=4;(2)原式=42334969x y xy x y ⋅÷=5534549x y x y ÷=26x y .【点睛】本题主要考查实数的运算,整式的运算,掌握零指数幂和负整数幂以及积的乘方法则,是解题的关键.18.因式分解:(1)2249x y -;(2)22331827m n mn n -+.答案:(1);(2)【分析】(1)利用平方差公式分解因式即可得到答案;(2)先提取公因式“3n”,再利用完全平方公式分解因式即可得到答案.【详解】解:(1);(2).【点睛】本题主解析:(1)()()2323x y x y +-;(2)()233n m n - 【分析】(1)利用平方差公式分解因式即可得到答案;(2)先提取公因式“3n ”,再利用完全平方公式分解因式即可得到答案.【详解】解:(1)2249x y -()()2223x y =- ()()2323x y x y =+-;(2)22331827m n mn n -+()22369n m mn n =-+()233n m n =-.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法. 19.解方程组: (1)352x y y x-=⎧⎨=⎩; (2)236x y x y -+=-⎧⎨+=⎩. 答案:(1).(2)【分析】(1)利用代入法计算即可;(2)利用加减消元法计算即可.【详解】解:(1),把②代入①得,3x ﹣2x =5,解得:x =5,把x =5代入②得:y =10,∴方程组的解析:(1)510x y =⎧⎨=⎩.(2)51x y =⎧⎨=⎩【分析】(1)利用代入法计算即可;(2)利用加减消元法计算即可.【详解】解:(1)352x y y x -=⎧⎨=⎩①②, 把②代入①得,3x ﹣2x =5,解得:x =5,把x =5代入②得:y =10,∴方程组的解为510x y =⎧⎨=⎩. (2)236x y x y -+=-⎧⎨+=⎩①②, ①+②得,3y =3,解得:y =1,把y =1代入②式得:x =5,∴方程组的解为51x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.20.解不等式组()2142313221x x x x x -+⎧-≤⎪⎨⎪+>-⎩,把它们的解集在数轴上表示出来,并写出整数解. 答案:不等式组的解集为;数轴见解析;整数解为:1,2【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上,确定出整数解即可.【详解】不等式组,由得:,解析:不等式组的解集为435≤<x ;数轴见解析;整数解为:1,2 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上,确定出整数解即可.【详解】不等式组()2142313221x x x x x -+⎧-≤⎪⎨⎪+>-⎩①②, 由①得:45x ≥, 由②得:3x <,∴ 不等式组的解集为435≤<x .则不等式组的整数解为1,2.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.三、解答题21.(1)已知:如图1,B C BEC ∠+∠=∠.求证://AB CD(2)如图2,已知//AB CD ,在BCD ∠的平分线上取两个点M 、N ,使得BMN BNM ∠=∠,求证:CBM ABN ∠=∠.答案:(1)见解析;(2)见解析【分析】(1)过点E 作,则由平行线的性质可得,再由即可推出,即可判断,即可得到;(2)过点N 作,交于点G ,则由平行线的性质可得,,再由三角形外角的性质可得,即可推出,解析:(1)见解析;(2)见解析【分析】(1)过点E 作//EF AB ,则由平行线的性质可得B BEF ∠=∠,再由B C BEC ∠+∠=∠即可推出C CEF ∠=∠,即可判断//EF CD ,即可得到//AB CD ;(2)过点N 作//NG AB ,交BM 于点G ,则由平行线的性质可得ABN BNG ∠=∠,GNC NCD ∠=∠,再由三角形外角的性质可得BMN BCM CBM ∠=∠+,即可推出BCM CBM ABN NCD ∠+∠=∠+∠,再由角平分线的定义BCM NCD ∠=∠,由此即可证明.【详解】解:(1)证明:如图1,过点E 作//EF AB .∴B BEF ∠=∠,∵B C BEC ∠+∠=∠,BEF FEC BEC ∠+∠=∠(已知),∴B C BEF FEC ∠+∠=∠+∠(等量代换),∴C CEF ∠=∠(等式性质),∴//EF CD ,∵//EF AB ,∴//AB CD (平行于同一条直线的两条直线互相平行);(2)证明:过点N 作//NG AB ,交BM 于点G ,如图2所示:则////NG AB CD ,∴ABN BNG ∠=∠,GNC NCD ∠=∠,∵BMN ∠是BCM 的一个外角,∴BMN BCM CBM ∠=∠+,又∵BMN BNM ∠=∠,BNM BNG GNC ∠=∠+∠,∴BCM CBM BNG GNC ∠+∠=∠+∠,∴BCM CBM ABN NCD ∠+∠=∠+∠,∵CN 平分BCD ∠,∴BCM NCD ∠=∠,∴CBM ABN ∠=∠.【点睛】本题主要考查了平行线的性质与判定,三角形外角的性质,角平分线的定义,解题的关键在于能够准确作出辅助线进行求解.22.某数码专营店销售A ,B 两种品牌智能手机,这两种手机的进价和售价如表所示:(1)该店销售记录显示,三月份销售A 、B 两种手机共34部,且销售A 种手机的利润恰好是销售B 种手机利润的2倍,求该店三月份售出A 种手机和B 种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B 种手机数不低于A 种手机数的35,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案.答案:(1)该店三月份售出A 种手机24部,B 种手机10部;(2)共有5种进货方案,分别是A 种手机21部,B 种手机19部;A 种手机22部,B 种手机18部;A 种手机23部,B 种手机17部;A 种手机24部,B 种解析:(1)该店三月份售出A 种手机24部,B 种手机10部;(2)共有5种进货方案,分别是A 种手机21部,B 种手机19部;A 种手机22部,B 种手机18部;A 种手机23部,B 种手机17部;A 种手机24部,B 种手机16部;A 种手机25部,B 种手机15部【分析】(1)设该店三月份售出A 种手机x 部,B 种手机y 部,由“三月份销售A 、B 两种手机共34部,且销售A 种手机的利润恰好是销售B 种手机利润的2倍”列出方程组,可求解; (2)设A 种手机a 部,B 种手机(40﹣a )部,由“购进B 种手机数不低于A 种手机数的35,用于购买这两种手机的资金低于140000元”列出不等式组,即可求解. 【详解】解:(1)设该店三月份售出A 种手机x 部,B 种手机y 部,由题意可得:()()3438003300243003700x y x y +=⎧⎨-=⨯-⎩, 解得:2410x y =⎧⎨=⎩, 答:该店三月份售出A 种手机24部,B 种手机10部;(2)设A 种手机a 部,B 种手机(40﹣a )部,由题意可得340533003700(40)140000a a a a ⎧-⎪⎨⎪+-<⎩, 解得:20<a≤25,∵a 为整数,∴a =21,22,23,24,25,∴共有5种进货方案,分别是A 种手机21部,B 种手机19部;A 种手机22部,B 种手机18部;A 种手机23部,B 种手机17部;A 种手机24部,B 种手机16部;A 种手机25部,B 种手机15部.【点睛】本题考查了一元一次不等式组解实际问题的运用,二元一次方程组解实际问题的运用,找准等量关系,正确列出二元一次方程组是解题的关键.23.定义:如果一个两位数a 的十位数字为m ,个位数字为n ,且m n ≠、0m ≠、0n ≠,那么这个两位数叫做“互异数”.将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()W a .例如:14a =,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为411455,和与11的商为55115,所以(14)5W .根据以上定义,解答下列问题:(1)填空:①下列两位数:20,21,22中,“互异数”为________;②计算:(36)W ________;(10)W m n ________;(m 、n 分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b 的十位数字是x ,个位数字是y ,且()7W b ;另一个“互异数”c 的十位数字是2x +,个位数字是21y -,且()13W c ,请求出“互异数”b 和c ; (3)如果一个“互异数”d 的十位数字是x ,个位数字是3x +,另一个“互异数”e 的十位数字是2x -,个位数字是3,且满足()()25W d W e ,请直接写出满足条件的所有x 的值________;(4)如果一个“互异数”f 的十位数字是4x +,个位数字是x ,且满足()W f t 的互异数有且仅有3个,则t 的取值范围________. 答案:(1)①21;②9,m+n ;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互异数”的定义可得;②根据定义计算可得;(2)由W (b )=7,W (c )=13,列出解析:(1)①21;②9,m +n ;(2)b =25,c =49;(3)3或4;(4)10<t ≤12【分析】(1)①由“互异数”的定义可得;②根据定义计算可得;(2)由W (b )=7,W (c )=13,列出二元一次方程组,即可求x 和y ;(3)根据题意W(d)+W(e)<25可列出不等式,即可求x的值;(4)根据“互异数”f的十位数字是x+4,个位数字是x,分类讨论f,根据满足W(f)<t 的互异数有且仅有3个,求出t的取值范围.【详解】解:(1)①∵如果一个两位数a的十位数字为m,个位数字为n,且m≠n、m≠0、n≠0,那么这个两位数叫做“互异数”,∴“互异数”为21,故答案为:21;②W(36)=(36+63)÷11=9,W(10m+n)=(10m+n+10n+m)÷11=m+n;故答案为:9,m+n;(2)∵W(10m+n)=(10m+n+10n+m)÷11=m+n,且W(b)=7,∴x+y=7①,∵W(c)=13,∴x+2+2y-1=13②,联立①②解得25xy=⎧⎨=⎩,故b=10×2+5=25,c=10×(2+2)+2×5-1=49;(3)∵W(d)+W(e)<25,∴x+x+3+(x-2+3)<25,解得x<7,∵x-2>0,x+3<9,∴2<x<6,∴2<x<6,且x为正整数,∴x=3,4,5,当x=5时e为33不是互异数,舍去,故答案为:3或4;(4)当x=0时,x+4=4,此时f为40不是互异数;当x=1时,x+4=5,此时f为51是互异数,W(f)=x+4+x=2x+4=6;当x=2时,x+4=6,此时f为62是互异数,W(f)=x+4+x=2x+4=8;当x=3时,x+4=7,此时f为73是互异数,W(f)=x+4+x=2x+4=10;当x=4时,x+4=8,此时f为84是互异数,W(f)=x+4+x=2x+4=12;∵满足W(f)<t的互异数有且仅有3个,∴10<t≤12,故答案为:10<t≤12.【点睛】本题以新定义为背景考查了一元一次不等式的应用和二元一次方程的应用,解题的关键是根据新定义列出方程和不等式.24.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)仔细观察,在图2中有个以线段AC为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.答案:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°. 【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.【详解】解:(1)在图2中有3个以线段AC为边的“8字形”,故答案为3;(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为360°.25.(1)证明:两条平行线被第三条直线所截,一对同旁内角的角平分线互相垂直.已知:如图,AB∥CD,.求证:.证明:(2)如图,AB∥CD,点E、F分别在直线AB、CD上,EM∥FN,∠AEM与∠CFN的角平分线相交于点O.求证:EO⊥FO.(3)如图,AB ∥CD ,点E 、F 分别在直线AB 、CD 上,EM ∥PN , MP ∥NF ,∠AEM 与∠CFN 的角平分线相交于点O ,∠P =102°,求∠O 的度数.答案:(1)直线MN 分别交直线AB 、CD 于点E 、F ,∠AEF 和∠CFE 的角平分线 OE 、OF 交于点O ,OE ⊥OF ,见解析;(2)见解析;(3)51°.【分析】(1)根据平行线的性质和角平分线定义即可证解析:(1)直线MN 分别交直线AB 、CD 于点E 、F ,∠AEF 和∠CFE 的角平分线 OE 、OF 交于点O ,OE ⊥OF ,见解析;(2)见解析;(3)51°.【分析】(1)根据平行线的性质和角平分线定义即可证明;(2)延长EM 交CD 于点G ,过点O 作//OP CD 交ME 于点P ,结合(1)的方法即可证明;(3)延长EM 、FN 交CD 于点Q ,过点O 作//OP CD 交ME 于点P .结合(1)的方法可得102AEM CFN EQF ∠+∠=∠=︒,再根据角平分线定义即可求出结果.【详解】(1)已知:如图①,//AB CD ,直线MN 分别交直线AB ,CD 于点E ,F ,OE 、OF 分别平分AEF ∠、CFE ∠,求证:OE OF ⊥;证法1://AB CD ,180AEF CFE ∠+∠=︒∴, OE 、OF 分别平分AEF ∠、CFE ∠,119022OEF OFE AEF CFE ∴∠+∠=∠+∠=︒. 180OEF OFE EOF ∠+∠+∠=︒,90EOF ∴∠=︒.OE OF ∴⊥;证法2:如图,过点O 作//OP CD 交直线MN 于点P .//AB CD ,180AEF CFE ∠+∠=︒∴, OE 、OF 分别平分AEF ∠、CFE ∠, 119022AEO CFO AEF CFE ∴∠+∠=∠+∠=︒. //OP CD ,//AB CD ,//OP AB ∴.90EOF EOP POF AEO CFO ∴∠=∠+∠=∠+∠=︒. OE OF ∴⊥;故答案为:直线MN 分别交直线AB ,CD 于点E ,F ,OE 、OF 分别平分AEF ∠、CFE ∠,OE OF ⊥;(2)证明:如图,延长EM 交CD 于点G ,过点O 作//OP CD 交ME 于点P ,//AB CD ,180AEG CGE ∴∠+∠=︒,//EM FN ,CGE CFN ∴∠=∠.OE 、OF 分别平分AEM ∠、CFN ∠,1111902222AEO CFO AEM CFN AEM CGE ∴∠+∠=∠+∠=∠+∠=︒, //OP CD ,//AB CD ,//OP AB ∴.90EOF EOP POF AEO CFO ∴∠=∠+∠=∠+∠=︒. OE OF ∴⊥;(3)解:如图,延长EM 、FN 交于点Q ,过点O 作//OG CD 交ME 于点G .//EM PN ,//FN MP ,102EQF EMP P ∴∠=∠=∠=︒,由(1)证法2可知102AEM CFN EQF ∠+∠=∠=︒, OE 、OF 分别平分AEM ∠、CFN ∠,EOF AEO CFO ∴∠=∠+∠11110251222AEM CFN =∠+∠=⨯︒=︒. 【点睛】本题考查了平行线的判定与性质,角平分线的定义,解决本题的关键是掌握平行线的判定与性质.。

初一数学经典题型解析

初一数学经典题型解析

初一数学经典题型分析1、如图,将一个含30°角的三角板的直角极点放在直尺的一边上,假如∠ 1=115°,那么∠ 2 的度数是〔〕A。

95°B。

85°C。

75°D。

65°考点:平行线的性质;三角形的外角性质.专题:计算题.剖析:依据题画出图形,由直尺的两对边AB 与 CD 平行,利用两直线平行,同位角相等可得∠1=∠ 3,由∠ 1 的度数得出∠ 3 的度数,又∠ 3 为三角形EFG的外角,依据外角性质:三角形的外角等于与它不相邻的两内角之和获得∠3=∠ E+∠ 2,把∠ 3 和∠ E 的度数代入即可求出∠ 2 的度数.解答:: AB∥ CD,∠ 1=115°,∠ E=30°,求:∠ 2 的度数?解:∵ AB ∥ CD 〔〕,且∠1=115°,∴∠ 3=∠ 1=115°〔两直线平行,同位角相等〕,又∠ 3 为△ EFG 的外角,且∠E=30°,∴∠ 3=∠ 2+∠ E,那么∠ 2=∠ 3﹣∠ E=115°﹣ 30°=85°.应选 B.评论:本题考察了平行线的性质,以及三角形的外角性质,利用了转变的数学思想,此中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,娴熟掌握性质是解本题的重点.2 、如图, AB∥ CD ,DE 交 AB 于点 F ,且 CF⊥ DE 于点 F ,假定∠ EFB=125°,那么∠ C=35°.考点:平行线的性质.专题:计算题剖析:依据对顶角相等,得出∠AFD= ∠ EFB ,由∠ EFB 的度数求出∠AFD 的度数,再依据垂直的定义获得∠ CFD=90°,利用∠ AFD ﹣∠ CFD 得出∠ AFC 的度数,最后由两直线平行内错角相等,即可获得所求的角的度数.解答:解:∵∠ EFB=125°〔〕,∴∠ AFD= ∠EFB=125°〔对顶角相等〕,又∵ CF⊥ DE 〔〕,∴∠ CFD=90°〔垂直定义〕,∴∠ AFC= ∠ AFD ﹣∠ CFD=125° ﹣ 90°=35°,∵ AB ∥ CD 〔〕,∴∠ C=∠AFC=35°〔两直线平行内错角相等〕.故答案为: 35评论:本题考察了平行线的性质,垂直定义,以及对顶角的性质,利用了转变的数学思想,此中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,娴熟掌握平行线的性质是解本题的重点.3、假如对于 x 不等式组值范围是 24 < b≤32.的整数解仅为1,2,3,那么a 的取值范围是0< a≤9,b的取考点:一元一次不等式组的整数解;不等式的性质;解一元一次不等式.专题:计算题.剖析:求出不等式的解集,找出不等式组的解集,依据和不等式组的解集得出 0 <≤1,3<≤4,求出即可.解答:解:,由①得: x ≥,由②得: x <,∴不等式组的解集是≤x<,∵不等式组的整数解是1,2 ,3.∴0<≤1, 3<≤4,解得: 0 < a≤9,24 < b≤32,故答案为: 0 < a≤9, 24 < b≤32.评论:本题考察了对不等式的性质,解一元一次不等式〔组〕,一元一次不等式组的整数解等知识点的理解和掌握,重点是依据不等式组的解集和得出0 < a≤9, 24 < b≤32.4 、: a2 ﹣ 4b ﹣ 4=0,a2+2b2=3,那么的值为〔〕A。

