人教版七年级数学上册2.1多项式教案

合集下载

人教版七年级数学上册第2章教案2.1 第3课时 多项式2

人教版七年级数学上册第2章教案2.1 第3课时 多项式2

2.1 整式第3课时多项式教学目标:1.通过本节课的学习,使学生掌握整式、多项式的项及其次数、常数项的概念.2.初步体会类比和逆向思维的数学思想.教学重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数以及常数项等概念.教学难点:准确指出多项式的次数.教学过程一、复习引入1.列代数式:(1)长方形的长与宽分别为a、b,则长方形的周长是;(2)某班有男生x人,女生21人,则这个班共有学生人;(3)图中阴影部分的面积为;(4)鸡兔同笼,鸡a只,兔b只,则共有头个,脚只.2.观察以上所得出的四个代数式与上节课所学单项式有何区别.(1)2(a+b);(2)21+x;(3)ab-π()2;(4)2a+4b.二、讲授新课1.多项式:板书由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.例如,多项3x2-2x+5有三项,它们是3x2,-2x,5,其中5是常数项.一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2-2x+5是一个二次三项式.注意:(1)多项式的次数不是所有项的次数之和.(2)多项式的每一项都包括它前面的符号.2.例题:【例1】判断:①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;②多项式3n4-2n2+1的次数为4,常数项为1.【例2】指出下列多项式的项和次数:(1)3x-1+3x2;(2)4x3+2x-2y2.【例3】指出下列多项式是几次几项式.(1)x3-x+1;(2)x3-2x2y2+3y2.【例4】已知代数式3x n-(m-1)x+1是关于x的三次二项式,求m、n的值.注意:多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式.分析例4时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.【例5】一条河流的水流速度为2.5千米/时,如果已知船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、乙两船在静水中的速度分别是20千米/时和35千米/时,则它们在这条河流中顺水行驶和逆水行驶的速度各是多少?3.课堂练习:课本P58练习第1、2题.填空:-a2b-ab+1是次项式,其中三次项系数是,二次项为,常数项为,写出所有的项 .三、课时小结1.理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.2.这堂课学习了多项式,与前一节所学的单项式合起来统称为整式,使知识形成了系统.(让学生小结,师生进行补充.)四、课堂作业课本P59习题2.1的第3、4题.。

人教版数学七年级上册2.1多项式教案

人教版数学七年级上册2.1多项式教案

《整式(多项式)》教学任务分析教知识与技能掌握多项式的定义、多项式的项和次数,以及常数项等概念学目标过程与方法让学生经历新知的形成过程,培养比较、分析、归纳的能力,由单项式与多项式归纳出整式,培养学生分析问题、解决问题的能力。

通过数学探究活动,提高学生对数学学习的好奇心与求知欲。

情感态度与价值观教学重点掌握整式和多项式的项及其次数、常数项的概念。

教学难点掌握整式和多项式的项及其次数、常数项的概念。

教学过程设计教学过程备注[活动1]创设情景,引入新课1、对于单项式,我们学习了哪些内容?2、请举例说明单项式、单项式的系数和次数的概念.[活动2]讲授新课问题1:观察上面的5个式子:v+2.5,v-2.5,3x+5y+2z,1/2ab-πr2,x2+2x+18,它们有什么共同特点?与上节课学习的单项式有什么区别?你能试着用和的形式读一下吗?通过学生的观察、思考,对特征的描述,由学生自己说出多项式的定义,教师给予适当的补充。

板书多项式的概念:像这样,几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项。

注意:多项式的项要包含前面的符号。

例如:v-2.5中,共有2项,分别是v与-2.5。

其中-2.5是常数项.多项式里次数最高项的次数,就是这个多项式的次数。

例如,多项式v-2.5就是一个一次二项式。

练习:(1)你能举出一个多项式的例子,并说出它的项和次数吗?2)请你写出一个二次三项式,并使它的二次项系数是-2,一次项系数是3,常数项是5,那么这个多项式可以是 .例1如图所示,用式子表示圆环的面积.当 R=15 cm, r=10 cm时,求圆环的面积(π取3.14 ).例2如图,文化广场上摆了一些桌子,若并排摆张桌子,可同时容纳多少人?当时,可同时容纳多少人?(图见课件)[活动3]练习:[活动4]小结:。

人教版数学七年级上册精品教案《2.1 第2课时 多项式》

人教版数学七年级上册精品教案《2.1 第2课时 多项式》

人教版数学七年级上册精品教案《2.1 第2课时多项式》一. 教材分析《2.1 第2课时多项式》这一课时主要让学生理解多项式的概念,掌握多项式的表示方法,以及多项式的基本运算。

本课时内容是初中数学的重要内容,对学生后续学习函数、方程等数学知识有着重要的基础作用。

二. 学情分析学生在学习这一课时之前,已经学习了有理数、整式等基础知识,对数学符号、运算有一定的了解。

但部分学生可能对多项式的概念和表示方法理解不深,需要通过实例和练习来进一步巩固。

三. 教学目标1.让学生理解多项式的概念,掌握多项式的表示方法。

2.培养学生对多项式的运算能力,提高学生的数学思维能力。

3.通过对多项式的学习,激发学生学习数学的兴趣。

四. 教学重难点1.重点:理解多项式的概念,掌握多项式的表示方法。

2.难点:多项式的运算,特别是多项式与单项式的乘法。

五. 教学方法采用问题驱动法、实例教学法、分组讨论法等,引导学生主动探索、合作交流,培养学生的数学思维能力。

六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如:“某商品打8折,原价100元,现价是多少?”让学生尝试用数学语言来表达这个问题,引出多项式的概念。

2.呈现(15分钟)介绍多项式的定义、表示方法,以及多项式的基本运算。

通过PPT 展示多个实例,让学生理解多项式的概念,掌握多项式的表示方法。

3.操练(20分钟)让学生分组讨论,互相练习多项式的运算。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)让学生独立完成PPT上的练习题,检验学生对多项式的理解和掌握程度。