初一数学经典题型解析

初一数学经典题型解析

初一数学经典题型解析1、如图,将一个含30°角的三角板的直角顶点放在直尺的一边上,如果∠1=115°,那么∠2的度数是()A。

95°B。

85° C. 75°D。

65°考点:平行线的性质;三角形的外角性质.专题:计算题.分析:根据题画出图形,由直尺的两对边AB与CD平行,利用两直线平行,同位角相等可得∠1=∠3,由∠1的度数得出∠3的度数,又∠3为三角形EFG的外角,根据外角性质:三角形的外角等于与它不相邻的两内角之和得到∠3=∠E+∠2,把∠3和∠E的度数代入即可求出∠2的度数.解答:已知:AB∥CD,∠1=115°,∠E=30°,求:∠2的度数?解:∵AB∥CD(已知),且∠1=115°,∴∠3=∠1=115°(两直线平行,同位角相等),又∠3为△EFG的外角,且∠E=30°,∴∠3=∠2+∠E,则∠2=∠3﹣∠E=115°﹣30°=85°.故选B.点评:此题考查了平行线的性质,以及三角形的外角性质,利用了转化的数学思想,其中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练掌握性质是解本题的关键.2、如图,AB∥CD,DE交AB于点F,且CF⊥DE于点F,若∠EFB=125°,则∠C=35°.考点:平行线的性质.专题:计算题分析:根据对顶角相等,得出∠AFD=∠EFB,由∠EFB的度数求出∠AFD的度数,再根据垂直的定义得到∠CFD=90°,利用∠AFD﹣∠CFD得出∠AFC的度数,最后由两直线平行内错角相等,即可得到所求的角的度数.解答:解:∵∠EFB=125°(已知),∴∠AFD=∠EFB=125°(对顶角相等),又∵CF⊥DE(已知),∴∠CFD=90°(垂直定义),∴∠AFC=∠AFD﹣∠CFD=125°﹣90°=35°,∵AB∥CD(已知),∴∠C=∠AFC=35°(两直线平行内错角相等).故答案为:35点评:此题考查了平行线的性质,垂直定义,以及对顶角的性质,利用了转化的数学思想,其中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练掌握平行线的性质是解本题的关键.3、如果关于x不等式组的整数解仅为1,2,3,则a的取值范围是0<a≤9,b的取值范围是24<b≤32.考点:一元一次不等式组的整数解;不等式的性质;解一元一次不等式.专题:计算题.分析:求出不等式的解集,找出不等式组的解集,根据已知和不等式组的解集得出0<≤1,3<≤4,求出即可.解答:解:,由①得:x≥,由②得:x<,∴不等式组的解集是≤x<,∵不等式组的整数解是1,2,3.∴0<≤1,3<≤4,解得:0<a≤9,24<b≤32,故答案为:0<a≤9,24<b≤32.点评:本题考查了对不等式的性质,解一元一次不等式(组),一元一次不等式组的整数解等知识点的理解和掌握,关键是根据不等式组的解集和已知得出0<a≤9,24<b≤32.4、已知:a2﹣4b﹣4=0,a2+2b2=3,则的值为()A。

(完整版)数学苏教七年级下册期末重点初中题目优质解析

(完整版)数学苏教七年级下册期末重点初中题目优质解析

(完整版)数学苏教七年级下册期末重点初中题目优质解析一、选择题1.计算(a 2)3的结果为( )A .a 4B .a 5C .a 6D .a 92.如图,与3∠是同旁内角的是( )A .1∠B .2∠C .4∠D .5∠3.已知关于x 的不等式(1)2a x ->的解集为21x a <-,则a 的取值范围是( ) A .0a >B .1a >C .0a <D .1a < 4.已知a b >,c 为任意数,则下列不等式总是成立的是( )A .a c b c +<+B .a c b c ->-C .ac bc <D .a c b c < 5.若关于x 的一元一次不等式组200x x a +>⎧⎨-<⎩无解,则a 的取值范围是( ) A .a >2 B .a ≥2 C .a <﹣2 D .a ≤﹣2 6.下列给出4个命题:①内错角相等;②对顶角相等;③对于任意实数x ,代数式2610x x -+ 总是正数;④若三条线段a 、b 、c 满足a b c +>,则三条线段a 、b 、c 一定能组成三角形.其中正确命题的个数是( )A .1个B .2个C .3个D .4个7.某电子玩具底座平面是一个正方形ABCD ,甲、乙两只电子蚂蚁分别沿着底座的外围环行,已知50cm AB =,甲、乙分别从正方形ABCD 的顶点A ,C 出发,同时沿正方形的边开始移动,甲依顺时针方向环行,乙依逆时针方向环行,若乙的速度为4cm/s ,甲的速度为1cm/s ,则它们第2021次相遇在边( )上.A .ABB .BC C .CD D .DA 8.如图,将四边形纸片ABCD 沿EF 折叠,点A 落在A 1处,若∠1+∠2=90°,则∠A 的度数是( )A .45°B .40°C .35°D .30°二、填空题9.计算:23a ab =________.10.下列命题中,①对顶角相等;②同位角相等;③平行于同一条直线的两条直线平行;④若22a b >,则a b >.是真命题的是______.(填序号)11.若一个多边形的每个外角均为45︒,则这个多边形的边数为__________. 12.已知224m n -=,则2202024m n -+=____________.13.已知方程组32123x y k x y k +=+⎧⎨+=⎩的解x ,y 满足x +y =2,则k 的值为_____. 14.一块白色正方形布,边长是1.8米,上面横竖各有两道黑条,如图所示,黑条的宽是0.2米,利用平移知识得白色部分的面积是____平方米15.如果一个正多边形的每个内角都是150°,那么这个多边形的内角和为______. 16.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上的A '处,折痕为CD ,则A DB '∠=___.17.计算:()()221342(3)xy x y x xy -÷-+-;()2020202021222()(0.2)53-++-⨯ 18.分解因式:(1)382a a -(2)222(1)4x x +-19.解方程组:(1)25,1.x y x y +=⎧⎨-=⎩①② (2)4143314312x y x y +=⎧⎪⎨---=⎪⎩①② 20.解不等式组()2133112x x x +≤⎧⎪⎨+->⎪⎩①② ,并把解集在数轴上表示出来.三、解答题21.如图,在△ABC 中,点D 、F 在BC 边上,点E 在AB 边上,点G 在AC 边上,EF 与GD 的延长线交于点H ,∠BDH =∠B ,∠BEF +∠ADH =180°.(1)EH 与AD 平行吗?为什么?(2)若∠H =40°,求∠BAD 的度数.22.某商场销售每个进价为150元和120元的A 、B 两种型号的足球,如表是近两周的销售情况: 销售时段销售数量销售收入A 种型号B 种型号 第一周3个 4个 1200元 第二周 5个 3个 1450元 (进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B 两种型号的足球的销售单价;(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A 种型号的足球最多能采购多少个?(3)在()2的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.23.阅读理解:定义:A ,B ,C 为数轴上三点,若点C 到点A 的距离是它到点B 的时距离的n (n 为大于1的常数)倍,则称点C 是(),A B 的n 倍点,且当C 是(),A B 的n 倍点或(),B A 的n 倍点时,我们也称C 是A 和B 两点的n 倍点.例如,在图1中,点C 是(),A B 的2倍点,但点C 不是(),B A 的2倍点.(1)特值尝试.①若2n =,图1中,点______是(),D C 的2倍点.(填A 或B )②若3n =,如图2,M ,N 为数轴上两个点,点M 表示的数是2-,点N 表示的数是4,数______表示的点是(),M N 的3倍点.(2)周密思考:图2中,一动点P 从N 出发,以每秒2个单位的速度沿数轴向左运动t 秒,若P 恰好是M 和N 两点的n 倍点,求所有符合条件的t 的值.(用含n 的式子表示)(3)拓展应用数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”.若(2)中满足条件的M 和N 两点的所有n 倍点P 均处于点N 的“可视距离”内,请直接写出n 的取值范围.(不必写出解答过程)24.【问题探究】如图1,DF ∥CE ,∠PCE=∠α,∠PDF=∠β,猜想∠DPC 与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF ∥CE ,点P 在三角板AB 边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P 在E 、F 两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)25.如图1,将一副三角板ABC 与三角板ADE 摆放在一起;如图2,固定三角板ABC ,将三角板ADE 绕点A 按顺时针方向旋转,记旋转角CAE α∠=(0180α︒︒<<).(1)当α=________度时,AD BC ⊥;当α=________度时//AD BC ;(2)当ADE 的一边与ABC 的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(3)当045α︒<<︒,连接BD ,利用图4探究BDE CAE DBC ∠+∠+∠的度数是否发生变化,并给出你的证明.【参考答案】一、选择题1.C解析:C【分析】根据幂的乘方,即可解答.【详解】解:(a 2)3=a 6.故选:C .【点睛】本题考查了幂的乘方,掌握幂的乘方运算是解题的关键.解析:C【分析】根据同旁内角的概念:两条直线被第三条直线所截,若两个角都在两直线之间,并且在第三条直线的同旁,据此可排除选项.【详解】解:与3∠是同旁内角的是4∠;故选C .【点睛】本题主要考查同旁内角的概念,熟练掌握同旁内角的概念是解题的关键.3.B解析:B【分析】化系数为1时,不等号方向改变了,利用不等式基本性质可知1-a <0,所以可解得a 的取值范围.【详解】∵不等式(1-a )x >2的解集为21x a<-, 又∵不等号方向改变了,∴1-a <0,∴a >1;故选:B .【点睛】此题考查解一元一次不等式,解题关键在于掌握在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变. 4.B解析:B【分析】根据不等式的性质,不等式两边同加同减一个实数,不等号方向不变,同乘或同除大于0的数,不等号方向不变,同乘或同除一个负数,不等号方向改变,可得答案.【详解】解:A 、两边都加c ,不等号的方向不变,故A 不符合题意;B 、两边都减c ,不等号的方向不变,故B 符合题意;C 、c=0时,ac=bc ,故C 不符合题意;D 、c=0时,a|c|=b|c|,故D 不符合题意;故选:B .【点睛】本题考查了不等式的性质,利用不等式的性质是解题关键.解析:D【分析】先把a当作已知条件表示出不等式的解集,再由不等式组无解即可得出结论.【详解】解:20?0?xx a+>⎧⎨-<⎩①②,由①得,x>﹣2;由②得,x<a,∵不等式组无解,∴a≤﹣2.故选:D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.B解析:B【解析】①两直线平行,内错角相等,故错误;②对顶角相等,正确;③对于任意实数x,代数式2610x x-+=(x−3)2+1总是正数,正确;④若三条线段a、b、c满足a+b>c,则三条线段a、b、c一定能组成三角形,错误,故选B.点睛:本题考查了命题与定理的知识,解题的关键是利用平行线的性质、对顶角的性质、三角形的三边关系等知识分别判断后即可确定正确的选项.注意:要说明一个没命题的正确性,一般需要推理、论证,二判断一个命题是假命题,只需举出一个范例即可.7.D解析:D【分析】先求出第2021次相遇时点A的总路程,再求出点A移动的圈数和余数,可得结果.【详解】解:第一次相遇:路程和为:100cm,相遇时间:100÷(4+1)=20秒,第二次相遇:路程和为:50×4=200cm,相遇时间:200÷(4+1)=40秒,之后的每次相遇,相遇时间都为40秒,则第2021次相遇所需总时间为:20+40×2020=80820秒,此时甲的总路程为:80820×1=80820cm ,80820÷200=404...20,即甲从A 点出发走了404圈,另加20cm ,即在AD 上,故选D .【点睛】本题主要考查行程问题中的相遇问题,规律型问题,难度较大,注意先通过计算发现规律然后再解决问题.8.A解析:A【分析】根据翻折变换的性质和平角的定义求出∠3+∠4,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵四边形纸片ABCD 沿EF 折叠,点A 落在A 1处,∴∠3+∠4=12(180°-∠1)+12(180°-∠2)=180°-12(∠1+∠2),∵∠1+∠2=90°,∴∠3+∠4=180°-12×90°=180°-45°=135°,在△AEF 中,∠A =180°-(∠3+∠4)=180°-135°=45°.故选:A .【点睛】本题考查了三角形的内角和定理,翻折变换的性质,平角的定义,熟记各性质并整体思想的利用是解题的关键.二、填空题9.26a b .【分析】利用单项式乘单项式的法则进行计算即可.【详解】解:23a ab 26a b故填:26a b .【点睛】单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.10.①③【分析】根据两条直线相交对顶角相等,可判断①正确;两条直线平行同位角相等,缺少平行条件,可判断②错误;平行于同一条直线的两条直线平行,可判断③正确;22||||a b a b >⇒>,当a 和b 都为负数时,a b <,可判断④不正确.【详解】①对顶角相等符合对顶角性质,故此命题正确②两条直线平行,内错角相等,故此命题错误③平行于同一条直线的两条直线平行符合平行线的判定定理,故此命题正确④22||||a b a b >⇒>,因此当a 和b 都为负数时,a b <,故此命题错误故答案为①③【点睛】本题主要考查了命题的判断、对顶角的性质、平行线的性质、平行公理及推论、实数的大小比较,运用性质逐一判断即可求解.11.8【分析】一个多边形的外角和为360°,而每个外角为45°,进而求出外角的个数,即为多边形的边数.【详解】解:360°÷45°=8,故答案为:8.【点睛】本题考查多边形的外角和,掌握多边形的外角和是360°是解决问题的关键.12.2012【分析】把224m n -=看作一个整体,进一步将原式分解代入求得答案即可.【详解】解:2202024m n -+=220202(m 2n)--∵224m n -=∴原式=2020-2×4=2012.故答案为2012.【点睛】此题考查因式分解的实际运用,整体代入是解决问题的关键.13.92【分析】 把两方程相加,利用整体代入的方法得到2125k +=,然后解关于k 的一次方程即可. 【详解】解:32123x y k x y k +=+⎧⎨+=⎩①②, ①+②得5x +5y =2k +1,即x +y =215k +, ∵x +y =2,∴2125k +=,解得k =92. 故答案为:92. 【点睛】本题考查了二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.14.96【分析】首先将黑条平移到边缘,表示出白色部分的边长,再根据正方形的面积公式计算出面积即可.【详解】解:将黑条平移到边缘,如图:则白色部分的边长为:1.8-0.2×2=1.4,白色部分的面积为:1.4×1.4=1.96(m 2).故答案为:1.96.【点睛】此题主要考查了图形的平移,关键是掌握把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.15.1800°【分析】设正多边形的边数为n ,根据多边形内角和公式即可列出方程求解.【详解】设正多边形的边数为n ,依题意可得解得n=12∴这个多边形的内角和为故答案为:1800°.【点睛解析:1800°【分析】设正多边形的边数为n ,根据多边形内角和公式即可列出方程求解.【详解】设正多边形的边数为n ,依题意可得()150180°2n n ⨯=-⨯°解得n =12∴这个多边形的内角和为°121501°800⨯=故答案为:1800°.【点睛】此题主要考查多边形的内角和,解题的关键是熟知多边形内角和公式.16.10°【分析】根据折叠的性质可知,根据三角形内角和定理可得,根据三角形的外角性质可得,进而可得【详解】折叠,,故答案为:【点睛】本题考查了折叠的性质,三角形内角和定理,三角形的外角解析:10°【分析】根据折叠的性质可知50CA D A '∠=∠=︒,根据三角形内角和定理可得18040B ACB A ∠=︒-∠-∠=︒,根据三角形的外角性质可得DAC B A DB ''∠=∠+∠,进而可得A DB '∠【详解】折叠50CA D A '∠=∠=︒18040B ACB A ∠=︒-∠-∠=︒,DAC B A DB ''∠=∠+∠,∴A DB '∠504010DA C B '=∠-∠=︒-︒=︒故答案为:10︒【点睛】本题考查了折叠的性质,三角形内角和定理,三角形的外角性质,掌握以上知识是解题的关键.17.(1);(2)【分析】(1)直接利用整式的混合运算法则计算得出答案;(2)利用负整数指数幂,零指数幂和积的乘方的逆用计算法则求解即可.【详解】解:(1)原式;(2)原式【点睛】解析:(1)2259xy x y +;(2)254【分析】(1)直接利用整式的混合运算法则计算得出答案;(2)利用负整数指数幂,零指数幂和积的乘方的逆用计算法则求解即可.【详解】解:(1)原式22329xy xy x y =++2259xy x y =+; (2)原式202011(0.25)54=++-⨯⨯ 554=+ 25.4= 【点睛】此题主要考查了整式的混合运算,负整数指数幂,零指数幂和积的乘方的逆用,正确掌握相关运算法则是解题关键.18.(1);(2)【分析】(1)先提公因式法,再用公式法分解因式即可;(2)直接用公式法分解因式即可【详解】(1)(2)【点睛】本题考查了提公因式法分解因式,公式法分解因式,熟练公式解析:(1)2(2)(2)a a a +-;(2)22(1)(1)x x +-【分析】(1)先提公因式法,再用公式法分解因式即可;(2)直接用公式法分解因式即可【详解】(1)322(4)2(2)(2)82a a a a a a a =--=+-(2)222(1)4x x +-22(12)(12)x x x x =+++-22(1)(1)x x =+-【点睛】本题考查了提公因式法分解因式,公式法分解因式,熟练公式是解题的关键.19.(1);(2).【分析】(1)通过加减消元法计算即可;(2)先去分母,再通过加减消元法计算即可;【详解】(1),得:,解得,把代入②中得:,∴不等式组的解集为;(2),由②得:,解析:(1)2,1.x y =⎧⎨=⎩;(2)3114x y =⎧⎪⎨=⎪⎩. 【分析】(1)通过加减消元法计算即可;(2)先去分母,再通过加减消元法计算即可;【详解】(1)25,1.x y x y +=⎧⎨-=⎩①②, +①②得:36x =,解得2x =,把2x =代入②中得:1y =,∴不等式组的解集为2,1.x y =⎧⎨=⎩; (2)4143314312x y x y +=⎧⎪⎨---=⎪⎩①②, 由②得:()()33431x y ---=,394121x y --+=,342x y -=-③,由①+③得:412x =,解得:3x =,把3x =代入①中得:114y =; ∴不等式组的解集为3114x y =⎧⎪⎨=⎪⎩; 【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.20.,数轴见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:由①得:由②得:所以不等式组的解为.在数轴解析:21x -<≤,数轴见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:由①得:1x ≤由②得: 2x >-所以不等式组的解为21x -<≤.在数轴上表示为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握解一元一次不等式.三、解答题21.(1)EH 与AD 平行,理由见解析;(2)∠BAD 的度数为40°.【分析】(1)由已知条件,∠BDH =∠B ,根据平行线的判定可得AB ∥GH ,根据平行线的性质可得∠ADH+∠H=180°,即可得出答解析:(1)EH 与AD 平行,理由见解析;(2)∠BAD 的度数为40°.【分析】(1)由已知条件,∠BDH =∠B ,根据平行线的判定可得AB ∥GH ,根据平行线的性质可得∠ADH +∠H =180°,即可得出答案.(2)由(1)中的结论可知,GH ∥AE ,EH ∥AD ,可得∠BAD +∠ADH =180°,∠H +∠ADH =180°,即可得出答案.【详解】解:(1)EH ∥AD .理由如下:∵∠BDH =∠B ,∴AB ∥GH ,∴∠BEF=∠H ,∵∠BEF +∠ADH =180°,∴∠H +∠ADH =180°,∴EH ∥AD .(2)∵GH ∥AE ,EH ∥AD ,∴∠BAD +∠ADH =180°,∠H +∠ADH =180°,∴∠H =∠BAD =40°.【点睛】本题主要考查了平行线的性质与判定,熟练掌握平行线的性质与判定进行证明是解决本题的关键.22.(1)A 型号足球单价是200元,B 型号足球单价是150元.(2)40个.(3)有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20解析:(1)A 型号足球单价是200元,B 型号足球单价是150元.(2)40个.(3)有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.【分析】(1)设A 、B 两种型号的足球销售单价分别是x 元和y 元,根据3个A 型号和4个B 型号的足球收入1200元,5个A 型号和5个B 型号的电扇收入1450元,列方程组求解; (2)设A 型号足球购进a 个,B 型号足球购进()60a -个,根据金额不多余8400元,列不等式求解;(3)根据A 型号足球的进价和售价,B 型号足球的进价和售价以及总利润=一个利润×总数,列出不等式,求出a 的值,再根据a 为整数,即可得出答案.【详解】()1解:设A 、B 两种型号的足球销售单价分别是x 元和y 元,列出方程组:341200531450x y x y +=⎧⎨+=⎩解得200150x y =⎧⎨=⎩A 型号足球单价是200元,B 型号足球单价是150元.()2解:设A 型号足球购进a 个,B 型号足球购进()60a -个,根据题意得:()150120608400a a +-≤解得40a ≤,所以A 型号足球最多能采购40个.()3解:若利润超过2550元,须()5030602550a a +->37.5a >,因为a 为整数,所以3840a ≤≤能实现利润超过2550元,有3种采购方案.方案一:A 型号38个,B 型号22个;方案二:A 型号39个,B 型号21个;方案三:A 型号40个,B 型号20个.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.23.(1)①B ;②7或;(2)或或;(3)n≥.【分析】(1)①直接根据新定义的概念即可求出答案;②根据新定义的概念列出绝对值方程即可求解;(2)设P 点所表示的数为4-2t ,再根据新定义的概念列解析:(1)①B ;②7或52;(2)31t n =+或31n t n =+或31n t n =-;(3)n ≥54. 【分析】(1)①直接根据新定义的概念即可求出答案;②根据新定义的概念列出绝对值方程即可求解;(2)设P 点所表示的数为4-2t ,再根据新定义的概念列出方程即可求解;(3)分31t n =+,31n t n =+,31n t n =-三种情况分别表示出PN 的值,再根据PN 的范围列出不等式组即可求解.【详解】(1)①由数轴可知,点A 表示的数为-1,点B 表示的数为2,点C 表示的数为1,点D 表示的数为0,∴AD =1,AC =2∴AD =12AC∴点A 不是(),D C 的2倍点∴BD =2,BC =1∴BD =2BC∴点B 是(),D C 的2倍点故答案为:B ;②若点C 是点(),M N 的3倍点∴CM =3CN设点C 表示的数为x∴CM =2x +,CN =4x - ∴2x + =34x -即()234x x +=-或()234x x +=--解得x =7或x =52∴数7或52表示的点是(),M N 的3倍点. 故答案为:7或52; (2)设点P 表示的数为4-2t ,∴PM =422t -+,PN =2t∵若P 恰好是M 和N 两点的n 倍点,∴当点P 是(),M N 的n 倍点∴PM =nPN ∴422t -+=n ×2t即6-2t =2nt 或6-2t =-2nt 解得31t n =+或31t n=- ∵n >1 ∴31t n =+ ∴当点P 是(),N M 的n 倍点∴PN =nPM∴2t =n ×422t -+即2t = n ×()62t -或-2t = n ×()62t - 解得31n t n =+或31n t n =- ∴符合条件的t 值有31t n =+或31n t n =+或31n t n =-; (3)∵PN =2t∴当31t n =+时,PN =61n + 当31n t n=+时,PN =61n n +,当31ntn=-时,PN=61nn-∵点P均在点N的可视距离之内∴PN≤30∴630 1630 163011nnnnnn⎧≤⎪+⎪⎪≤⎪+⎨⎪≤⎪-⎪⎪⎩>解得n≥5 4∴n的取值范围为n≥54.【点睛】此题主要考查主要方程与不等式组的应用,解题的关键是根据新定义概念列出方程或不等式求解.24.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1) ( 图2)(2) 如图1,∠DPC =β -α∵DF ∥CE ,∴∠PCE =∠1=β,∵∠DPC =∠1-∠FDP =∠1-α.∴∠DPC =β -α如图2,∠DPC = α -β∵DF ∥CE,∴∠PDF =∠1=α∵∠DPC =∠1-∠ACE=∠1-β.∴∠DPC =α - β25.(1)105,15;(2)旋转角的所有可能的度数是:15°,45°,105°,135°,150°;(3),保持不变;见解析【分析】(1)三角板ADE 顺时针旋转后的三角板为,当时,,则可求得旋转角 解析:(1)105,15;(2)旋转角α的所有可能的度数是:15°,45°,105°,135°,150°;(3) 105BDE CAE DBC ∠+∠+∠=︒,保持不变;见解析【分析】(1)三角板ADE 顺时针旋转后的三角板为AD E '',当AD BC '⊥时,D AD D AE EAD ''∠=∠+∠,则可求得旋转角度;当AD '∥BC 时,D AD DAE ACB '∠=∠-∠,则可求得旋转角度;(2)分五种情况考虑:AD ∥BC ,DE ∥AB ,DE ∥BC ,DE ∥AC ,AE ∥BC ,即可分别求出旋转角;(3)设BD 分别交AC 、AE 于点M 、N ,利用三角形的内外角的相等关系分别得出:ANM E BDE ∠=∠+∠及AMN C DBC ∠=∠+∠,由AMN 的内角和为180°,即可得出结论.【详解】(1)三角板ADE 顺时针旋转后的三角板为AD E '',当AD BC '⊥时,如图, ∵9060D AE ACB '∠=︒-∠=︒,∠EAD =45°∴6045105D AD D AE EAD ''∠=∠+∠=︒+︒=︒即旋转角105α=︒当//AD BC '时,如图,则30D AE ACB '∠=∠=︒∴D AD DAE ACB '∠=∠-∠=45°-30°=15°即旋转角15α=°故答案为:105,15(2)当ADE 的一边与ABC 的某一边平行(不共线)时,有五种情况 当AD ∥BC 时,由(1)知旋转角为15°;如图(1),当DE ∥AB 时,旋转角为45°;当DE ∥BC 时,由AD ⊥DE ,则有AD ⊥BC ,此时由(1)知,旋转角为105°; 如图(2),当DE ∥AC 时,则旋转角为135°;如图(3),当AE ∥BC 时,则旋转角为150°;所以旋转角α的所有可能的度数是:15°,45°,105°,135°,150°(3)当045α︒<<︒,105BDE CAE DBC ∠+∠+∠=︒,保持不变; 理由如下:设BD 分别交AC 、AE 于点M 、N ,如图在AMN 中,180AMN CAE ANM ∠+∠+∠=ANM E BDE ∠=∠+∠,AMN C DBC ∠=∠+∠180E BDE CAE C DBC ∴∠+∠+∠+∠+∠=︒30C ∠=︒,45E ∠=︒105BDE CAE DBC ∴∠+∠+∠=︒【点睛】本题考查了图形旋转的性质,三角形内角和定理,三角形的外角与不相邻的两个内角的相等关系等知识,注意旋转的三要素:旋转中心,旋转方向和旋转角度.。

七年级数学核心题目解析

七年级数学核心题目解析
uzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。
关 注 初 中 数 学 ( chuzh ong -shux ue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 数 姐 贴 心 答 疑 解 惑 。

七年级数学核心题目赏析

七年级数学核心题目赏析

七年级数学核心题目赏析
张立界
【期刊名称】《中学生数理化:八年级数学(北师大版)》
【年(卷),期】2007(000)008
【摘要】人们常说,语文是读出来的,数学是练出来的.数学的每一章节都有很多题目需要大家去练.但是题能做得完吗?题是永远做不完的!但在众多的题目中,我们总能找出最重要的、最核心的题目,其他题目可以是它的升级版或变形版.如果把这些核心题目掌握了,就会大大节约我们的宝贵时间.本文尝试从多个角度向同学们展示一些核心题目.……
【总页数】14页(P24-37)
【作者】张立界
【作者单位】
【正文语种】中文
【中图分类】G4
【相关文献】
1.回眸七年级数学核心题目 [J], 张立界
2.七年级数学核心题目赏析 [J], 张立界
3.2018年海南省中考作文题目解读及满分作文赏析 [J], 李本华
4.等差和等比数列交汇题目赏析 [J], 崔文;侯宇虹;;
5.等差和等比数列交汇题目赏析 [J], 崔文;侯宇虹
因版权原因,仅展示原文概要,查看原文内容请购买。