教师选取部分学生的作业进行讲解和分析。

5.拓展(10分钟)引导学生思考:多项式与单项式的关系是什么?如何将单项式转化为多项式?让学生通过分组讨论,探索这个问题。

6.小结(5分钟)对本课时内容进行总结,强调多项式的概念、表示方法和基本运算。

提醒学生要注意多项式运算中的符号变化。

7.家庭作业(5分钟)布置适量的家庭作业,让学生巩固本课时所学内容。

2.1整式(2) 多项式 教学设计 人教版七年级数学上册

2.1整式(2) 多项式  教学设计 人教版七年级数学上册

2.1整式〔2〕 多项式【教材分析】多项式是在学习单项式的根底上进一步学习的整式的另一个重要知识点,所以只有理解了单项式的概念,才能进一步理解并掌握多项式的概念.而多项式的加减运算正是整式加减运算的的根底,而整式的加减运算又是解决大量的实际问题的根底,因此学好多项式的相关知识是至关重要的.【学情分析】在学习了单项式后,学生对多项式的学习就顺理成章.【教学目标】知识与技能:掌握多项式.多项式的项.常数项.多项式的次数的概念.过程与方法:在预习的根底上,通过小组合作的方式,进一步探究有关多项式的相关概念,并能理解运用.情感与态度:初步体会类比和逆向思维的数学思想.【教学重点】多项式的相关概念【教学难点】多项式的次数【课时安排】1课时一.预学自检 互助点拨自学教材57--58页.45x -是不是单项式?4x ,5-是不是单项式?把4x ,5-的和用式子表示出来:,写成省略加号的形式是,式子45x -表示哪几个单项式的和?式子2427x x -+,22a ab b +-分别表示哪几个单项式的和?.〔1〕几个单项式的和叫〔2〕在多项式中,每个单项式叫做〔3〕在多项式中,不含字母的项叫做〔4〕在多项式中,次数最高的项的次数叫做这个〔5〕单项式和多项式统称二.例题示范 提炼方法合作互学 探究新知自主学习(1)以下多项式各由哪些项组成,各是几次几项式?333,1,,82b ab a a c b a x ++-++-.〔2〕以下式子中,哪些是整式,哪些是单项式,哪些是多项式?ab c +,2ax bx c ++,5-,π,3a b -,32m -. 探究新知 1.以下多项式中,是四次三项式的是〔 〕A.41x - B.232232xyz xy y x +- C.432224+-z y x x D.2x y z -+ 2..如果一个多项式的次数是6,那么这个多项式的任何一项的次数都〔 〕A.小于6B.不大于6 C .不小于6 D.大于63..多项式422y x +中,二次项系数是〔 〕 A.1 B.2 C.21 D.41 4.如果6)2()2(23----x k x k k 是关于x 的二次多项式,那么k 的值是〔 〕A .0B .2 C.0或2 D.不能确定设计意图:稳固多项式的概念及相关概念,同时为学生创造用多项式表示实际问题中的数量关系的时机,培养学生的列式能力.三.师生互动 稳固新知1.多项式43232--+-n mn m 是次项式,最高项的系数是,常数项是2.买一个篮球需要m 元,买一个排球需要n 元,那么买3个篮球和2排球共需元.3.n 表示整数,用含n 的式子表示两个连续奇数4.63513212--+-+x xy y x m 是六次多项式,单项式m n y x -523与该多项式的次数相同,求m.n 的值.四.应用提升挑战自我某影剧院观众席近似于一个扇面的形状,第一排有20个座位,后面的每一排都比前一排多两个座位.〔1〕写出第n 排座位数的表达式;〔2〕如果这个剧院的观众席共25排,那么它最多可以容纳多少观众?设计意图:此题属于一道中难题,学生在学习掌握根底概念之后,有种想突破自我,向更高难度挑战的意识,这道题此时能够较好地激发起学生学习的热情,使思维,解题等能力得到提升,能够较好地到达培优的目的.五.经验总结 反思收获本节课你学到了什么?写出来【板书设计】2.1整式〔2〕 多项式1.多项式2.项 常数项3.多项式的次数4.整式【教学反思】本节内容通过五步教学法,以自学合作为主,充分调动学生学习的主动性.能动性.积极性,学生大多能掌握本节所学内容,到达了教学目标.。

七年级数学上册-2.1 整式(第2课时)--多项式 教案

七年级数学上册-2.1 整式(第2课时)--多项式 教案

2.1 整式--多项式课型新授单位主备人教学目标:1.知识与技能:1.掌握多项式的定义;2.会确定一个多项式的项和次数;3.理解多项式与单项式和整式的区别和联系;2.过程与方法:经历动手操作和自主探究的过程,进一步积累认识多项式与单项式和整式的区别和联系;。

3.情感、价值观:保持探索精神,养成积极探索的精神和合作意识,感受数学的价值。

重点、难点:教学重点:会确定一个多项式的项和次数;。

教学难点:会确定一个多项式的项和次数;教学准备:PPT课件和微课等。

教学过程一、创设情景、引入新课复习提问:1.单项式的定义?2.什么是单项式的系数?3.什么是单项式的次数?4.单项式与代数式有什么区别与联系?注意:单项式中只含有乘法运算和数字做分母的分数形式.(字母不能做分母)二、自主学习、合作探究请同学们看课本,并把内容补充完整。

(1)什么是多项式(2)什么是多项式的项;(3)什么叫常数项;(4)什么是多项式次数(5)什么是整式。

自主检测:判断下列式子哪些为多项式?2、指出下列多项式的项和次数.12324+-n n3223b ab b a a -+-3、指出下列多项式是几次几项式:13+-x x222332y y x x +-4、填空1. 多项式x+y-z 是单项式___,___,___的和,它是___次___项式.2.多项式3m 3-2m-5+m 2的常数项是____,一次项是_____, 二次项的系数是_____.5、拔高题六、总结升华、反思提升同学们,请你回想一下,这节课你有什么收获?学生说收获。

【学生对本节课进行知识梳理,巩固教学目标。

】板书设计:3.2 整式--多项式1、多项式的概念:2、多项式的项:3、多项式的次数:4、多项式的名称:作业设计最佳解决方案个基础:1、______________叫做多项式2、____________________________叫做多项式的项3、_________叫做常数项4、一个多项式含有几项,就叫几项式.______________多项式的次数.5、指出下列多项式的项和次数:(1);(2).6、指出下列多项式是几次几项式:(1);(2)7、__________________________统称整式拓展:8、一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.参考答案:1、几个单项式的和2、在多项式中,每个单项式3、不含字母的项4、最高次项的次数5、(1)三次四项式(2)四次三项式6、(1)三次三项式(2)四次三项式7、单项式和多项式 8、11a+20教学反思:1、本节课内容以单项式为基础,在复习单项式的定义和次数的前提下,引入多项式。

人教版数学七年级上册2.1 第3课时《 多项式》精品教学设计1

人教版数学七年级上册2.1 第3课时《 多项式》精品教学设计1

人教版数学七年级上册2.1 第3课时《多项式》精品教学设计1一. 教材分析人教版数学七年级上册第2章《多项式》是学生在小学阶段学习基础上,进一步深化对数学概念的理解和运用的关键内容。

本节课主要介绍多项式的定义、多项式的项、次数和系数等基本概念。

通过本节课的学习,使学生掌握多项式的基本知识,能够正确理解并运用多项式进行简单的计算和问题解决。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学概念的理解和运用有一定的掌握。

但同时,学生对于较为抽象的数学概念的理解还存在一定的困难,需要通过具体实例和实际操作来加深理解。

此外,学生的学习习惯和方法还需要进一步指导和培养。

三. 教学目标1.知识与技能目标:理解多项式的定义、多项式的项、次数和系数等基本概念,能够正确运用多项式进行简单的计算和问题解决。

2.过程与方法目标:通过观察、操作、交流等活动,培养学生的数学思维能力和问题解决能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 教学重难点1.重点:多项式的定义、多项式的项、次数和系数等基本概念。

2.难点:对于多项式概念的理解和运用。

五. 教学方法1.情境教学法:通过生活实例和实际问题,引发学生的兴趣和思考,引导学生理解和掌握多项式的概念。

2.启发式教学法:通过提问和讨论,激发学生的思维,引导学生主动探索和发现问题的解决方法。

3.合作学习法:学生进行小组讨论和合作,培养学生的团队合作精神和交流沟通能力。

六. 教学准备1.教学PPT:制作多媒体教学PPT,包括多项式的定义、多项式的项、次数和系数等基本概念的介绍,以及相关的例题和练习。

2.教学素材:准备相关的数学题目和实际问题,用于引导学生进行观察和操作。

3.教学工具:准备黑板、粉笔等教学工具,用于板书和演示。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题——多项式。

例如:已知一个数的平方减去这个数等于3,求这个数。

人教版七年级数学上教案:2.1多项式

人教版七年级数学上教案:2.1多项式

2.1.2整式——多项式教学目标:1、 通过实例,进一步体验字母表示数的意义。

会利用字母表示简单的数量关系和数学规律。

2、通过实例,经历多项式、整式概念产生的过程。

了解整式的概念,会用整式表示简单的数量关系。

3、掌握整式、多项式的次数、项的概念,能识别多项式,并正确说出多项式的项数和次数。

教学重点与难点:重点:用字母表示数的意义。

多项式、整式概念。

难点:识别多项式的项及次数。

教学过程:一、创设情境,引入课题前面我们学习了单项式,现在我们利用所学的知识帮小红帽解决一下她的问 题。

由买水果引出ab ab a ++222这样一个式子,它是几个单项式的和的形式。

这就是我们今天要学习的多项式。

二、探究新知多项式的定义:几个单项式的和。

练习:判断下列式子哪些是多项式43)1(3-x 122)2(2-+-x x (3)x²-3x+4 2)4(ab z y x -+)5( 23523)6(m m m +--41)7(+x 141)8(2--x 2453)9(2232--+-ab b a b a 其中每个单项式叫多项式的项。

不含字母的项叫常数项。

指出上述多项式中的常数项。

怎样确定多项式的次数呢?在上一多项式中每一项的次数分别为2、3、2,最高次数为3次,则22ab 就是这一多项式的最高次项,我们规定多项式中最高次2453)9(2232--+-ab b a b a项的次数为多项式的次数。

说出上述多项式的次数分别是多少?ab ab a ++222的次数为3次,所以ab ab a ++222为三次三项式。

试说出上述多项式为几次几项式。

单项式和多项式统称为整式。

三、巩固练习1、同桌之间互考。

2、设计竞赛:以小组为单位,回答问题,答对小组加分。

①一个两位数,十位数字是x,个位数字是y.则这个两位数是 。

②写出一个多项式,使它的项数是3,次数是4。

③把下列各式填到相应的括号里:252+x -1 x x 32- π x 5 221xx + 单项式:{ }多项式:{ }整式:{ }④m 、n 都是自然数,那么多项式n m n m z y x ++-22的次数是 ⑤有一多项式为 54325432x x x x x +-+-,按照这样的规律写下去,第10项是 ,第2007项是 . .四、列多项式我们继续帮助小红帽解决她的问题。

人教版数学七年级上册2.1 第3课时 多项式[1]-课件

人教版数学七年级上册2.1 第3课时 多项式[1]-课件

You made my day!
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
我们,还在路上……
讲授新课
一 多项式的相关概念
列式表示 下列数量
1.温度由t℃下降5℃后是 (t-5) ℃. 2.买一个篮球需要x元,买一个排球需要y 元,买一 个足球需要z元,买3个篮球、5个排球、2个足球共 需要(3x+5y+2z)元.
3.如图三角尺的面积为
(1 2
ab πr 2 )
.
4.如图是一所住宅区的建筑平面图,这所住宅
π R 2 π r 2 3 .1 4 1 5 2 3 .1 4 1 0 2 392.5(cm2)
做一做
一个花坛的形状如图所示,这的两端是半径相等的半圆,
求:
aห้องสมุดไป่ตู้
(1)花坛的周长L;
(2)花坛的面积S.
r
r
解:(1) L=2a+2πr (2) 花坛的面积是一个长方形的面积与两个半圆 的面积 之和,即S=2ar+ πr2
解:由题意得m=0,n-1=0,所以n=1.
二 多项式的应用 例3 如图,用式子表示圆环的面积.当 R 15 cm,
r 10 cm 时,求圆环的面积( π 取 3 .1 4 ).
解:外圆的面积减去内圆的面积就是圆环 的面积,所以圆环的面积是 πR2 πr2 .
当R 15 cm ,r 10 cm 时, 圆环的面积(单位:cm2)是
次数
2
4
1
做一做
一个多项式的次数是3,则这个多项式的各项次数
( D)
A.都等于3
B. 都小于3
C.都不小于3