代数式的值-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

代数式的值-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

代数式的值【知识梳理】(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值. 题型简单总结以下三种:①已知条件不化简,所给代数式化简; ②已知条件化简,所给代数式不化简; ③已知条件和所给代数式都要化简.【考点剖析】 一、用代数式数、图形的规律 一、单选题1.(2021秋·上海·七年级期中)某影院第一排有20个座位,每退一排就多1个座位,则第n 排有座位( ) A .()20n +个 B .()21n +个C .()19n +个D .()18n +个【答案】C【分析】根据后面每一排都比前一排多1个座位表示出前几排的座位数,即可得出规律,然后求解即可. 【详解】第一排有20个座位,第二排有21个座位,第三排有22个座位,…,第n 排有(n+19)个座位. 故选C .【点睛】本题考查了列代数式,是规律探寻题,比较简单.二、填空题2.(2022秋·上海·七年级专题练习)七(1)班共有n 名同学,每两人握一次手,他们一共握了____次手.【答案】()21n n −【分析】自己不能跟自己握手,所以需要握手的人数应该是除自己外的(n−1)个人.【详解】每个人都要和另外的n−1个人握一次手,n 个人共握手n×(n−1)次,由于每两人握手,应算作一次,需去掉重复的情况,实际只握了n×(n−1)÷2=()21n n −次.故答案为()21n n −【点睛】本题目考查的是握手问题,如果人数比较少,可以用枚举法解答;如果人数比较多,可以用公式:()21n n −解答.【答案】4x +16/164x +【分析】日历中任意框出4个数,设其中最小的数为x ,并用x 分别表示出其他三个数,然后4个数相加即可.【详解】解:最小的数为x ,则其它3个分别是1x +,7x +,8x +, 这4个数之和为178416x x x x x ++++++=+, 故答案为:416x +【点睛】本题考查了代数式的应用,理解日历中任意框出4个数的关系是解题关键.【答案】 32 76 (1)1(1)n n n n +++12=3212-13=761134−=13121145−=2120()()11111+11n n n n n n ++−=++【答案】(4n+1).【分析】根据题目中的图形变化规律可知,每一次变化增加四个三角形,从而可以解答本题. 【详解】解:由图可得, 图(1)所得三角形总个数为:1+4=5; 图(2)所得三角形总个数为:1+4×2=9; 图(3)所得三角形总个数为:1+4×3=13; 所以第n 个图中共有(4n+1)个三角形; 故答案为:(4n+1).【点睛】本题主要考查图形的变化类,解答本题的关键是发现题目中图形的变化规律,求出相应的三角形的个数.6.(2022秋·上海·七年级专题练习)如图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,…,当字母C 第()21n −次出现时(n 为正整数),恰好数到的数是______(用含n 的代数式表示).【答案】63n −【分析】根据题意可以发现六个为一个循环,每个循环中字母C 出现两次,从而可以解答本题.【详解】解:按照A →B →C →D →C →B →A →B →C →…的方式进行,每6个字母ABCDCB 一循环,每一循环里字母C 出现2次,当循环n 次时,字母C 第2n 次出现时(n 为正整数),此时数到最后一个数为6n , 当字母C 第()21n −次出现时(n 为正整数),再数3个数为63n −.故答案为:63n −.【点睛】本题考查代数式、数的规律,是基础考点,难度较易,掌握相关知识是解题关键.三、解答题(2)a n = (用含n 的代数式表示)(3)按照上述方法,能否得到2019个正方形?如果能,请求出n ;如果不能,请简述理由. 【答案】(1)10,13;(2)3n-2;(3)不能,【分析】根据已知图形可以发现:每次剪开,都会增加3个正方形,所以可以得到此题的规律为:第n 个图形中的正方形个数为:3n-2.【详解】(1)根据已知图形可以发现:每次剪开,都会增加3个正方形, ∴第4个图中为7+3=10个,第5个图中为10+3=13个;(2)根据(1)中的数据规律可知:第n 个图形中的正方形个数为:32n −; (3)不能.∵若能得到2019个正方形,则有322019n −=,则32021n =,但是2021不能被3整除,∴不能得到2019个正方形.【点睛】本题考查了图形的变化类问题,关键是要通过观察图形,分析、归纳发现其中的规律. (2019++2022+++2019+2020+2021=++【答案】(1)12n (n+1)(2)12(n+1)2【分析】(1)根据题目中的方法进行求解即可; (2)仿照题目中的方法进行求解即可. (1)解:由题意得:1+2+3+…+(n-2)+(n-1)+n=12n(n+1);(2)1+3+5+…+(2n+1)=12×12(1+2n+1)(n+1)=12(n+1)2.【点睛】本题主要考查规律型:数字的变化类,列代数式,解答的关键是总结出存在的规律.【答案】(1)-3(2)5;-20;42k−【分析】尝试:(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;应用:根据“台阶上的数字是每4个一循环”求解可得;发现:由循环规律即可知数“2”所在的台阶数为4k﹣2.(1) 解:尝试: (1)()()52193++−+−=−答:前4个台阶上数的和是3−.(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k − (2)解:(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k −.【点睛】本题主要考查了列代数式,解一元一次方程,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环. 二、已知字母的值,求代数值的值 一、单选题1.(2022秋·上海青浦·七年级校考期中)已知()42251A x =+,则当1x =时,3A 的值为( ) A .8000 B .1000C .1000±D .8000±【答案】D【分析】利用乘方的逆运算以及已知条件求出A 的值,然后利用乘法运算法则求出3A 的值即可. 【详解】解:∵()4222[5(51]21)x A x ++=±=,1x =,∴225(1)5(11)20A x =±+=±⨯+=±,∴33(20)8000A =±=±.故选:D .【点睛】本题主要考查了乘法运算、乘方的逆运算以及代数式求值,解题关键是熟练掌握相关运算法则.二、填空题【答案】119/9【分析】直接代入求值即可.【详解】解:当13x =-时,原式2111913⎛⎫=⎪+ =−⎝⎭, 故答案为:119.【答案】8−/0.125−【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而代入得出答案. 【详解】解:∵230.2504a b ⎛⎫−++= ⎪⎝⎭, ∴30.250,04a b −=+=,∴30.25,4a b ==−,∴222233139120.2520.2544168168a ab b ⎛⎫⎛⎫−−=−⨯⨯−−−=+−=−⎪ ⎪⎝⎭⎝⎭.故答案为:18−.【点睛】此题主要考查了非负数的性质,代数式求值,正确得出a ,b 的值是解题关键.【答案】8【分析】直接把12x =代入计算即可. 【详解】解:当12x =时,()113131922228x x ⎛⎫⨯⨯+ ⎪+⎝⎭==故答案为:98【点睛】本题主要考查了代数式求值,有理数的混合运算法则,在解题时要根据题意代入计算即可. 5.(2022秋·上海嘉定·七年级校考期中)当2x =−,3y =时,代数式22x xy y ++的值是___________. 【答案】7【分析】将x 、y 的值代入计算即可. 【详解】解:当2x =−,3y =时, 22x xy y ++()()222233=−+−⨯+469=−+ 7=.故答案为7.【点睛】考查了代数式求值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值,正确进行计算是解题的关键.6.(2022秋·上海静安·七年级校考阶段练习)当2a =−时,代数式3(1)a a +的值等于__________. 【答案】6【分析】根据题意,直接将2a =−代入代数式进行计算即可求解. 【详解】解:当2a =−时,代数式3(1)a a +()()32216=⨯−⨯−+=,故答案为:6.【点睛】本题考查了代数式求值,正确的计算是解题的关键.7.(2023秋·上海静安·七年级新中初级中学校考期末)当a =5,b =-3时,a -b 的值为__________. 【答案】8【分析】根据已知字母的值,直接代入求值即可. 【详解】解:∵a=5,b=-3, ∴a-b=5-(-3)=8; 故答案为:8.【点睛】此题主要考查了代数式求值,掌握代数式求值方法是解题的关键.【答案】2或18/18或2【分析】根据a 与b 都为正整数即可求得. 【详解】解:根据题意得,只有当2b =和18时, 17a =和1,故答案为:2或18.【点睛】本题考查了正整数的定义(大于0的整数),准确的计算是解决本题的关键.【答案】41【分析】把a 、b 、c 的值代入代数式进行计算即可. 【详解】解:把2a =,3b =−,4c =−代入得:()()224342441b ac −=−−⨯⨯−=,故答案为:41.【点睛】本题考查了代数式求值,准确计算是解题的关键.10.(2022秋·上海·七年级校考阶段练习)当1x =,代数式31px qx ++的值为2022,则当=1x −,代数式31px qx ++的值是_______.【答案】2020−【分析】根据“当1x =,代数式31px qx ++的值为2022”可得2021p q +=,再将=1x −代入31px qx ++可得()p q −++1,再整体代入计算即可.【详解】解:∵当1x =,代数式31px qx ++的值是2022.∴把1x =代入31px qx ++得,12022p q ++=∴2021p q +=∴把=1x −代入31px qx ++得,1()1202112020p q p q −−+=−++=−+=−故答案为:2020−.【点睛】本题考查代数式求值,根据题意得出2021p q +=是解决问题的关键.三、解答题【答案】(1)2212x x −+;(2)218m . 【分析】(1)根据题意“目”字形的窗框,长有4段,总长为4AD =4x 米,则AB =2442x−米,再根据长方形面积计算公式即可得出答案;(2)把x =3代入(1)中关于面积的代数式中即可得出答案.【详解】(1)根据题意得AB=2441222x x −=−,∴S 长方形ABCD ()2122212x x x x =−⋅=−+.(2)当3x =时,221229123x x −+=−⨯+⨯1836=−+218m =.答:长方形ABCD 面积为218m .【点睛】本题主要考查了列代数及代数式的求值,根据题意列出合理的代数式是解决本题的关键.【答案】(1)22ab b −(2)222a ab b −+ (3)7800【分析】(1)根据题意表示出十字路的面积即可;(2)根据题意表示出铺设的草坪的面积即可;(3)根据(1)表示出的式子,把a 与b 的值代入计算即可得出答案.【详解】(1)根据题意可得,()222ab b a b ab ab b ab b +−=+−=− ∴修建的道路是22ab b −平方米;铺设的草坪的面积为()2222a b a ab b −=−+;(3)当20a =,1b =时, 2222201139ab b −=⨯⨯−=(平方米),392007800⨯=(元).∴需要投资7800元修建道路.【点睛】本题考查代数式求值,以及列代数式,整式的混合运算,熟练掌握运算法则是解题的关键. (1)试用含a 的代数式表示(2)当12a =时,比较S 阴影【答案】(1)213182a a −+(2)BGF S S ∆=阴【分析】(1)根据图形,把阴影的面积表示出来ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴,化简即可解得. (2)把当12a =代入求值,即可解得.【详解】(1)解:∵22ABCD ECGF S S a b +=+,212ABD S a ∆=,()()1632BGF S a b a b ∆=⨯+⨯=+, ∴ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴()221332a b a a b =+−−+213182a a =−+;()2131832BGF S S a a a b ∆−=−+−+阴 ()21122a a =−将12a =代入,0BGF S S ∆−=阴, ∴BGF S S ∆=阴.【点睛】此题考查了列代数式求阴影的面积,解题的关键是把阴影部分的面积表示出来. 14.(2022秋·上海徐汇·七年级上海市徐汇中学校联考期末)已知52345670123456721)x a a x a x a x a x a x a x a x −=+++++++((1)求01234567a a a a a a a a −+−+−+−的值.(2)求0246a a a a +++的值.【答案】(1)243−(2)121−【分析】(1)根据已知条件,=1x −代入即可解得.(2)把1x =代入进行计算,最后再与(1)中所得等式进行相加即可求解.【详解】(1)52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(把=1x −代入,01234567a a a a a a a a −+−+−+−()521=--243=− (2)把1x =代入,52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(,解得:012345671a a a a a a a a +++++++=①,根据第一问可得∶01234567243a a a a a a a a -+-+-+-=-②, ①+②得:()02462242a a a a +++=-∴0246121a a a a +++=- 【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键. (1)求这个无盖长方体纸盒的表面积(用含(2)求这个无盖长方体纸盒的容积(用含【答案】(1)2604a −(2)3243260a a a −+,31.5 【分析】(1)根据题意易知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积;(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高,再将32a =代入即可.【详解】(1)解:由题意可知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积, 221064604S a a =⨯−=−,∴这个无盖长方体纸盒的表面积为2604a −.(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高()()321026243260a a a a a a=−⨯−⨯=−+, 将32a =代入,得:323334326031.5222⎛⎫⎛⎫⎛⎫⨯−⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答:容积为31.5.【点睛】本题考查了列代数式,解题的关键是正确表示纸盒的长,宽,高.三、已知式子的值,求代数式的值一、单选题1.(2023秋·上海静安·七年级新中初级中学校考期末)已知x − 2y = 2,则2x — 4y 的值是( )A .5B .2C .4D .7【答案】C 【分析】先根据x−2y =2,再变形,最后代入求出即可.【详解】解:∵x−2y =2,∴2x−4y =2(x−2y )=2×2=4,故选:C .【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.二、填空题2.(2023秋·上海嘉定·七年级上海市育才中学校考期末)如果34a b −=,那么261a b −−的值是________.【答案】7【分析】用整体代入法求解即可.【详解】解:∵34a b −=,∴()261231817a b a b −−=−−=−=.故答案为:7.【点睛】此题考查了代数式求值,代数式中字母的值没有明确告知,而是隐含在已知条件中,首先应从条件“整体代入法”求代数式的值. 3.(2023秋·上海浦东新·七年级校考期中)已知3x =时,代数式38ax bx ++的值是12;那么当3x =−时,代数式35ax bx +−的值为__________.【答案】9−【分析】将3x =代入38ax bx ++,求出273a b +值,将3x =−,以及273a b +值,代入35ax bx +−进行求值即可.【详解】解:∵3x =时,代数式38ax bx ++的值是12,即:273812a b ++=,∴2734a b +=;当3x =−时:()3527352735459ax bx a b a b +−=−−−=−+−=−−=−.故答案为:9−.【点睛】本题考查代数式求值.解题的关键是利用整体思想,代入求值. 4.(2022秋·上海·七年级校考期末)已知231x y +=,那么代数式()()72345x y x y +−−−的值是___________.【答案】7【分析】去括号,合并同类项,再代入求值即可.【详解】解:()()72345x y x y +−−−72345x y x y =+−++465x y =++()2235x y =++231x y += 原式215=⨯+7= 故答案为:7.【点睛】本题考查了整式的化简和整体代入法求值;解题的关键是去括号,根据已知构造相同整式.【答案】5/0.8【分析】由题意易得2x y =,然后代入求解即可.【详解】解:由2x y =可知2x y =,∴2224365x y y y x y y y ++==−−; 故答案为45.【点睛】本题主要考查代数式的值,解题的关键是得到2x y =.6.(2022秋·上海·七年级校考期中)已知210a a −−=,则代数式326a a −+=_____.【答案】7【分析】根据已知条件得到2a a −=1,再把原式变形,代入即可求解.【详解】解:∵210a a −−=,∴2a a −=1,326a a −+32226a a a a −+−+=()2226a a a a a −+−+=226a a a +−+=26a a −+= 16+=7=.故答案为:7.【点睛】此题主要考查代数式求值以及利用提取公因式求式子的值,将式子转化为32226a a a a −+−+,以及利用()322a a a a a −−=是解题的关键.【答案】36−【分析】由相伴数的定义分别计算[]a ,[]b 的值,再计算3b a −=−,最后利用整体思想解题.【详解】根据题意得,111a b −=++,则3b a −=−,()()()3333327936b a a b b a b a −−+=−+−=−−=−.故答案为:36−.【点睛】本题考查新定义计算、已知式子的值,求代数式的值,理解题意是解题关键.【答案】5或11−/11−或5【分析】根据a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,可以得到0a b +=,1cd =,2m =±,然后代入所求式子计算即可.【详解】解:依题意0a b +=,1cd =,||2m =,2m ∴=±,当2m =时,22043423152121a bm cd m m ++−=+⨯−⨯=++;当2m =−时,()20434231112121a bm cd m m ++−=+⨯−−⨯=−++;故答案为:5或11−.【点睛】本题考查代数式求值,绝对值,相反数和倒数的性质,解答本题的关键是求出0a b +=,1cd =,2m =±.三、解答题【答案】(1)b −(2)-2,2(3)-9【分析】(1)根据每行、每列的3个代数式的和相等,可得a 与b 的关系;(2)根据第一行与第三列、对角线上与第二行的和相等,可得a 与b 的值;(3)根据“等和格”的定义可得方程,分别进行整理代入可求出b 的值.【详解】(1)解:如图2,根据题意得232−+=+a a b a ,33a b ∴−=,解得a b =−,故答案为:b −;(2)解:如图3,可得2322283a a b a a a b b −+=+⎧⎨−+=−+⎩,解得22a b =−⎧⎨=⎩,故答案为:2,2−;(3)解:如图4,可得2222223a a a a a a a ++−=++−,∴23a a +=,又22223322a a a b a a a a ++−=++++,2223b a a ∴=−−−,∴22()32339b a a =−+−=−⨯−=−,故答案为:9−.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是充分利用“每行,每列及对角线上的3个数(或代数式)的和都相等”,得出等式求解.10.(2022秋·上海·七年级专题练习)在某班小组学习的过程中,同学们碰到了这样的问题:“已知【答案】(1)7 (2)34【分析】(1)由已知115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,可得111111536a b b c c a +++++=++,即可得出答案;(2)由已知216m m +=,可得16m m +=,m 4+1m 2=m 2+1m 2=(m +1m)2−2,即可得出答案.【解答】解:(1)115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,∴111111536a b b c c a +++++=++, ∴22214a b c ++=,∴1a+1b+1c=ab+bc+ca abc=7;(2)216m m +=,∴16m m +=,422211m m m m +=+,∴m 2+1m 2=(m +1m)2−2=62−2=34.∴42134m m +=.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.11.(2022秋·上海·七年级专题练习)已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位. (1)根据题意,m =________.【答案】(1)2或-2;(2)5.【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可. 【详解】解:(1)∵m 到原点距离2个单位, ∴m=2或-2, 故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2, 当m=2时,()202022a b m xy +++−=22+0+(-1)2020=4+1=5; 当m=-2时,()202022a b m xy +++−=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++−的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 四、程序流程图与代数式的值 一、单选题【答案】C【分析】输入4,计算234x x −=,判断40>,输出4,输入2,计算232x x −=−,判断20−<,输出12,最后计算142+的和即可.【详解】解:输入4,计算22343416124x x −=−⨯=−=,40>∴输出4;输入2,计算223232462x x −=−⨯=−=−,20−<计算112x = ∴输出12;19422∴+=故选:C .【点睛】本题考查已知字母的值,求整式的值,是基础考点,掌握相关知识是解题关键.2.(2020秋·上海·七年级上海市进才中学北校校考阶段练习)如图,是一个运算程序的示意图,如果开始输入的x 的值为81,那么第2020次输出的结果为( )A .3B .27C .81D .1【答案】Dx ,输出27;输入27,输出9;输入9,输出3;输入3,输出1;输入1,输出3L 直至出现循环规律,分奇数次与偶数次输入,据此解题.【详解】根据题意,第1次输入x 的值为81,1x ≠,计算11=81=2733x ⨯,输出27,第2次输入x 的值为27,1x ≠,计算11=27=933x ⨯,输出9, 第3次输入x 的值为9,1x ≠,计算11=9=333x ⨯,输出3, 第4次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第5次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,第6次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第7次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,L从第3次开始,第奇数次输出的结果为3,第偶数次输出的结果为1,2020>3且为偶数,第2020次输出的结果为1,故选:D.【点睛】本题考查代数式求值,是重要考点,难度较易,掌握相关知识是解题关键.3.(2019秋·上海杨浦·七年级校考阶段练习)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1【答案】D【详解】A.把x=4代入得:42=2,把x=2代入得:22=1,本选项不合题意;B.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项不合题意;C.把x=1代入得:3+1=4,把x=4代入得:42=2,本选项不合题意;D.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项符合题意,故选:D.【过关检测】一.选择题(共6小题)1.(2020秋•虹口区校级期末)当x=3,y=2时,代数式的值是()A.B.2C.0D.3【分析】当x=3,y=2时,直接代入代数式即可得到结果.【解答】解:==.故选:A.【点评】此题较简单,代入时细心即可.2.(2020秋•浦东新区校级月考)如图,是一个运算程序的示意图,若开始输入x的值为81,则第2020次输出的结果是()A.3B.27C.9D.1【分析】分别求出第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环.【解答】解:由题可知,第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环,∵(2020﹣2)÷2=1009,∴第2020次输出结果与第4次输出结果一样,∴第2020次输出的结果为1,故选:D.【点评】本题考查数字的变化规律;能够通过所给例子,找到循环规律是解题的关键.3.(2022秋•闵行区期中)当x=2时,整式ax3+bx﹣1的值等于﹣19,那么当x=﹣2时,整式ax3+bx﹣1的值为()A.19B.﹣19C.17D.﹣17【分析】将x=2代入整式,使其值为﹣19,列出关系式,把x=﹣2代入整式,变形后将得出的关系式代入计算即可求出值.【解答】解:∵当x=2时,整式ax3+bx﹣1的值为﹣19,∴8a+2b﹣1=﹣19,即8a+2b=﹣18,则当x=﹣2时,原式=﹣8a﹣2b﹣1=18﹣1=17.故选:C.【点评】本题考查了代数式的求值,正确变形并整体代入,是解题的关键.4.(2019秋•浦东新区期末)已知:(2x+1)3=ax3+bx2+cx+d,那么代数式﹣a+b﹣c+d的值是()A.﹣1B.1C.27D.﹣27【分析】在(2x+1)3=ax3+bx2+cx+d中,令x=﹣1,求出代数式﹣a+b﹣c+d的值是多少即可.【解答】解:当x=﹣1时,﹣a+b﹣c+d=(﹣2+1)3=﹣1故选:A.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.(2019秋•乐亭县期末)当x=﹣1时,3x2+9x﹣1的值为()A.0B.﹣7C.﹣9D.3【分析】把x=﹣1代入3x2+9x﹣1,转化为有理数的混合运算,计算求值即可.【解答】解:把x=﹣1代入3x2+9x﹣1得:原式=3×(﹣1)2+9×(﹣1)﹣1=3﹣9﹣1=﹣7,故选:B.【点评】本题考查了代数式求值,正确掌握代入法和有理数的混合运算是解题的关键.6.(2019秋•浦东新区期中)如果﹣x=1,那么3x2﹣3x﹣2的值是()A.1B.﹣1C.2D.﹣2【分析】把x2﹣x=1整体代入原式=3(x2﹣x)﹣2,计算可得.【解答】解:∵x2﹣x=1,∴3x2﹣3x﹣2=3(x2﹣x)﹣2=3×1﹣2=1.故选:A.【点评】本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.二.填空题(共12小题)7.(2022秋•静安区月考)当a=﹣2时,代数式3a(a+1)的值等于.【分析】直接把a=﹣2代入代数式中进行计算即可.【解答】解:原式=3×(﹣2)×(﹣2+1)=﹣6×(﹣1)=6.故答案为:6.【点评】本题考查了代数式求值:把字母的值代入代数式进行计算得到对应的代数式的值.8.(2022秋•闵行区校级期中)当x=﹣时,代数式x2+1的值是.【分析】把x=﹣代入原式计算即可.【解答】解:当x=﹣时,原式=+1=1,故答案为:1.【点评】本题考查了代数式的求值,掌握用数值代替代数式里的字母进行计算,正确计算结果是解题关键.9.(2022•闵行区校级开学)已知x﹣5=y+4=z+1,代数式(y﹣x)2+(z﹣x)2+(y﹣z)2的值为.【分析】先加减法求出z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,进而代入解答即可.【解答】解:∵x﹣5=y+4=z+1,∴z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,把z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3代入(y﹣x)2+(z﹣x)2+(y﹣z)2=81+36+9=126,故答案为:126.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.10.(2022秋•嘉定区校级期末)如果a﹣3b=4,那么2a﹣6b﹣1的值是.【分析】首先把2a﹣6b﹣1化成2(a﹣3b)﹣1,然后把a﹣3b=4代入化简后的算式计算即可.【解答】解:∵a﹣3b=4,∴2a﹣6b﹣1=2(a﹣3b)﹣1=2×4﹣1=8﹣1=7.故答案为:7.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.11.(2022秋•宝山区期末)当a=3时,代数式﹣2a2+a的值是.【分析】未知数的值已给出,直接代入求解.【解答】解:根据题意,直接将a=3代入,得(﹣2)×32+3=﹣18+3=﹣15.故答案为:﹣15.【点评】本题考查了用代入法求解,掌握代入法求解的方法是关键.12.(2022秋•浦东新区期中)定义a﹣b=0,则称a、b互容,若2x2﹣2与x+4互容,则6x2﹣3x﹣9=.【分析】先根据新定义求出2x2﹣x=6,再把6x2﹣3x﹣9化为3(2x2﹣x)﹣9的形式,整体代入计算即可.【解答】解:∵2x2﹣2与x+4互容,∴2x2﹣2﹣(x+4)=0,∴2x2﹣x=6,∴6x2﹣3x﹣9=3(2x2﹣x)﹣9=3×6﹣9=9,故答案为:9.【点评】本题考查了代数式的求值,掌握乘法分配律的逆运算,把(2x2﹣x)看做一个整体进行计算是解题关键.13.(2022•闵行区校级开学)当x时代数式ax2+bx﹣3的值为5,当x=1时代数式(2ax2+bx﹣5)4的值为.【分析】直接把x=2代入进而得出4a+2b=8,再把x=1代入求出答案.【解答】解:∵当x=2时,代数式ax2+bx﹣3的值为5,∴4a+2b=8,∴2a+b=4,∴当x=1时,代数式(2ax2+bx﹣5)4=(4﹣5)4=1.故答案为:1.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.14.(2022秋•宝山区校级月考)当a=﹣2时,﹣a2﹣2a+1=.【分析】把a的值代入代数式进行计算即可得解.【解答】解:当a=﹣2时,﹣a2﹣2a+1=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1.故答案为:1.【点评】本题考查了代数式求值,比较简单,把a的值代入代数式进行计算即可.15.(2022秋•黄浦区期中)定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x﹣1;若x<0,则[x]=x+1.例=,[﹣2]=﹣1;已知当a>0,b<0时有[a]=[b]+1,则代数式(b﹣a)3﹣3a+3b的值为.【分析】根据定义的新运算可得a﹣1=b+1+1,从而可得a﹣b=3,然后利用整体的思想进行计算即可解答.【解答】解:当a>0,b<0时,[a]=[b]+1,∴a﹣1=b+1+1,∴a﹣b=3,∴(b﹣a)3﹣3a+3b=﹣(a﹣b)3﹣3(a﹣b)=﹣33﹣3×3=﹣27﹣9=﹣36,故答案为:﹣36.【点评】本题考查了代数式求值,熟练掌握求代数式值中的整体思想是解题的关键.16.(2022秋•长宁区校级期中)当x=3时,代数式2x3+3x2﹣x+3的值是.【分析】将x=3代入运算即可.【解答】解:当x=3时,原式=2×33+3×32﹣3+3=2×27+3×9﹣3+3=54+27=81,故答案为:81.【点评】本题主要考查了求代数式的值,正确利用有理数的混合运算的法则运算是解题的关键.17.(2022秋•青浦区校级期中)当x=﹣2时,代数式的值为.【分析】将x=﹣2代入代数式,按照代数式要求的运算顺序和运算法则计算可得.【解答】解:当x=﹣2时,==3,故答案为:3.【点评】本题考查了代数式的求值,属于基础题,只要将已知条件代入求值即可.18.(2022秋•闵行区期中)如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.【分析】根据﹣2a2+3b+8的值为1,可得:﹣2a2+3b+8=1,所以﹣2a2+3b=﹣7,据此求出代数式4a2﹣6b+2的值等于多少即可.【解答】解:∵﹣2a2+3b+8的值为1,∴﹣2a2+3b+8=1,∴﹣2a2+3b=﹣7,∴4a2﹣6b+2=﹣2(﹣2a2+3b)+2=﹣2×(﹣7)+2=14+2=16故答案为:16.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三.解答题(共8小题)19.(2021秋•松江区期中)如图所示,已知正方形的边长为2a.(1)用含有a的代数式表示阴影部分的面积;(2)当a=2时,求阴影部分的面积.(保留π)【分析】(1)先表示出半圆的面积,再表示出大三角形的面积,最后用正方形的面积减去半圆和大三角形的面积即可得出阴影部分的面积;(2)把a=2代入(1)中的结论,即可得出答案.【解答】解:(1)由题意得,半圆的面积为=,大三角形的面积为=a2,∵正方形的面积为2a×2a=4a2,∴阴影部分的面积为==(3﹣)a2;(2)当a=2时,(3﹣)a2=(3﹣)×22=12﹣2π,∴阴影部分的面积为12﹣2π.【点评】本题主要考查的是列代数式求值的问题,关键是要牢记圆,三角形和正方形的面积公式.20.(2021秋•浦东新区期中)某中学有一块长30m,宽20m的长方形空地,计划在这块空地上划分出部分区域种花,小明同学设计方案如图,设花带的宽度为x米.(1)请用含x的式子表示空白部分长方形的面积;(要化简)(2)当花带宽2米时,空白部分长方形面积能超过400m2吗?请说明理由.【分析】(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.得空白部分长方形的面积;(2)通过有理数的混合运算得结果与400进行比较.【解答】解:(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.白部分长方形的面积:(30﹣2x)(20﹣x)=2x2﹣70x+600.(2)答:超过.∵2×22﹣70×2+600=468(m2),∵468>400,∴空白部分长方形面积能超过400 m2.【点评】本题考查有代数式表示实际问题,掌握用代数式表示长方形的边长,读懂题意列出代数式是解决此题关键.21.(2020秋•嘉定区期末)在某班小组学习的过程中,同学们碰到了这样的问题:“已知=5,=3,=6,求的值”.根据已知条件中式子的特点,同学们会想起+=,于是问题可转化为:“已知=+=5,=+=3,=+=6,求=++的值”,这样解答就方便了.(1)通过阅读,试求的值;(2)利用上述解题思路请你解决以下问题:已知=6,求的值.【分析】(1)由已知=+=5,=+=3,=+=6,可得+++++=5+3+6,即可得出答案;(2)由已知=6,可得m+=6,=(m+)2﹣2,即可得出答案.【解答】解:(1)∵=+=5,=+=3,=+=6,∴+++++=5+3+6,∴,∴++==7;(2)∵=6,∴,,∴m2+=(m)2﹣2=62﹣2=34.∴.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.22.(2021秋•金山区期中)如图,正方形ABCD的边长等于a,正方形BEFG的边长等于b(a>b),其中,点G、E分别在AB、BC上.(1)用a、b的代数式表示图中的阴影部分面积;(2)当a=5,b=2时,求图中的阴影部分面积.【分析】(1)用正方形ABCD的面积减去正方形BEFG的面积再减去直角三角形AGD与在直角三角形DCE的和即可得出结论;(2)将a=5,b=2代入(1)中的代数式计算即可.【解答】解:S阴影=S正方形ABCD﹣S正方形BEFG﹣(S△ADG+S△DEC)==ab﹣b2.(2)当a=5,b=2时,ab﹣b2=5×2﹣4=6.【点评】本题主要考查了列代数式,求代数式的值,正确使用图形的面积公式是解题的关键.23.(2021秋•黄浦区期中)老王想靠着一面足够长的旧墙EF,开垦一块长方形的菜地ABCD,如图所示,菜地的一边靠墙,另外三边用竹篱笆围起来,并在平行于墙的一边BC上留1米宽装门,已知现有竹篱。