人教版七年级数学上册 教案:2.1 第3课时 多项式1【精品】

人教版七年级数学上册 教案:2.1 第3课时 多项式1【精品】

第3课时 多项式1.理解多项式的概念;(重点)2.能准确迅速地确定一个多项式的项数和次数;3.能正确区分单项式和多项式.(重点)一、情境导入列代数式:(1)长方形的长与宽分别为a 、b ,则长方形的周长是________;(2)图中阴影部分的面积为________;(3)某班有男生人,女生21人,则这个班的学生一共有________人.观察我们所列出的代数式,是我们所学过的单项式吗?若不是,它又是什么代数式?二、合作探究探究点一:多项式的相关概念【类型一】 单项式、多项式与整式的识别指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?2+y 2,-,a +b 3,10,6y +1,1x ,17m 2n ,22--5,2x 2+x,a 7. 解析:根据整式、单项式、多项式的概念和区别进行判断.解:2x 2+x ,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式. 单项式有:-,10,17m 2n ,a 7; 多项式有:2+y 2,a +b 3,6y +1,22--5;整式有:2+y 2,-,a +b 3,10,6y +1,17m 2n ,22--5,a 7.方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.【类型二】 确定多项式的项数和次数写出下列各多项式的项数和次数,并指出是几次几项式.(1)232-3+5; (2)a +b +c -d ;(3)-a 2+a 2b +2a 2b 2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)232-3+5的项数为3,次数为2,二次三项式; (2)a +b +c -d 的项数为4,次数为1,一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,四次三项式.方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.【类型三】 根据多项式的概念求字母的取值已知-5m +104m -4m y 2是关于、y 的六次多项式,求m 的值,并写出该多项式. 解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m +2=6,解得m =4,此多项式是-54+1044-44y 2.方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【类型四】 与多项式有关的探究性问题若关于的多项式-53-m 2+(n -1)-1不含二次项和一次项,求m 、n 的值.解析:多项式不含二次项和一次项,则二次项和一次项系数为0.解:∵关于的多项式-53-m 2+(n -1)-1不含二次项和一次项,∴m =0,n -1=0,则m =0,n =1.方法总结:多项式不含哪一项,则哪一项的系数为0.探究点二:多项式的应用如图,某居民小区有一块宽为2a米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影部分面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题的数量关系时,首先要分清语言叙述中关键词的含义,理清它们之间的数量关系和运算顺序.三、板书设计多项式:几个单项式的和叫做多项式.多项式的项:多项式中的每个单项式叫做多项式的项.常数项:不含字母的项叫做常数项.多项式的次数:多项式里次数最高项的次数叫做多项式的次数.整式:单项式与多项式统称整式.这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.。

人教版七年级数学上册同步备课2.1整式(第3课时)多项式(教学设计)

人教版七年级数学上册同步备课2.1整式(第3课时)多项式(教学设计)