初中数学题目解析范文

初中数学题目解析范文

初中数学题目解析范文一、综述数学是一门重要的学科,它不仅培养了学生的逻辑思维能力,还具有实用性。

解析数学题目是学习的关键之一,本文将通过解析几道初中数学题目,帮助读者更好地理解数学知识。

二、题目解析1. 题目:已知直线l与圆O相交于点A、B,且角AOB为45°,若AB=4√2 cm,求圆的半径。

解析:根据题目可知角AOB为45°,即直角三角形AOB为等腰直角三角形。

由等腰直角三角形的性质可知,AB的长度等于圆的半径。

所以,圆的半径为4√2 cm。

2. 题目:已知函数y = 2x - 3,求当x = 4时,函数的值。

解析:将x = 4代入函数中,得到y = 2(4) - 3,即y = 5。

所以,当x = 4时,函数的值为5。

3. 题目:一个三位数的个位数是5,百位数是8,将其个位数字上的5提前一位得到一个新的三位数,求这个新的三位数。

解析:题目中已经给出了个位数是5,百位数是8。

将个位数上的5提前一位得到的新的三位数是58x,其中x表示十位数。

所以,这个新的三位数为580。

4. 题目:已知三角形ABC中,AB = AC,∠B = 30°,∠A = 70°,求∠C的度数。

解析:根据题目可知,三角形ABC是一个等腰三角形,即AB = AC。

又∠A = 70°,∠B = 30°,根据三角形内角和定理可得∠C = 180°- ∠A - ∠B,代入数值计算得∠C = 80°。

所以,∠C的度数为80°。

5. 题目:已知平行四边形ABCD中,AB = 8 cm,AD = 4 cm,角A 的度数为120°,求BC的长度。

解析:平行四边形ABCD中,对角线等长且相互平分,所以AC = BD。

又已知角A的度数为120°,所以角D的度数也为120°。

根据余弦定理,可以得到BC的长度,即BC = √(AD² + AC² - 2 × AD × AC ×cos(D))。

七年级数学教材核心母题

七年级数学教材核心母题

七年级数学教材核心母题
七年级数学教材核心母题可能包括但不限于以下内容:
1. 数的运算:包括整数、有理数、实数等的加、减、乘、除等基本运算,以及运算律的应用。

2. 代数式与方程:包括代数式的简化、因式分解、分式化简等,以及一元一次方程的解法。

3. 函数与图像:包括函数的概念、函数的表示方法、函数的性质等,以及直角坐标系的建立和点的坐标的确定。

4. 三角形与全等:包括三角形的边、角、高等基本元素,以及全等三角形的判定和性质。

5. 图形与变换:包括图形的平移、旋转、对称等基本变换,以及图形的相似和比例。

6. 统计与概率:包括数据的收集、整理、描述和分析,以及概率的基本概念和应用。

这些内容是七年级数学教材中的核心知识点,也是考试的重点内容。

通过练习与掌握这些核心母题,可以更好地理解和应用数学知识,提高数学能力和成绩。

七年级数学核心题目赏析(一)

七年级数学核心题目赏析(一)

七年级数学核心题目赏析(一)有理数及其运算篇例1计算:200720061......431321211⨯++⨯+⨯+⨯例2计算:⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)例3 计算:2-22-23-24-……-218-219+220.【核心练习】1、已知|ab-2|与|b-1|互为相反数,试求1ab +1(a+1)(b+1) +…+1(a+2006)(b+2006)的值2、代数式abab b b a a ++的所有可能的值有( )个(2、3、4、无数个)n=1,S=1①n=2,S=5②③n=3,S=9字母表示数篇例1已知:3x-6y-5=0,则2x-4y+6=_____例2 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25…… 752=5625= ,852=7225= (1)找规律,把横线填完整; (2)请用字母表示规律; (3)请计算20052的值.例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S 表示三角形的个数. (1)当n=4时,S= ,(2)请按此规律写出用n 表示S 的公式.【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61①填空:第11,12,13三个数分别是 , , ; ②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:平面图形及其位置关系篇例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个.例2 两条平行直线m 、n 上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连( )条直线.A .20B .36C .34D .22例3 如图,OM 是∠AOB 的平分线.射线OC 在∠BOM 内,ON 是∠BOC 的平分线,已知∠AOC=80°,那么∠MON 的大小等于_______.例4 如图,已知∠AOB=60°,OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC. (1)求∠DOE 的大小;(2)当OC 在∠AOB 内绕O 点旋转时,OD 、OE 仍是∠BOC 和∠AOC 的平分线,问此时∠DOE 的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.【核心练习】1、A 、B 、C 、D 、E 、F 是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时 分.OAM CNOBC D E一元一次方程篇例1、已知方程2x+3=2a 与2x+a=2的解相同,求a 的值.例2、 解方程 31221+-=--x x x例3、某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.例4、解方程 │x-1│+│x-5│=4【核心练习】1、已知关于x 的方程3[x-2(x-3a )]=4x 和1851123=--+xa x 有相同的解,那么这个解是 .(提示:本题可看作例1的升级版)2、某人以4千米/小时的速度步行由甲地到乙地,然后又以6千米/小时的速度从乙地返回甲地,那么某人往返一次的平均速度是____千米/小时.生活中的数据篇例1下面是两支篮球队在上一届省运动会上的4场对抗赛的比赛结果:(单位:分)研究一下可以用哪些统计图来分析比较这两支球队,并回答下列问题:(1)你是怎样设计统计图的?(2)你是怎样评价这两支球队的?和同学们交流一下自己的想法.例2根据下面三幅统计图(如下图),回答问题:(1)三幅统计图分别表示了什么内容?(2)从哪幅统计图你能看出世界人口的变化情况?(3)2050年非洲人口大约将达到多少亿?你是从哪幅统计图中得到这个数据的?(4)2050年亚洲人口比其他各洲人口的总和还要多,你从哪幅统计图中可以明显地得到这个结论?【核心练习】1、如下图为第27届奥运会金牌扇形统计图,根据图中提供的信息回答下列问题:(1)哪国金牌数最多?(2)中国可排第几位?(3)如果你是中国队的总教练,将会以谁为下一次奥运会的追赶目标?实际问题应用篇例1、下表是某店两天销售两种商品的账目记录,由于字迹潦草,无法准确辨认第二天的总金额的个位数字,只知道是0或者6,并且已知两种商品的单价均为整数。

七年级数学核心题目赏析

七年级数学核心题目赏析

七年级数学核心题目赏析七年级数学核心题目赏析有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方.通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:200720061......431321211⨯++⨯+⨯+⨯ 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成2111211-=⨯,可利用通项()11111+-=+⨯n n n n ,把每一项都做如此变形,问题会迎刃而解.解 原式=)2007120061(......413131212111-++-+-+-)()()(=2007120061......41313121211-++-+-+- =200711-=20072006例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0.解 由数轴知,a<0,a-b<0,c-b>0所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c例3 计算:⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.解 原式=2132......9897999810099⨯⨯⨯⨯⨯=1001 例4 计算:2-22-23-24-……-218-219+220.分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.n=1,S=1①n=2,S=5②③n=3,S=9当x=-1时,1)1(++-n n x x =1)1()1()1(+-+--n n =1例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25…… 752=5625= ,852=7225=(1)找规律,把横线填完整; (2)请用字母表示规律; (3)请计算20052的值.分析 这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25(2)(10n+5)2=100×n (n+1)+25(3) 20052=100×200(200+1)+25=4020025例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S 表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n 表示S 的公式.分析 当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.解 (1)S=13(2)可列表找规律:所以S=4(n-1)+1.(当然也可写成4n-3.)【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61①填空:第11,12,13三个数分别是 , , ; ②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:【参考答案】1、①111-,121,1311-;②20081;③0.2、1+n ×(n+2) = (n+1)2平面图形及其位置关系篇【核心提示】平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.【典型例题】例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个. 分析 6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.解例2 两条平行直线m 、n 上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连( )条直线.A .20B .36C .34D .22分析与解 让直线m 上的4个点和直线n 上的5个点分别连可确定20条直线,再加上直线m 上的4个点和直线n 上的5个点各确定的一条直线,共22条直线.故选D.例3 如图,OM 是∠AOB 的平分线.射线OC 在∠BOM 内,ON 是∠BOC 的平分线,已知∠AOC=80°,那么∠MON 的大小等于_______. 分析 求∠MON 有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC 靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.解 因为OM 是∠AOB 的平分线,ON 是∠BOC 的平分线, 所以∠MOB=21∠AOB ,∠NOB=21∠COB 所以∠MON=∠M OB-∠NOB=21∠AOB-21∠C OB=21(∠AOB-∠OA M C NB图1图2图3C OB )=21∠AOC=21×80°=40°例4 如图,已知∠AOB=60°,OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC. (1)求∠DOE 的大小;(2)当OC 在∠AOB 内绕O 点旋转时,OD 、OE 仍是∠BOC 和∠AOC 的平分线,问此时∠DOE 的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.分析 此题看起来较复杂,OC 还要在∠AOB 内绕O 点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE 是∠AOB 的一半,也就是说要求的∠DOE , 和OC 在∠AOB 内的位置无关.解 (1)因为OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC.所以∠DOC=21∠BOC ,∠COE=21∠COA所以∠DOE=∠DOC+∠COE=21∠BOC+21∠COA=21(∠BOC+∠COA )=21∠AOB因为∠AOB=60°所以∠DOE =21∠AOB= 21×60°=30° (2)由(1)知∠DOE =21∠AOB ,和OC 在∠AOB 内的位置无关.故此时∠DOE 的大小和(1)中的答案相同.【核心练习】1、A 、B 、C 、D 、E 、F 是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时 分.【参考答案】1、15条2、分分或1165411921.一元一次方程篇【核心提示】一元一次方程的核心问题是解方程和列方程解应用题。

合并同类项(5种题型)-2023年新七年级数学核心知识点与常见题型通关讲解练(人教版)(解析版)

合并同类项(5种题型)-2023年新七年级数学核心知识点与常见题型通关讲解练(人教版)(解析版)