2.1 整式(第3课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减”2.1整式第3课时,内容包括多项式的概念,多项式的项数和次数的概念.2.内容解析多项式是在学生学习了单项式的基础上进一步学习的.通过本节课的学习让学生理解多项式的概念,并使学生能准确地确定一个多项式的次数和项数.通过多项式的学习加深对整式的认识.多项式既是学生学过单项式后的延续和拓展,又是后续研究整式的加减运算的基础.此外也可以用来表示数学关系以及解决相关的实际问题,它是整个初中数学中起着承上启下作用的核心知识之一.基于以上分析,确定本节课的教学重点为:多项式以及有关概念.二、目标和目标解析1.目标(1)理解多项式、多项式的项和次数、整式的概念;(2)会用多项式表示简单的数量关系,并根据多项式中字母的值求多项式的值;(3)会用整式解决简单的实际问题,体会用整式表示数量关系的简洁性和一般性.2.目标解析达成目标(1)的标志是:会根据概念判断多项式,能确定多项式的项、项数和次数,并能说出判断的依据,能举例说明.达成目标(2)的标志是:会分析简单实际问题中的数量关系,并能够正确地用多项式表示数量关系.目标(3)是“内容所蕴含的思想方法”,学生需要在分析多项式结构特征过程中,经历由特殊(具体)到一般(抽象)的认识过程,感受多项式是一种重要的数学式子,从中提高观察、分析、归纳、概括能力.学生需要从列多项式的过程中,进一步感受整式中的字母表示数,整式可以表示实际问题中的数量关系,整式更具有简洁性和一般性.三、教学问题诊断分析七年级的学生注意力易分散,学习新的知识需要较长的理解过程,就本节课知识而言,容易将单项式与多项式的相关概念混淆,所以教学中教师应予以简单明了、深入浅出地分析,带着学生去发现和探究新知识,以问题的提出、问题的解决为主线,同时要创造条件和机会,让学生发表见解,发挥学生学习的主动性,提高学习的积极性.基于以上分析,确定本节课的教学难点为:准确确定多项式的次数和项,并且掌握单项式和多项式次数之间的联系和区别.四、教学过程设计(一)复习巩固,引入新课问题1:什么叫单项式?单项式的系数和次数?由数与字母的乘积组成的代数式叫做单项式.单项式中的数字因数,叫作单项式的系数一个单项式中,所有字母的指数的和,叫做这个单项式的次数.问题2:填空:1. 单项式-5y 的系数是_____,次数是_____.2. 单项式a 3b 的系数是_____,次数是_____.3. 单项式32ab 的系数是_____,次数是____. 4. 5x 2yz 与-15xzy n 是同次单项式,则n = .答案:1. -5;1;2. 1;43. 32;2 4. 2.师生活动:学生讨论,学生代表回答,教师根据学生回答进行评价【设计意图】巩固单项式的相关知识,为形成多项式的概念打下基础,形成对比.(二)新知探究问题3:观察这些式子:v +2.5, v -2.5,3x +5y +2z ,212ab r π-, x 2+2x +18? 它们有什么共同特点?与单项式有什么联系?师生活动:学生小组讨论交流,自由发言回答上面的问题.教师参与小组讨论,并有针对性地进行指导.教师进一步提出问题,以上各式显然不是单项式,它们与单项式有联系吗?教师给出定义:这些式子都可以看作是几个单项式的和.多项式中,次数最高项的次数,叫做这个多项式的次数.多项式中,每个单项式叫做多项式的项.不含字母的项叫做常数项.一个多项式由几个单项式组成,就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2z 可以叫做三项多项式.教师进一步引导学生探究多项式次数的概念.学生可以发挥自己的想象去探究给多项式的次数命名的方法.教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.教师在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.教师总结:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.【设计意图】通过问题引出多项式的概念,进而通过教师的导与学生的学很自然地得出多项式的项数、次数的概念.针对训练:1.判断下列各式哪些是多项式?(1)a ; (2)213x y ; (3)2x -1; (4)x 2+xy +y 2. 解:多项式有(3)和(4).(1)和(2)是单项式.2.多项式x 2+y -z 是单项式___,___,___的和,它是___次___项式.(x 2;y ;-z ;)3.多项式3m 3-2m -5+m 2的常数项是____,二次项是_____,一次项的系数是_____.(-5;m 2;-2;)4. 一个多项式的次数是3,则这个多项式的各项次数( D )A .都等于3B .都小于3C .都不小于3D .都不大于3师生活动:在总结前面知识的基础上,进一步归纳,至此我们学习了单项式和多项式,单项式和多项式统称为整式.教师进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗?学生讨论后回答.教师根据学生回答情况予以点拨、强调.教师点拨:①多项式的项,要包括它前面的性质符号;②对多项式的每一项来讲来,有系数.但对常数项不说系数,对整个多项式来说,没有系数的概念;③多项式的次数是多项式中次数最高的项的次数.【设计意图】通过自主观察、小组讨论交流,分析式子的结构特征,发现共同特点,并通过特征描述,抽象概括出多项式的概念.通过观察、分析每个单项式的结构特征,发现不同点,在此基础上定义多项式的项、项数和次数的概念及整式的概念.在讨论中激发学生参与学习的热情,培养观察、比较、分析、抽象概括的能力.(三)典例分析例1:用多项式填空:(1)温度由t℃下降5℃后是℃;(2)甲数x的13与乙数y的12的差可以表示为_________.解:(1)(t-5);(2)1132x y.例2:如图所示,用式子表示圆环的面积.当R=15 cm,r=10cm时,求圆环的面积(π取3.14 ).解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR2-πr2.当R=15 cm,r=10cm时,圆环的面积(单位:cm2)是:3.14×152-3.14×102=392.5.这个圆环的面积是392.5cm2.针对训练:一个花坛的形状如图所示,这的两端是半径相等的半圆,求:(1)花坛的周长L;(2)花坛的面积S.解:(1)L=2a+2πr.(2)花坛的面积是一个长方形的面积与两个半圆的面积之和,即S=2ar+ πr2.师生活动:学生独立完成例1,例2由教师板书示范.此环节教师应关注学生书写的规范性.【设计意图】从实际问题出发,再次体验多项式的次数、项数的概念,教师从中及时反馈学生的掌握情况,进一步巩固多项式的有关概念,同时体会用字母表示数的意义和学习求多项式的值的方法.(四)当堂巩固1.指出下列多项式的项和次数a 5-a 2b +ab -b 3.解:多项式的项:a 5,-a 2b ,ab ,-b 3;多项式的次数: 5.2.式子3x a+1+4x –2b 是四次二项式,试求a ,b 的值.解:因为式子的次数是四次,所以a +1=4,所以a =3.又因为式子是二项式,所以2b =0,即b =0.所以a =3,b =0.3.下列整式中哪些是单项式?哪些是多项式?是单项式的指出系数和次数,是多项式的指出项和次数:212a b -,427m n ,x 2+y 2-1,x ,32t 3,3π,3x 2-y +3xy 3+x 4-1,2x -y .【设计意图】进一步巩固多项式、多项式的项、项数和次数的概念.(五)能力提升1.多项式112134634n n n n x x x x -++-+-是几次几项式?其中最高次项是哪项?最高次项的系数是多少? 解:n +2次多项式,最高次项是234n x +-, 最高次项系数是34-. 2.多项式-a +2a 2-3a 3+4a 4-5a 5+……第99项是 ,第2022项是 ,第n 项是 . (-99a 99;2022a 2022;(-1)n •n •a n .)3.某公园的门票价格是:成人10元/张;学生5元/张.(1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?解:(1)该旅游团应付的门票费是(10x+5y)元.(2)把x=37,y=15代入代数式,得10x+5y =10×37+5×15 =445.因此,他们应付445元门票费.【设计意图】提升学生灵活应用多项式及相关的概念解决问题的能力.(六)感受中考1.(3分)(2021•青海2/25)一个两位数,它的十位数字是x,个位数字是y,那么这个两位数是()A.x+y B.10xy C.10(x+y)D.10x+y【解答】解:一个两位数,它的十位数字是x,个位数字是y,这个两位数10x+y.故选:D.2.(8分)(2021•河北20/26)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m本甲种书和n本乙种书,共付款Q元.(1)用含m,n的代数式表示Q;(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q的值.【解答】(1)由题意可得:Q=4m+10n;(2)将m=5×104,n=3×103代入(1)式得:Q=4×5×104+10×3×103=2.3×105.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(七)课堂小结1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心——多项式、多项式的项、项数和次数的概念及整式的概念,体会多项式在实际中的应用,感受由“数”到“式”,由特殊(具体)到一般(抽象)的数学思想.(八)布置作业1.P59:习题2.1:第3、4题;2.P60:习题2.1:第6、7题.五、教学反思在此之前学生已经学习了单项式及单项式的系数、次数的概念,这为过渡到本节的学习起着铺垫的作用.教材遵循“由特殊到一般”的学习规律,先是引进背景比较熟悉的实际问题,从实际问题中抽象出多项式的概念,并且让学生体会到多项式概念的产生源于实际的需要.在本节课中,多项式概念的学习是在单项式的基础上引出来的,着重指出多项式是几个单项式的和.因此,本节课的教学设计是通过比较单项式与多项式之间的异同点,掌握两个概念之间的区别和联系来突出多项式概念的本质,帮助学生理解多项式的概念,以及多项式的项和次数的概念.因而,观察分析、抽象概括、练习巩固成为本节课学习的主要方式.。