合并同类项(5种题型)【知识梳理】一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项. 要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关. (3)一个项的同类项有无数个,其本身也是它的同类项. 二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意: (1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有. (2) 合并同类项,只把系数相加减,字母、指数不作运算.【考点剖析】题型一、同类项的概念例1.下列各组单项式中属于同类项的是: ①22m n 和22a b ;②312x y −和3yx ;③6xyz 和6xy ;④20.2x y 和20.2xy ; ⑤xy 和yx −;⑥12−和2.【答案】②⑤⑥【解析】①③两个单项式所含字母不相同;④相同字母的次数不相同. 【变式1】指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x −; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5−与8解:(1)(4)是同类项;(2)不是同类项,因为22x yz 与22xyz 所含字母,x z 的指数不相等;(3)不是同类项,因为5x 与xy 所含字母不相同.【变式2】下列每组数中,是同类项的是( ) . ①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥ 【答案】C【变式3】判别下列各题中的两个项是不是同类项: (1)-4a 2b 3与5b 3a 2;(2)2213x y z −与2213xy z −;(3)-8和0;(4)-6a 2b 3c 与8ca 2. 【答案与解析】 (1)-4a2b3与5b3a2是同类项;(2)不是同类项;(3)-8和0都是常数,是同类项;(4)-6a2c 与8ca2是同类项.例2.单项式449m x y −与223n x y 是同类项,求23m n +的值. 【答案】7【解析】由题意,可得:4242m n =⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,所以12323272m n +=⨯+⨯=. 【变式1】315212135m n m n x y x y −−+−若与是同类项,求出m, n 的值. 【答案与解析】因为 315212135m n m n x y x y −−+−与是同类项,所以 315,21 1.m n −=⎧⎨−=⎩ , 解得:2,1.m n =⎧⎨=⎩所以2,1m n ==【变式2】如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( )A. a=2,b=3B. a=1,b=2C. a=1,b=3D. a=2,b=2 【答案】C解:根据题意得:a+1=2,b=3, 则a=1.【变式3】单项式313a b a b x y +−−与23x y 是同类项,求a b −的值.【答案】32【解析】由题意,可得:231a b a b +=⎧⎨−=⎩,解得:7414a b ⎧=⎪⎪⎨⎪=⎪⎩,所以713442a b −=−=. 题型二、合并同类项例3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy (2)3x 2y -4xy 2-3+5x 2y+2xy 2+5 【答案与解析】解: (1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy =-7x2-4y2-6xy (2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2 【变式1】合并同类项:(1)22213224ab b a ab −+ (2)22222344x xy y xy y x −++−−; 解:2222213133(1).2(2)24244ab b a ab ab ab −+=−+=−;2222222222(2).2344(2)(4)(34)3x xy y xy y x x x xy xy y y x xy y−++−−=−+−++−=+−【变式2】合并下列同类项: (1)2215232x x x x −+−+−; (2)333332m n m n −−+;(3)2141732733m m a a a a −−+−+−.【答案】(1)211232x x −−+;(2)332m n −+;(3)25037a a m −−.【解析】(1)原式222111(3)(2)(5)2322x x x x x x =−+−−++=−−+;(2)原式333333(3)22m m n n m n =−+−+=+()-; (3)原式22411503(2)(7)33377a a a a m m a a m =+−+−+−−=−−.【变式3】下列运算中,正确的是( ) A. 3a+2b=5ab B. 2a 3+3a 2=5a 5 C. 3a 2b ﹣3ba 2=0 D. 5a 2﹣4a 2=1【答案】C解:3a 和2b 不是同类项,不能合并,A 错误; 2a3+和3a2不是同类项,不能合并,B 错误; 3a2b ﹣3ba2=0,C 正确;5a2﹣4a2=a2,D 错误, 故选:C .【变式4】合并下列同类项 (1)2222210.120.150.12x y x y y x yx +−+; (2)122121342n n n n n x y x y y x y x +++−−−;(3)2220.86 3.25a b ab a b ab a b −−++.【答案】(1)22220.620.150.1x y x y y x +−; (2)4n n x y −; (3)21.4a b ab −−. 【解析】(1)原式2222222221(0.12)0.150.10.620.150.12x y yx x y y x x y x y xy =++−=+−;(2)原式121212(32)44n n n n n n n xy x y x y x y x y +++=−−−=−;(3)原式222(0.8 3.2)(65) 1.4a b a b ab ab a b ab =−++−+=−−.例4.合并同类项:()221324325x x x x −++−−;()2222265256a b ab b a −++−; ()2223542625yx xy xy x y xy −+−+++;()()()()()2323431215141x x x x −−−−−+− (注:将“1x −”或“1x −”看作整体)【答案与解析】 (1)()()()22232234511x x x x x x =−+−++−=+−=+−原式(2)()()2222665522a a b b ab ab−+−++=原式=(3)原式=()()222562245x y x y xy xy xy−++−+++2245x y xy =++(4)()()()()()()223323315121412161x x x x x x ⎡⎤⎡⎤=−−−+−−−−=−−−−⎣⎦⎣⎦原式【变式】化简:(1)32313125433xy x y xy x −−−+ (2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) 【答案】原式3323211231123()()53345334xy xy x x y xy x y =−+−−=−+−− 3221.1512xy x y =−−−(2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) =(a-2b)2-2(a-2b)2+4(a-2b)-(a-2b)=(1-2)(a-2b)2+(4-1)(a-2b) =-(a-2b)2+3(a-2b).例5.已知35414527m n a b pa b a b ++−=−,求m+n -p 的值. 【答案与解析】解:依题意,得3+m =4,n+1=5,2-p =-7 解这三个方程得:m =1,n =4,p =9, ∴ m+n-p =1+4-9=-4. 【变式1】若223ma b 与40.5n a b −的和是单项式,则m = ,n = . 【答案】4,2 .【变式2】若35xa b 与30.2ya b −可以合并,则x = ,y = . 【答案】3,3±±题型三、化简求值例6.求代数式的值:2222345263x xy y xy y x −−+++−−,其中1,22x y ==. 22222222(4)(32)6(53)236211113,22()3226222222x xy xy y y x x xy y x x y =+−++−+−+−=+−−+===⨯+⨯⨯−−⨯+=−解:原式当时,上式【变式1】当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q −+−−−−−;(2)2283569p q q p −+−−【答案与解析】(1)把()p q −当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q −+−−−−−=−−+−−=−−−−又 211p q −=−=所以,原式=22222()()111333p q p q −−−−=−⨯−=− (2)先合并同类项,再代入求值.解:2283569p q q p −+−− 2(86)(35)9p q =−+−+− 2229p q =+−当p =2,q =1时,原式=22229222191p q +−=⨯+⨯−=. 【变式2】先化简,再求值:(1)2323381231x x x x x −+−−+,其中2x =;(2)222242923x xy y x xy y ++−−+,其中2x =,1y =. 【答案】解: (1)原式322981x x x =−−−+,当2x =时,原式=32229282167−⨯−⨯−⨯+=−.(2)原式22210x xy y =−+,当2x =,1y =时,原式=22222110116⨯−⨯+⨯=.【变式3】化简求值:(1)当1,2a b ==−时,求多项式3232399111552424ab a b ab a b ab a b −−+−−−的值. (2)若243(32)0a b b +++=,求多项式222(23)3(23)8(23)7(23)a b a b a b a b +−+++−+的值. 【答案与解析】(1)先合并同类项,再代入求值:原式=32391911()(5)52244a b ab a b −++−−−−=32345a b a b −−−将1,2a b ==−代入,得:3233234541(2)1(2)519a b a b −−−=−⨯⨯−−⨯−−=− (2)把(23)a b +当作一个整体,先化简再求值:原式=22(28)(23)(37)(23)10(23)10(23)a b a b a b a b +++−−+=+−+ 由243(32)0a b b +++=可得:430,320a b b +=+=两式相加可得:462a b +=−,所以有231a b +=−代入可得:原式=210(1)10(1)20⨯−−⨯−= 【变式4】3422323323622已知与是同类项,求代数式的值a b x y xy b a b b a b +−−−−+. 【答案】()()()3422323223323323231,2 4.2, 6.362232624,2,66426228.a b x y xy a b a b b a b b a b b b a b a b b a b a b +−−∴+=−=∴=−=−−+=−+−+=−∴=−==−⨯−⨯=解:与是同类项,当时,原式题型四、“无关”与“不含”型问题例7.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么? 【答案与解析】解:333336242215x x y x x y x −−+−+ =(6-4-2)x3+(-2+2)x3y+15 =15通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.【变式1】如果关于x 的多项式222542x x kx x −++−中没有2x 项,则k = .答案:2k=−解析:先合并含2x 的项:2222225422542(2)542x x kx x x kx x x k x x x −++−=+−+−=+−+−,如没有2x 项,即2x 项的系数为0,即20k +=,所以2k =−.【变式2】若关于x 的多项式-2x 2+mx+nx 2+5x-1的值与x 的值无关,求(x-m)2+n 的最小值. 【答案】 -2x2+mx+nx2+5x-1=nx2-2x2+mx+5x-1=(n-2)x2+(m+5)x-1 ∵ 此多项式的值与x 的值无关,∴ 20,50.n m −=⎧⎨+=⎩ 解得: 25n m =⎧⎨=−⎩当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2. ∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n 有最小值为2. 题型五、综合应用例8.若多项式-2+8x+(b-1)x 2+ax 3与多项式2x 3-7x 2-2(c+1)x+3d+7恒等,求ab-cd.【答案与解析】 法一:由已知ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7)∴ 2,17,82(1),237.a b c d =⎧⎪−=−⎪⎨=−+⎪⎪−=+⎩ 解得:2,6,5,3.a b c d =⎧⎪=−⎪⎨=−⎪⎪=−⎩∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27. 法二:说明:此题的另一个解法为:由已知(a-2)x3+(b+6)x2+[2(c+1)+8]x-(3d+9)≡0. 因为无论x 取何值时,此多项式的值恒为零.所以它的各项系数皆为零,即从而解得 解得:【变式】若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n −−−−++−++,化简后是四次三项式,求m+n 的值.【答案】分别计算出各项的次数,找出该多项式的最高此项:因为22m x y −的次数是m ,2m mx y −的次数为1m −,33m nx y −的次数为m ,32m x y −−的次数为2m −, 又因为是三项式 ,所以前四项必有两项为同类项,显然2233m m x y nx y −−与是同类项,且合并后为0, 所以有5,10m n =+= ,5(1)4m n +=+−=.20,60,2(1)80,(39)0.a b c d −=⎧⎪+=⎪⎨++=⎪⎪−+=⎩2,6,5,3.a b c d =⎧⎪=−⎪⎨=−⎪⎪=−⎩【过关检测】一.选择题(共10小题)1.(2022秋•防城港期末)下列各式中,与2x3y2是同类项的是()A.3x2y3B.﹣y2x3C.2x5D.y5【分析】先根据同类项的定义进行解答即可.【解答】解:单项式2x3y2中x的次数是3,y的次数是2,四个选项中只有﹣y2x3符合.故选:B.【点评】本题考查的是同类项,熟知所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项是解题的关键.2.(2023春•互助县期中)单项式x m﹣1y3与﹣4xy n是同类项,则m n的值是()A.3B.1C.8D.6【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式xm﹣1y3与﹣4xyn是同类项,∴m﹣1=1,n=3,∴m=2,n=3,∴mn=23=8.故选:C.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.3.(2022秋•长安区期末)已知单项式3x2m﹣1y与﹣x3y n﹣2是同类项,则m﹣2n的值为()A.2B.﹣4C.﹣2D.﹣1【分析】直接利用同类项的定义得出关于m,n的值,再代入计算即可.【解答】解:∵单项式3x2m﹣1y与﹣x3yn﹣2是同类项,∴2m﹣1=3,n﹣2=1,解得m=2,n=3,∴m﹣2n=2﹣2×3=﹣4.故选:B.【点评】本题考查了同类项,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.4.(2022秋•公安县期末)单项式﹣x m+2y3﹣2n与x4y5是同类项,则m﹣n的值为()A.﹣3B.3C.﹣1D.1【分析】根据同类项的定义:所含字母相同,且相同字母的指数也相同的两个单项式是同类项,求得m,n 的值,即可求解.【解答】解:∵﹣xm+2y3﹣2n与是同类项,∴m+2=4,3﹣2n=5,解得:m=2,n=﹣1,∴m﹣n=2﹣(﹣1)=3,故选:B.【点评】本题考查了同类项,根据同类项的定义求出m,n的值是关键.5.(2023春•南安市期中)若3a x﹣1b2与4a3b y+2是同类项,则x,y的值分别是()A.x=4,y=0B.x=4,y=2C.x=3,y=1D.x=1,y=3【分析】根据同类项的定义即可求出答案.【解答】解:∵3ax﹣1b2与4a3by+2是同类项,∴x﹣1=3,y+2=2,解得x=4,y=0.故选:A.【点评】本题考查同类项.解题的关键是熟练运用同类项的定义.同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.6.(2023•隆昌市校级三模)若单项式﹣a m b3与2a2b n的和是单项式,则n的值是()A.3B.6C.8D.9【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得n的值.【解答】解:∵单项式﹣amb3与2a2bn的和是单项式,∴n=3;故选:A.【点评】本题考查同类项,熟练掌握同类项的定义是解题的关键.7.(2023•迎泽区校级三模)小明做了6道计算题:①﹣5﹣3=﹣2;②0﹣(﹣1)=1;③﹣12÷=24;④3a﹣2a=1;⑤3a2+2a2=5a4;⑥3a2b﹣4ba2=﹣a2b;请你帮他检查一下,他一共做对了()A.2题B.3题C.4题D.5题【分析】分别根据有理数的减法法则,有理数的除法法则以及合并同类项法则逐一判断即可.【解答】解:①﹣5﹣3=﹣5+(﹣3)=﹣8;②0﹣(﹣1)=0+1=1;③﹣12÷=﹣12×2=﹣24;④3a﹣2a=(3﹣2)a=a;⑤3a2+2a2=(3+2)a2=5a2;⑥3a2b﹣4ba2=(3﹣4)a2b=﹣a2b;所以一共做对了②⑥共2题.故选:A.【点评】本题主要考查了合并同类项以及有理数的混合运算,熟记相关运算法则是解答本题的关键.8.(2022秋•宣城期末)已知2a m b2和﹣a5b n是同类项,则m+n的值为()A.2B.3C.5D.7【分析】根据同类项的意义先求出m,n的值,然后再代入式子进行计算即可.【解答】解:∵2amb2和﹣a5bn是同类项,∴m=5,n=2,∴m+n=5+2=7,故选:D.【点评】本题考查了同类项,熟练掌握同类项的意义是解题的关键.9.(2023•靖江市一模)若单项式2x m y²与﹣3x3y n是同类项,则m n的值为()A.9B.8C.6D.5【分析】根据同类项的定义求出m,n的值,然后代入式子进行计算即可解答.【解答】解:∵单项式2xmy²与﹣3x3yn是同类项,∴m=3,n=2,∴mn=32=9,故选:A.【点评】本题考查了同类项,熟练掌握同类项的定义,所含字母相同,相同字母的指数也相同是解题的关键.10.(2023春•曲阜市期中)若﹣3x m﹣n y2与x4y5m+n的和仍是单项式,则有()A.B.C.D.【分析】根据两式的和仍是单项式,得到两式为同类项,利用同类项定义列出方程组,求出方程组的解即可得到m与n的值.【解答】解:﹣3xm﹣ny2与x4y5m+n的和仍是单项式,∴,解得.故选:A.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.二.填空题(共9小题)11.(2023春•鲤城区校级期中)如果3x2n﹣1y m与﹣5x m y3是同类项,则m+n的值是.【分析】根据同类项的概念求解.【解答】解:∵3x2n﹣1ym与﹣5xmy3是同类项,∴2n﹣1=m,m=3,∴m=3,n=2,则m+n=3+2=5.故答案为:5.:相同字母的指数相同.12.(2022秋•鼓楼区校级期末)若单项式与2x3y n的和仍是单项式,则m+n=.【分析】根据和是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的加法法则,可得答案.【解答】解:∵单项式与2x3yn的和仍是单项式,∴单项式与2x3yn是同类项,∴m=3,n=2,m+n=3+2=5,故答案为:5.【点评】本题考查了合并同类项,掌握同类项的定义是解答本题的关键.13.(2023春•顺义区期末)若单项式﹣5a2b m﹣1与2a2b是同类项,则m=.【分析】直接利用同类项的定义分析得出答案.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:因为单项式﹣5a2bm﹣1与2a2b是同类项,所以m﹣1=1,解得m=2.故答案为:2.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.14.(2022秋•金牛区期末)若关于x、y的多项式(m﹣1)x2﹣3xy+nxy+2x2+2y+x中不含二次项,则m+n =.【分析】直接利用多项式不含二次项,得出关于m,n的等式,求出答案.【解答】解:∵(m﹣1)x2﹣3xy+nxy+2x2+2y+x=(m﹣1+2)x2+(n﹣3)xy+2y+x,关于关于x、y的多项式(m﹣1)x2﹣3xy+nxy+2x2+2y+x不含二次项,∴m﹣1+2=0,n﹣3=0,解得m=﹣1,n=3,则m+n=﹣1+3=2.故答案为:2.m,n的值是解题关键.15.(2022秋•嘉祥县期末)已知2x3y n+4和﹣x2m+1y2的和仍是单项式,则式子(m+n)2022=.【分析】根据题意可知2x3yn+4和﹣x2m+1y2是同类项,根据同类项的概念求出m,n的值,然后代入计算即可.【解答】解:∵2x3yn+4和﹣x2m+1y2的和仍是单项式,∴2x3yn+4和﹣x2m+1y2是同类项,∴3=2m+1,n+4=2,∴m=1,n=﹣2,∴(m+n)2022=(1﹣2)2022=1,故答案为:1.【点评】本题主要考查同类项,代数式求值,掌握同类项的概念是解题的关键.16.(2022秋•杭州期末)合并同类项2x﹣7y﹣5x+11y﹣1=.【分析】根据合并同类项法则计算即可.【解答】解:2x﹣7y﹣5x+11y﹣1=(2x﹣5x)+(11y﹣7y)﹣1=﹣3x+4y﹣1.故答案为:﹣3x+4y﹣1.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.17.(2022秋•江都区期末)若单项式与7a x+5b2与﹣a3b y﹣2的和是单项式,则x y=.【分析】利用同类项的定义求得x,y的值,再代入运算即可.【解答】解:∵单项式与7ax+5b2与﹣a3by﹣2的和是单项式,∴单项式与7ax+5b2与﹣a3by﹣2是同类项,∴x+5=3,y﹣2=2,∴x=﹣2,y=4.∴xy=(﹣2)4=16.故答案为:16.【点评】本题主要考查了合并同类项,利用同类项的定义求得x,y的值是解题的关键.18.(2022秋•东港区校级期末)当k=时,多项式x2+(k﹣1)xy﹣3y3﹣4xy﹣6中不含xy项.【分析】先合并同类项,然后使xy的项的系数为0,即可得出答案.【解答】解:x2+(k﹣1)xy﹣3y2﹣4xy﹣6=x2+(k﹣5)xy﹣3y2﹣6,∵多项式不含xy项,∴k﹣5=0,解得:k=5,故答案为:5.【点评】本题考查了合并同类项,属于基础题,解答本题的关键是掌握合并同类项的法则.19.(2022秋•射洪市期末)已知关于x、y的多项式(3a+2)x2+(9a+10b)xy﹣x+2y+7中不含二次项,则6a﹣15b=.【分析】根据多项式不含二次项,确定出a与b的值,代入原式计算即可求出值.【解答】解:∵关于x、y的多项式(3a+2)x2+(9a+10b)xy﹣x+2y+7中不含二次项,∴3a+2=0,9a+10b=0,解得:a=﹣,b=,则6a﹣15b=6×(﹣)﹣15×=﹣4﹣9=﹣13.故答案为:﹣13.【点评】此题考查了合并同类项,多项式,熟练掌握各自的性质是解本题的关键.三.解答题(共10小题)20.(2022秋•洛川县校级期末)已知单项式2x2m y7与单项式5x6y n+8是同类项,求m2+2n的值.【分析】利用同类项的定义求出m与n的值即可,再代入所求式子计算即可.定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵单项式2x2my7与单项式5x6yn+8是同类项,∴2m=6,n+8=7,解得m=3,n=﹣1,∴m2+2n=9﹣2=7.【点评】此题考查了同类项,以及代数式求值,熟练掌握同类项的定义求出m与n的值是解本题的关键.21.(2022秋•永善县期中)若xy|a|与3x|2b+1|y是同类项,其中a、b互为倒数,求2(a﹣2b2)﹣(3b2﹣a)的值.【分析】先根据同类项的定义求出a,b的值,再根据去括号法则和合并同类项法则对2(a﹣2b2)﹣(3b2﹣a)进行化简,最后将a,b的值代入化简后的式子即可求解.【解答】解:∵xy|a|与3x|2b+1|y是同类项,∴|2b+1|=1,|a|=1,∴a=±1,2b+1=±1,∴b=0或﹣1,∵a、b互为倒数,∴a=1,b=﹣1,∴2(a﹣2b2)﹣(3b2﹣a)=2a﹣4b2﹣+=﹣=﹣==﹣3.【点评】本题主要考查了同类项和整式的化简求值,掌握同类项的定义,去括号法则和合并同类项法则是解题的关键.22.(2021秋•大荔县期末)找出下列式子中的同类项,并求这些同类项的和:ab,3xy2,,ab+1,6x2y,﹣5x2y.【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项即可作出判断,然后进行合并即可.【解答】解:ab和是同类项,6x2y和﹣5x2y是同类项;,6x2y+(﹣5x2y)=x2y.【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.23.(2022秋•榆阳区校级期末)已知a,b是有理数,关于x、y的多项式x3y a﹣bx3+6x2y2+x的次数为5,且这个多项式中不含x3项,请你写出这个多项式.【分析】根据多项式的定义解答即可.【解答】解:∵关于x、y的多项式x3ya﹣bx3+6x2y2+x的次数为5,且这个多项式中不含x3项,∴,解得,∴这个多项式为:x3y2+6x2y2+x.【点评】本题考查了多项式以及合并同类项,解题的关键是掌握与整式相关的概念.24.(2022秋•泉港区期末)化简:.【分析】根据合并同类项法则计算即可.【解答】解:==a2b3.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.25.(2022秋•北京期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是﹣(a﹣b)2;(2)已知x2﹣2y=4,求2﹣3x2+6y的值.【分析】(1)把(a﹣b)2看成一个整体,运用合并同类项法则进行计算即可;(2)把3x2﹣6y﹣21变形,得到3(x2﹣2y)﹣21,再根据整体代入法进行计算即可.【解答】解:(1)把(a﹣b)2看成一个整体,则3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=﹣3(x2﹣2y)+2=﹣12+2=﹣10.【点评】本题主要考查了整式的加减,解决问题的关键是运用整体思想;给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.26.(2022秋•吉林期中)已知多项式mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项,试写出这个多项式,再求当x=﹣1时该多项式的值.【分析】根据mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项可得出二次项和三次项的系数为0,从而求出m和n的值,再把x=﹣1代入多项式求出多项式的值即可.【解答】解:∵多项式mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项,∴m﹣2=0,n+1=0,∴m=2,n=﹣1,∴多项式为2x4﹣3x﹣,当x=﹣1时,多项式为2×(﹣1)4﹣3×(﹣1)﹣1=2+3﹣1=4.【点评】本题主要考查多项式求值问题,关键是要能确定m和n的值.27.(2022秋•太康县期中)阅读材料:在合并同类项中,5a﹣3a+a=(5﹣3+1)a=3a,类似地,我们把(x+y)看成一个整体,则5(x+y)﹣3(x+y)+(x+y)=(5﹣3+1)(x+y)=3(x+y).“整体思想”是中学教学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(x﹣y)2看成一个整体,合并3(x﹣y)2﹣6(x﹣y)2+2(x﹣y)2的结果是.(2)已知a2﹣2b=1,求3﹣2a2+4b的值;拓展探索:(3)已知a﹣2b=1,2b﹣c=﹣1,c﹣d=2,求a﹣6b+5c﹣3d的值.【分析】(1)把(x﹣y2)看作一个整体,合并即可得到结果;(2)原式后两项提取2变形后,将已知等式代入计算即可求出值;(3)原式整理后,将已知等式代入计算即可求出值.【解答】解:(1)把(x﹣y)2看成一个整体,合并3(x﹣y)2﹣6(x﹣y)2+2(x﹣y)2的结果是﹣(x﹣y)2,故答案为:﹣(x﹣y)2;(2)∵a2﹣2b=1,∴原式=3﹣2(a2﹣2b)=3﹣2=1;(3)∵a﹣2b=1,2b﹣c=﹣1,c﹣d=2,∴原式=a﹣2b﹣4b+2c+3c﹣3d=(a﹣2b)﹣2(2b﹣c)+3(c﹣d)=1+2+6=9.【点评】此题考查了合并同类项,代数式求值,熟练掌握运算法则是解本题的关键.28.(2022秋•桥西区校级期末)已知一个代数式与﹣2x2+x的和是﹣6x2+x+3.(1)求这个代数式;(2)当x=﹣时,求这个代数式的值.【分析】(1)直接利用整式的加减运算法则计算得出答案;(2)直接把x的值代入,进而得出答案.【解答】解:(12x2+x的和是﹣6x2+x+3,∴这个代数式为:﹣6x2+x+3﹣(﹣2x2+x)=﹣6x2+x+3+2x2﹣x=﹣4x2+3;(2)当x=﹣时,原式=﹣4×(﹣)2+3=﹣1+3=2.【点评】本题主要考查了整式的混合运算,掌握整式的混合运算法则是解题关键.29.(2021秋•米脂县期末)已知单项式﹣2a2b与是同类项,多项式是五次三项式,求m﹣n的值.【分析】根据同类项的概念及多项式的有关概念求解.【解答】解:∵多项式是五次三项式,∴2+n=5,∴n=3,∵单项式﹣2a2b与是同类项,∴m=2.∴m﹣n=2﹣3=﹣1.【点评】本题考查了同类项的知识及多项式的有关概念,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.。

七年级上册数学【核心应用题】汇总含答案

七年级上册数学【核心应用题】汇总含答案

七年级上册数学【核心应用题】汇总1. 若干学生住若干间房间,如果每间住4人,则有20人没有地方住,如果每间房住8人,则有一间只有4人住,问共有多少个学生?设有x间宿舍每间住4人,则有20人无法安排所以有4x+20人每间住8人,则最后一间不空也不满所以x-1间住8人,最后一间大于小于8所以0<(4x+20)-8(x-1)<80<-4x+28<8 乘以-1,不等号改向 -8<4x-28<0加上28 20<4x<28 除以4 5<x<7x是整数所以x=6 4x+20=44所以有6间宿舍,44人2.甲对乙说:“你给我100元,我的钱将比你多1倍。

”乙对甲说:“你只要给我10元,我的钱将比你多5倍。

”问甲乙两人各有多少元钱?设甲原有x元,乙原有y元. x+100=2*(y-100) 6*(x-10)=y+10 x=40 y=1703.小王和小李从AB两地,相向而行,80分钟后相遇,小王先出发60分钟后小李在出发,40分钟后相遇,问小李和小王单独走完这段距离需要多长时间?解:设小王的速度为x,小李的速度为y根据:路程=路程,可列出方程:80(x+y)=60x+40(x+y)解得y=1\2x 设路程为单位1,则:80(1\2x+x)=1 解得x=1\120 所以y=1\240所以小王单独用的时间:1*1\120=120(分)小李单独用的时间:1*1\240=240(分)4.一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,马上就跑。

猫每秒跑7米,用了10秒追上老鼠。

老鼠每秒跑多少米?解:设老鼠每秒跑X米7*10=10X+20 10X=70-20 X=5 答:老鼠每秒跑5米。

5.一天,某客运公司的甲、乙两客车分别从相距380千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时,甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息20分钟,然后按照原速度开往B地;乙车行驶2小时10分钟时到达C地,未停留按原速度继续往A地行驶,到达A地后立即掉头返回B地。