人教版七年级数学 上册 2.1多项式 教案

人教版七年级数学 上册 2.1多项式 教案

教学案(27)主备人:审核人:第6周课题 2.1多项式课时 1 班别课型新授课时间教具投影仪教学目标1.理解掌握多项式的概念和相关的术语2.能解决和多项式相关的实际问题3.培养学生合作意识和做事仔细认真的习惯重点理解掌握多项式的概念和相关的术语难点能解决和多项式相关的实际问题预习内容及学法指导预习范围:教科书第57页--58页1.归纳整理这一部分的基础知识2.这一部分存在的困惑是?学习过程教学流程及时间教师行为(活动)学生行为(活动)教学笔记创设情境揭示课题(4分钟)出示目标交流预习(8分钟)引导探究小组展示(12分钟)1.什么是单项式?2.什么是单项式的系数?3.生么是单项式的次数?1.投影仪出示本节课的两个学习目标:(1)说出多项式的概念和相关术语(2)能解决和多项式有关的实际问题2.检查学生的预习情况1.思考:v+2.5,v-2.5,3x+5y+2z21ab-∏R2,x2+2x+18这些式子有什么特点?2.什么是多项式?多项式的项?什么是常数项?什么是多项式的次数?什么是整式?学生思考后回答问题各小组派代表到前面展示预习笔记,集体评议各小组讨论交流后派代表到前面展示讲解,集体评议教学流程及时间教师行为(活动)学生行为(活动)教学笔记精讲点拨质疑释疑(6分钟)例题4.用式子表示圆环的面积.当R=15㎝,r=10㎝时,求圆环的面积2.你还有哪些不懂得问题?学生口述解题思路生质疑问难,互帮互学小结提升1.说说本节课你有那些收获?2.小组间进行自评与他评3.教师强调注意事项(3分钟)达标检测1.a,b分别表示长方形的长和宽,则长方形的周长L为(),面积为(),当a=2㎝,b=3㎝时,周长为(),面积为()2.a,b分别表示梯形的上底和下底,h表示梯形的高,则梯形的面积S=( ), 当a=2㎝,b=3㎝,h=5㎝时,S=( )3.教科书59页小练习第2题4.教科书60页第5题(11分钟)布置作业教科书第60页第6题(1分钟)板书设计2.1多项式多项式的概念多项式的相关术语例题练习学校检查记实听课意见。

人教版数学七年级上册2.1.2多项式与整式教案

人教版数学七年级上册2.1.2多项式与整式教案

《 多项式及整式》教案教学目标:(1)理解多项式、多项式的项和次数、整式的概念。

(2)会用多项式表示简单的数量关系,并根据多项式中字母的值求多项式的值。

(3)会用整式解决简单的实际问题。

(4)经历用整式表示数量关系的过程,体会用整式表示数量关系的简洁性和一般性。

教学重点:多项式、多项式的项和次数的概念,整式的概念。

教学难点:多项式的次数。

教具学具:多媒体、单项式卡片。

教学设计:一、温故知新[设计意图] 通过复习引发学生的思考,激发学生的学习兴趣,自然引入本节课的内容。

判断下列代数式是不是单项式?是单项式的并指出它的系数和次数。

学生汇报完毕,老师引出第二个代数式就是我们今天所要学习的多项式及整式新课。

二、火眼金睛 探新知[设计意图] 通过先自学,再小组探究问题,引出多项式的概念,进而通过教师的导与学生的演很自然地得出多项式的项、次数的概念,寓教于乐,增进师生的感情.使学生在学中玩,在玩中学。

1.请同们自学课本57页下面思考及58页上面三段,回答下面的问题: (1)几个单项式的和叫做_________.(2)在多项式中,每个单项式叫做___________. (3)在多项式中,不含字母的项叫做 _______.(4)多项式里,次数最高项的次数,叫做这个 _______________. (5)单项式的次数与多项式的次数有什么区别?6.32123++r b a π ① ② ③ ④ 12+x ⑤ y5- ⑥ b a 3216.32123++r b a π学生先自学,再小组交流汇报,在交流的过程中老师举例及6.32123-+r b a π对比讲解多项式、多项式的项和次数、几次项、常数项的定义。

并在过程中类比单项式讲解。

2. 跟踪训练 来巩固[设计意图] 强化对多项式的有关概念的理解和掌握。

(1)下列式子:2,,,4,2,23,222πcab m b a y xy b a --+-其中多项式有( ) A .2个 B .3个 C .4个 D .5个(2) 多项式82-+-x x 中,多项式的次数为 ,常数项为 .(3) 多项式15332-+-xy xy y x 是一个()A .四次三项式B .三次三项式C .四次四项式D .三次四项式这三道题让学生边做边揭晓答案,锻炼学生的应变能力。

人教版数学七上2.1 整式-多项式 说课稿

人教版数学七上2.1 整式-多项式 说课稿

《2.1整式(第三课时)——多项式》我说课的题目是多项式。

下面我将从教材、学情、教法、学法、教学程序、板书设计六个方面进行说明。

恳请在座的各位评委、同仁批评指正。

一.教材分析1、地位和作用本节内容选自人教版数学七年级上册第二章第一节第三课时,是初中代数的重要内容之一。

一方面本节课是建立在学生已经学习了单项式的基础上,对整式知识的进一步深入和拓展;另一方面又为学习整式加减等知识奠定了基础,是进一步研究整式的工具性内容。

鉴于这种认识,我认为本节课起着承前启后的作用。

2.教学目标知识与技能:1.掌握多项式及其项、次数、常数项的概念.2.准确地确定一个多项式的项数和次数.3.知道整式的概念.过程与方法:1.通过小组讨论、合作交流,让学生经历新知识的形成过程.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生对知识的迁移和知识结构体系的更新.情感态度与价值观:1.让学生经历数学活动,体验主动探究问题的乐趣与成功的快乐,感受数学活动充满探索与创新的机遇.3.教学重点.多项式的定义、多项式的项和次数以及常数项等概念.4.教学难点.多项式的次数.二.学情分析七年级二班学生基础不是很扎实,整体学习能力处于中等水平,学习新的知识需要较长的理解过程,再加上学生的好动性,注意力易分散,爱发表见解这一特点,容易将单项式与多项式的相关概念混淆,所以教学中教师应予以简单明白、深入浅出的分析,同时要创造条件和机会,让学生发表见解,发挥学生学习的主动性,提高学生学习的积极性。

三.教学方法鉴于以上对教材和学情的分析,本节课我将采用启发式、讨论式以及讲练结合的教学方法,带着学生去发现和探究新知识,以问题的提出、问题的解决为主线,同时在教学过程中,我将以列表格等多种形式加深学生对知识点的理解,激发学生的学习兴趣,提高教学效率并注意学生的观察能力和语言表达能力的培养。

四.学法分析1、学生采用对比学习的方法,即通过与单项式的比较学习多项式。

人教版数学七年级上册2.1整式多项式优秀教学案例

人教版数学七年级上册2.1整式多项式优秀教学案例
2.使学生认识到数学在生活中的重要作用,提高学生运用数学知识解决实际问题的意识。
3.培养学生克服困难的勇气和信心,鼓励学生在面对挑战时不断尝试、勇于探索。
4.注重培养学生的数学素养,使学生在掌握知识的同时,形成良好的数学思维习惯和价值观。
在教学过程中,教师要关注学生的知识与技能、过程与方法、情感态度与价值观三个方面的全面发展,充分调动学生的积极性,发挥学生的潜能,确保学生能够扎实掌握整式和多项式的相关知识,提高学生的数学综合运用能力。同时,教师要注重教学评价,及时了解学生的学习情况,为下一步教学提供有力依据。
在教学方法上,采用启发式教学,引导学生通过观察、分析、归纳和推理,自主探索整式和多项式的性质及运算规律。注重个体差异,鼓励学生提问和发表见解,充分调动学生的积极性,培养学生的合作意识和团队精神。
本案例将结合具体的教学目标和重难点,设计具有针对性的教学活动和作业布置,确保学生能够扎实掌握整式和多项式的相关知识,提高学生的数学综合运用能力。
二、教学目标
(一)知识与技能
1.理解整式和多项式的概念,掌握它们的定义及其基本性质。
2.学会用代数式表示实际问题中的数量关系,并能运用整式和多项式进行简单的运算。
3.掌握整式和多项式的加减、乘除运算方法,能熟练进行相关的计算。
4.学会利用因式分解、配方等方法解决简单的数学问题。
(二)过程与方法
1.通过观察、分析和归纳,引导学生自主探索整式和多项式的性质及其运算规律。
3.小组合作学习:教师组织学生进行小组讨论和合作交流,使学生在合作中发现问题、解决问题。这种教学方式不仅能够培养学生的团队协作能力和沟通能力,还能够提高学生的自主学习能力和创新精神。
4.多元化的教学评价:教师采用学生自主评价、同伴评价和教师评价相结合的方式,关注学生的全面发展。这种评价方式能够培养学生的自我监控能力和客观评价他人作品的能力,激发学生的学习动力。

人教版数学七年级上册2.1多项式教案

人教版数学七年级上册2.1多项式教案

2.1多项式教学设计比较自然。

二、探究新知15分钟1、列式表示下列问题:(1)一个数比数x的2倍小3,则这个数为__。

(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,买3个篮球、5个排球、2个足球共需要___元。

(3)如图 2.1-1,三角尺的面积为__。

(4)图2.1-2是一种所住宅的建筑平面图,这所住宅的建筑面积是___平方米。

2、讲一讲:(展示多项式概念)3、比一比:谁能准确说出多项的项、次数4、师归纳单项式与多项式统称整式让学生能够自主提出要研究的问题在生生交流、师生互动中得到结论。

师生共同概括由实际问题让学生自然而然地利用旧知识解决新问题。

三、合作探究15分钟1、下列多项式中,是四次三项式的是()A、41x-B、232232xyzxyyx+-C、432224+-zyxx D、2x y z-+2、.如果一个多项式的次数是6,那么这个多项式的任何一项的次数都()A、小于 6B、不大于 6C 、不小于6 D、大于63、.多项式422yx+中,二次项系数是()教师强调项的符号问题学生独立完成,体验成功的感觉。

通过辨识使学生加深对多项式次数的理解。

课堂小结4分钟谈谈你的收获和体会可以采用师生问答的方式或先让学生归纳,补充,然后教师补充的方式进行,主要围绕以下问题:本节课我们学了什么知识?你有什么收获?布置作业1分钟课本59页2、4、5、6题板书设计多项式一、多项式的定义例:列代数式二、整式⎩⎨⎧多项式单项式2x-3,3x+5y+2z, 分母中不含字母课件展示合作探究及训练反馈教学反思多项式是整式加减运算的基础,必须理解多项式、多项式的项、常数项、多项式的次数的概念,才能准确进行整式加减运算。

因此,本节教学采用了小组讨论、分步达标的方法进行教学,发现学生在预习这一环节中做的不好,大多数学生没有养成预习的习惯,针对这一情况,在预习这一环节上需要加强,可以充分发挥小组的作用,让小组组长带领本组组员利用自习时间预习或回家预习后由小组长检查预习情况,同时由小组组长检查预习目标的达成情况,这样长期坚持下去,使学生逐步养成自主预习的习惯。

人教版数学七年级上册2.1第3课时多项式及整式优秀教学案例

人教版数学七年级上册2.1第3课时多项式及整式优秀教学案例
人教版数学七年级上册2.1第3课时多项式及整式优秀教学案例
一、案例背景
本案例背景基于人教版数学七年级上册2.1第3课时多项式及整式的教学内容。在经过前两课时的学习后,学生已经掌握了多项式的基本概念和简单运算,但对多项式的深层次理解和灵活运用仍有所欠缺。因此,本节课的教学目标旨在让学生进一步理解多项式的性质,能够运用多项式进行实际问题的解决,并培养学生的逻辑思维能力和创新能力。
在教学过程中,我注重启发学生思考,引导学生主动探索,鼓励学生发表自己的观点,使学生在轻松愉快的氛围中掌握多项式的知识。同时,我还关注学生的个体差异,针对不同程度的学生给予适当的辅导,确保每个学生都能在课堂上得到有效的学习。
二、教学目标
(一)知识与技能
本节课的主要知识点是多项式的性质和运算。通过本节课的学习,学生需要掌握多项式的定义,了解多项式的各项、系数、次数等基本概念,并能够进行多项式的加减乘除运算。同时,学生还需要理解多项式相等的条件,并能够运用这些知识解决实际问题。
为了达到这个目标,我会在课堂上通过讲解和示例,让学生充分理解和掌握多项式的基本概念和运算规则。同时,我会设计一些具有挑战性的练习题,让学生在实践中运用所学知识,提高学生的应用能力。
(二)过程与方法
在本节课中,我采用了自主探究和合作交流的教学方法。通过生活实例的引入,激发学生的学习兴趣,引导学生主动探索多项式的性质。在学生掌握多项式的基本概念和运算规则后,我会组织学生进行合作交流,让学生在讨论中互相启发,互相学习,提高学生的思维能力和创新能力。
在教学过程中,我还会设计一些实际问题,让学生运用多项式的知识进行解决。例如,可以设计一些关于面积、体积计算的问题,让学生运用多项式进行计算。这样,学生不仅能巩固所学的知识,还能培养学生的应用能力和解决实际问题的能力。

人教版七年级数学上册2.1多项式(教案)