七年级数学 核心母题三

七年级数学 核心母题三

郑重声明本文档为教师用书配套增值产品,仅供教师个人授课使用,切勿用于商业用途,对私自上传其他网络平台(百度文库、豆丁网、学科网、菁优网等)的行为,本公司将追究其法律责任!核心母题三隐形圆模型的最值问题【母题示例】如图,在矩形ABCD中,AB=4,BC=2,点E是CD上一动点,沿AE折叠矩形,使得点D落在矩形ABCD内的点D′处,连接CD′,则CD′的最小值为________.【命题形式】常在几何图形中,结合折叠、旋转问题计算最值,一般会出现直角、定点和定长等特征信息.【母题剖析】先判断点D′在以A为圆心,AD为半径的圆上,再根据勾股定理确定CD′的最小值即可.【母题详解】【母题解读】隐形圆模型的最值问题是一种特殊的最值问题,其中以基本图形(三角形、矩形等)为背景,结合图形变换(折叠、旋转),来计算图形中某条线段的最值.常见的模型有:直角模型;定角模型;折叠旋转模型等.解题的关键是先确定动点轨迹所在圆的圆心,再连接定点与圆心,从而实现问题的解决.模型一直角模型【模型解读】直角模型是在问题中出现“直角”“垂直”“90°”等关键词,利用“90°的圆周角所对的弦是直径”从而确定动点所在轨迹,以及动点的圆心,再确定定点和圆的位置关系,最后利用勾股定理等方法求线段的最值.【基本图形】基本图形BM⊥BN,点C是∠MBN内一点,且AC⊥BC,则点C在以说明AB为直径的圆上【核心突破】1.如图,正方形ABCD的边长为6,点E、F分别从点D和点C出发,沿射线DA、射线CD运动,且DE=CF,直线AF、直线BE交于点H,连接DH,则线段DH长度的最小值为( )A.35-3 B.25-3 C.33-3 D.32.如图,在平面直角坐标系中,点A的坐标为(-3,0),点B的坐标为(3,0),点P是平面内一点,且AP⊥BP,点M的坐标为(3,4),连接MP,则MP的最小值为________.模型二定角模型【模型解读】定角模型是直角模型的一种变形形式,其依据是已知定角,则根据“同弧所对的圆周角相等”得到动点的轨迹为圆弧,再画出对应图形进行计算.【基本图形】基本图形说明点P是正方形ABCD内一点,且∠APB=60°,则以AB为边在正方形ABCD内作等边△ABM,点P在△ABM的外接圆在正方形内的部分弧上基本图形说明点P是平面内一点,且∠APB=45°,则以AB为斜边作等腰Rt△A OB,点P在以O为圆心,OA为半径的圆的优弧上【模型突破】1.如图,矩形ABCD中,AD=5,AB=23,点P是矩形ABCD内(含边界)上一点,且∠APB=60°,连接CP,则CP的最小值为________.2.如图,在平面直角坐标系中,矩形ABCD的顶点A,D均在x轴上,点B在第三象限,且OA=2,OD=1,AB=4,点E是AB的中点,连接OE,动点P是平面内一点,且∠OPE=45°,连接CP,求CP的最小值.模型三折叠、旋转模型【模型解读】折叠、旋转模型是在几何图形中,通过折叠或旋转变换得到动点,而此时动点的轨迹为绕定点等于定长的圆,从而画出动点轨迹,并进行计算.【基本图形】基本图形沿过矩形ABCD的顶点A折叠△ADE,得到△AD′E,则说明点D′在以A为圆心,AD为半径的圆弧上基本图形△AEF绕正方形ABCD的顶点A旋转,则点F的轨迹说明为以A为圆心,AF为半径的圆【模型突破】1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上任意一点(点E不与点B重合),沿DE翻折△DBE,使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为________.2.如图,△ABC和△CDE都是等腰直角三角形(∠ACB=∠DCE=90°).保持△ABC 固定不动,将△CDE绕点C顺时针旋转一周,连接AD、AE、BD,直线AE与BD 相交于点H.点P、M、N分别是AD、AB、DE的中点.若AC=4,CD=2,则在旋转过程中,△PMN的面积的最大值为________.参考答案【核心母题剖析】25-2 【解析】∵将△ADE沿AE折叠得到△AD′E,∴AD′=AD,∴点D′在以A为圆心,AD为半径的圆上,连接AC交⊙A于D′,此时CD′取得最小值.∵在矩形ABCD中,AB=4,BC=2,∴由勾股定理得AC=AB2+BC2=25,∴CD′的最小值为AC-AD=25-2.【核心归纳突破】模型一、直角模型1.A 【解析】∵DE=CF,∴AE=DF,在Rt△ABE和Rt△DAF中,⎩⎪⎨⎪⎧AB=DA,∠BAE=∠ADF,AE=DF,∴△ABE≌△DAF,∴∠ABE=∠DAF,∴∠ABE+∠BAH=90°,∴AH⊥BE,点H的轨迹是以AB为直径的圆P,如解图,连接DP,交⊙P于点H,此时DH的长度最小,∵AB=AD=6,∴AP=3,∴DP=AD2+AP2=62+32=35,∴DH=DP-PH=35-3.2.2 【解析】∵AP⊥BP,∴点P在以AB为直径的圆上,∵A(-3,0),B(3,0),∴AB的中点为O,如解图,连接OM,交⊙O于P,此时MP最小,∵点M的坐标为(3,4),∴OM=5,∴MP的最小值为MO-OP=5-3=2.模型二、定角模型1.19-2 【解析】如解图,以AB 为边在矩形ABCD 内作等边△ABM,设△ABM 的外接圆圆心为O ,连接AO ,OC ,OM ,延长MO 交AB 于N ,过点O 作OE⊥BC 于E ,则AN =BN =3,易得∠AON=60°,∴ON=1,AO =2,∴CE=BC -BE =BC -ON =4,在Rt△COE 中,由勾股定理得OC =OE 2+CE 2=19,∵∠APB=60°=∠AMB,∴点P 在⊙O 在矩形内部分的弧上,∴当CO 交⊙O 于P 时,CP 最小,最小值为19-2.2.解:∵AB=4,点E 是AB 的中点,∴AE=BE =2,如解图,过点E 作EF⊥y 轴于F ,则四边形AEFO 是正方形,以F 为圆心,FE 为半径画圆,在优弧EO 上取点P ,连接OP ,EP ,则∠EPO=12∠EFO=45°. 连接CF 交⊙F 于P ,则此时CP 最小.设BC 交y 轴于G ,则CG =OD =1,FG =2,∴由勾股定理得FC =5,∴CP 的最小值为CF -FP =5-2.模型三、折叠、旋转模型1.1255 【解析】由题意得:DF =DB ,∴点F 在以D 为圆心,BD 为半径的圆上,如解图,连接AD 交⊙D 于点F ,此时AF值最小,∵点D 是边BC 的中点,∴CD=BD =3,而AC =4,由勾股定理得:AD 2=AC 2+CD 2,∴AD=5,而FD =3,∴FA=5-3=2,即线段AF 长的最小值是2,连接BF ,过F 作FH⊥BC 于H ,∵∠ACB=90°,∴FH∥AC,∴△DFH∽△DAC,∴DF AD =DH CD =HF AC ,即35=DH 3=HF 4,∴HF=125,DH =95,∴BH=245,∴BF=BH 2+HF 2=1255. 2.92【解析】∵△ABC 和△CDE 都是等腰直角三角形,∠ACB =∠ECD=90°,∴AC=BC ,CE =CD ,∠ACB+∠BCE=∠BCE+∠ECD,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD ,∠CAE=∠CBD,∴∠HBA+∠HAB=∠HBC+∠CBA+∠HAB=∠CBA+∠CAB=90°,∴BD⊥AE.∵P,M 分别是AD ,AB 的中点,∴PM∥BD,且PM =12BD ,同理,PN∥AE,且PN =12AE ,∴PM⊥PN,PM =PN ,∴△PMN 是等腰直角三角形,∴S △PMN =12PM 2=18BD 2,∴当BD 最大时,△PMN 的面积最大,∵△CDE 绕点C 旋转,∴点D 在以C 为圆心,CD 为半径的圆上,∴当点D 在BC 的延长线上时,BD 最大,此时BD =AC +CD =6,∴△PMN 面积的最大值为18×62=92.。

人教版数学七年级下各章节经典例题、易错题透析(期末、初讲)必备

人教版数学七年级下各章节经典例题、易错题透析(期末、初讲)必备

经典例题透析----易错题第五章相交线与平行线1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC∥AD.A.1个;B.2个;C.3个;D.4个.6.如图所示,直线,∠1=70°,求∠2的度数.7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?第六章平面直角坐标系1.点A的坐标满足,试确定点A所在的象限2.求点A(-3,-4)到坐标轴的距离.第七章三角形1.如图所示,钝角△ABC中,∠B是钝角,试作出BC边上的高AE.2.有四条线段,长度分别为4cm,8cm,10cm,12cm,选其中三条组成三角形,试问可以组成多少个三角形?3.一个三角形的三个外角中,最多有几个角是锐角?4.如图所示,在△ABC中,下列说法正确的是().A.∠ADB>∠ADE;B.∠ADB>∠1+∠2+∠3;C.∠ADB>∠1+∠2;D.以上都对.5.一个多边形的内角和为1440°,求其边数.第八章二元一次方程组1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.2.用加减法解方程组3.利用加减法解方程组4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..第九章不等式与不等式组1.利用不等式的性质解不等式:3.解不等式组2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)第十章数据的收集、整理与描述1.调查一批药物的药效持续时间,用哪种调查方式?2.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________3.26名学生的身高分别为(身高:cm):160;162;160;162;160;159;159;169;172;160;161;150;166;165;159;154;155;158;174;161;170;156;167;168;163;162.现要列出频率分布表,请你确定起点和分点数据.答案五、1解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度. 正解:D.3.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学核心题目赏析有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方.通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:200720061......431321211⨯++⨯+⨯+⨯ 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成2111211-=⨯,可利用通项()11111+-=+⨯n n n n ,把每一项都做如此变形,问题会迎刃而解.解 原式=)2007120061(......413131212111-++-+-+-)()()(=2007120061......41313121211-++-+-+- =200711-=20072006例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0.解 由数轴知,a<0,a-b<0,c-b>0所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c例3 计算:⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.解 原式=2132......9897999810099⨯⨯⨯⨯⨯=1001 例4 计算:2-22-23-24-……-218-219+220.分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.解 原式=2-22-23-24-……-218+219(-1+2) =2-22-23-24-……-218+219=2-22-23-24-……-217+218(-1+2) =2-22-23-24-……-217+218 =…… =2-22+23=6【核心练习】1、已知│ab-2│与│b-1│互为相反数,试求:()()......1111++++b a ab()()200620061++b a 的值.(提示:此题可看作例1的升级版,求出a 、b 的值代入就成为了例1.) 2、代数式abab b b a a ++的所有可能的值有( )个(2、3、4、无数个) 【参考答案】1、200820072、3字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当变形,采用整体代入法或特殊值法.【典型例题】例1已知:3x-6y-5=0,则2x-4y+6=_____分析 对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,可以用“特殊值法”,取y=0,由3x-6y-5=0,可得35=x ,把x 、y 的值代入2x-4y+6可得答案328.这种方法只对填空和选择题可用,解答题用这种方法是不合适的.解 由3x-6y-5=0,得352=-y x所以2x-4y+6=2(x-2y)+6=6352+⨯=328n=1,S=1①n=2,S=5②③n=3,S=9例2已知代数式1)1(++-n n x x ,其中n 为正整数,当x=1时,代数式的值是 ,当x=-1时,代数式的值是 .分析 当x=1时,可直接代入得到答案.但当x=-1时,n 和(n-1)奇偶性怎么确定呢?因n 和(n-1)是连续自然数,所以两数必一奇一偶.解 当x=1时,1)1(++-n n x x =111)1(++-n n =3当x=-1时,1)1(++-n n x x =1)1()1()1(+-+--n n =1例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25…… 752=5625= ,852=7225= (1)找规律,把横线填完整; (2)请用字母表示规律; (3)请计算20052的值.分析 这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号的加数和括号外的因数随着平方数的十位数在变.解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25(2)(10n+5)2=100×n (n+1)+25(3) 20052=100×200(200+1)+25=4020025例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S 表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n 表示S 的公式.分析 当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.解 (1)S=13(2)可列表找规律:所以S=4(n-1)+1.(当然也可写成4n-3.)【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61①填空:第11,12,13三个数分别是 , , ; ②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:【参考答案】1、①111-,121,1311-;②20081;③0.2、1+n ×(n+2) = (n+1)2平面图形及其位置关系篇【核心提示】平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.【典型例题】例1平面两两相交的6条直线,其交点个数最少为______个,最多为______个. 分析 6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.解例2 两条平行直线m 、n 上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连( )条直线.A .20B .36C .34D .22分析与解 让直线m 上的4个点和直线n 上的5个点分别连可确定20条直线,再加上直线m 上的4个点和直线n 上的5个点各确定的一条直线,共22条直线.故选D.例3 如图,OM 是∠AOB 的平分线.射线OC 在∠BOM ,ON 是∠BOC 的平分线,已知∠AOC=80°,那么∠MON 的大小等于_______. 分析 求∠MON 有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC 靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.解 因为OM 是∠AOB 的平分线,ON 是∠BOC 的平分线,OB A MC N图1图2图3所以∠MOB=21∠AOB ,∠NOB=21∠COB 所以∠MON=∠M OB-∠N OB=21∠AOB-21∠C OB=21(∠AOB-∠C OB )=21∠AOC=21×80°=40°例4 如图,已知∠AOB=60°,OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC. (1)求∠DOE 的大小; (2)当OC 在∠AOB 绕O 点旋转时,OD 、OE 仍是∠BOC 和∠AOC 的平分线,问此时∠DOE 的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.分析 此题看起来较复杂,OC 还要在∠AOB 绕O 点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE 是∠AOB 的一半,也就是说要求的∠DOE , 和OC 在∠AOB 的位置无关.解 (1)因为OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC.所以∠DOC=21∠BOC ,∠COE=21∠COA所以∠DOE=∠DOC+∠COE=21∠BOC+21∠COA=21(∠BOC+∠COA )=21∠AOB因为∠AOB=60°所以∠DOE =21∠AOB= 21×60°=30° (2)由(1)知∠DOE =21∠AOB ,和OC 在∠AOB 的位置无关.故此时∠DOE 的大小和(1)中的答案相同.【核心练习】1、A 、B 、C 、D 、E 、F 是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时 分.【参考答案】1、15条2、分分或1165411921.一元一次方程篇【核心提示】一元一次方程的核心问题是解方程和列方程解应用题。

解含分母的方程时要找出分母的最小公倍数,去掉分母,一定要添上括号,这样不容易出错.解含参数方程或绝对值方程时,要学会代入和分类讨论。

列方程解应用题,主要是列方程,要注意列出的方程必须能解、易解,也就是列方程时要选取合适的等量关系。

【典型例题】例1已知方程2x+3=2a 与2x+a=2的解相同,求a 的值.O B A C DE分析 因为两方程的解相同,可以先解出其中一个,把这个方程的解代入另一个方程,即可求解.认真观察可知,本题不需求出x ,可把2x 整体代入.解 由2x+3=2a ,得 2x=2a-3. 把2x=2a-3代入2x+a=2得2a-3+a=2, 3a=5,所以 35=a例2 解方程 31221+-=--x x x 分析 这是一个非常好的题目,包括了去分母容易错的地方,去括号忘变号的情况. 解 两边同时乘以6,得6x-3(x-1)=12-2(x+1) 去分母,得6x-3x+3=12-2x-2 6x-3x+2x=12-2-3 5x=7 x=57 例3某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.分析 这类问题我们应首先搞清楚利润率、销售价、进价之间的关系,因销售价=进价×(1+利润率),故还需设出进价,利用销售价不变,辅助设元建立方程.解:设原进价为x 元,销售价为y 元,那么按原进价销售的利润率为 %100⨯-x x y ,原进价降低后在销售时的利润率为%100%6.93%6.93⨯-x xy ,由题意得: %100⨯-x x y +8%=%100%6.93%6.93⨯-x xy 解得 y=1.17x故这种商品原来的利润率为%10017.1⨯-xxx =17%. 例4解方程 │x-1│+│x-5│=4分析 对于含一个绝对值的方程我们可分两种情况讨论,而对于含两个绝对值的方程,道理是一样的.我们可先找出两个绝对值的“零点”,再把“零点”放中数轴上对x 进行讨论.解:由题意可知,当│x-1│=0时,x=1;当│x-5│=0时,x=5.1和5两个“零点”把x 轴分成三部分,可分别讨论:1)当x<1时,原方程可化为 –(x-1)-(x-5)=4,解得 x=1.因x<1,所以x=1应舍去. 2)当1≤x ≤5时,原方程可化为 (x-1)-(x-5)=4,解得 4=4,所以x 在1≤x ≤5围可任意取值.3)当x>5时,原方程可化为 (x-1)+(x-5)=4,解得 x=5.因x>5,故应舍去. 所以, 1≤x ≤5是比不过的。

相关文档
最新文档