人教版七年级数学上册2.1多项式(教案)
-解决实际问题中,如何将现实情境转化为多项式的数学表达。
举例解释:
-解释同类项的概念,用具体例子(如2x^2和3x^3不是同类项,而2x^2时,强调不仅要合并系数,还要保持字母和指数的不变。
-通过实际应用题,如购物时计算商品价格的总和,引导学生将问题转化为多项式的形式,从而解决实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“多项式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.培养学生的数学抽象素养,使学生能够从具体问题中抽象出多项式的概念,理解多项式的性质和运算规则。
4.培养学生数学建模素养,通过解决实际问题,运用多项式表达问题中的数量关系,提高学生运用数学知识解决实际问题的能力。
5.培养学生合作交流的意识,在小组讨论和问题解决中,学会倾听、表达、交流与合作,发展团队协作能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《多项式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多个数值相加或相减的情况?”(例如购物时计算总价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索多项式的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调多项式的定义、合并同类项这两个重点。对于难点部分,我会通过具体例子和对比来帮助大家理解。
(三)实践活动(用时10分钟)

2.1整式——多项式说课稿2022-2023学年人教版七年级上册数学

2.1整式——多项式说课稿2022-2023学年人教版七年级上册数学

2.1整式——多项式说课稿(2022-2023学年人教版七年级上册数学)一、教材分析本节课是人教版七年级上册数学的第二单元第一节课,主要内容是关于整式的概念和多项式的理解。

通过本课的学习,学生将能够掌握整式的定义和多项式的特点,能够根据给定的多项式进行有关的运算和分析。

二、教学目标1.知识目标:–理解整式的定义;–了解多项式的特点;–掌握多项式的运算和分析方法。

2.能力目标:–能够根据给定的多项式进行加减乘除等基本运算;–能够在实际问题中应用多项式进行分析和解决问题。

3.情感目标:–培养学生对数学的兴趣和热爱;–培养学生的逻辑思维能力和分析问题的能力。

三、教学重难点1.教学重点:–整式的概念和定义;–多项式的特点。

2.教学难点:–多项式的运算和应用。

四、教学过程1. 导入新课通过对学生已有知识的复习,引入整式的概念。

2. 整式的定义引入整式的定义和相关概念,包括单项式和多项式。

3. 多项式的特点讲解多项式的特点,包括项的个数、次数和系数等。

4. 多项式的运算介绍多项式的加减乘除运算规则,通过例题进行演示和讲解。

5. 多项式的应用通过实际问题引入多项式的应用,如多项式的因式分解和求解问题。

6. 总结与提问对本节课的内容进行总结,并提问相关问题来巩固学生的学习成果。

五、板书设计整式——多项式- 定义:- 单项式:只有一个项的整式,形如a*x^n。

- 多项式:包含两个或多个项的整式,形如a*x^n + b*x^m + ...。

- 特点:- 项的个数:多项式的项的个数。

- 项的次数:多项式中次数最高的项的次数。

- 系数:多项式中各项的系数。

六、课堂练习1.下列哪个是整式?–A. 2x + 1–B. √2x–C. x^2 + 3y - 5–D. 5 - 2y2.计算多项式的值:5x^2 - 3xy + 2y^2,当x=2,y=-3时。

3.求多项式的和:(4x^2 - 3x + 1) + (2x^2 + 5x - 2)。

2.1多项式与整式(教案)-2023-2024学年七年级上册数学(人教版)

2.1多项式与整式(教案)-2023-2024学年七年级上册数学(人教版)
-组织课堂讨论,让学生分享解题思路,相互启发,加深理解。
4.培养学生的团队合作能力,使其在小组讨论中学会倾听、表达和协作。
-设计小组讨论活动,让学生在探讨整式问题的过程中,学会与他人合作。
-引导学生尊重他人意见,形成良好的团队合作氛围。
三、教学难点与重点
1.教学重点
-理解并掌握整式的概念,包括单项式、多项式及其加减法则。
课堂上,实践活动和小组讨论的环节进行得相当顺利。同学们积极参与,热烈讨论,这有助于他们更好地理解和应用所学的知识。不过,我也观察到个别小组在讨论过程中,有些成员参与度不高,可能是因为他们对问题还不够理解。在以后的教学中,我会尝试更加个别化的指导,鼓励每个同学都能积极参与进来。
另一个让我印象深刻的是,在学生小组讨论环节,大家对于整式在实际生活中的应用提出了很多有趣的观点和例子。这说明学生们已经能够将所学的知识应用到实际问题中,这是非常可贵的。今后,我会继续设计更多贴近生活的案例,让学生们感受到数学的实用性和趣味性。
在总结回顾环节,我询问了同学们是否有疑问,很高兴的是,他们能够提出一些深入的问题,这说明他们在课堂上进行了思考。这也提醒我,在今后的教学中,要更加注重启发式教学,鼓励学生们提问和思考。
-能够运用整式解决实际问题,建立数学模型。
-通过实际问题引入整式的应用,如计算面积、体积等。
-引导学生将现实问题转化为整式表达式,突出数学建模过程。
2.教学难点
-理解和识别同类项,进行有效的合并。
-难点在于如何指导学生识别同类项,即所含字母相同且相同字母的指数也相同的项。
-解释同类项合并的法则,如系数相加减,字母和指数不变。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品基础教育教学资料,请参考使用,祝你取得好成绩!
第3课时 多项式
1.理解多项式的概念;(重点)
2.能准确迅速地确定一个多项式的项数和次数; 3.能正确区分单项式和多项式.(重点)
一、情境导入 列代数式:
(1)长方形的长与宽分别为a 、b ,则长方形的周长是________; (2)图中阴影部分的面积为________;
(3)某班有男生x 人,女生21人,则这个班的学生一共有________人.
观察我们所列出的代数式,是我们所学过的单项式吗?若不是,它又是什么代数式? 二、合作探究
探究点一:多项式的相关概念
【类型一】 单项式、多项式与整式的识别
指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?x 2
+y 2
,-x ,
a +b
3

10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x
,a 7
.
解析:根据整式、单项式、多项式的概念和区别来进行判断. 解:
2x 2+x ,1x
的分母中含有字母,既不是单项式,也不是多项式,更不是整式. 单项式有:-x ,10,17m 2n ,a 7

多项式有:x 2
+y 2

a +b
3
,6xy +1,2x 2
-x -5;
整式有:x 2
+y 2,-x ,
a +b
3,10,6xy +1,17
m 2n ,2x 2-x -5,a 7
. 方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;
(3)单项式不含加、减运算,多项式必含加、减运算.
【类型二】 确定多项式的项数和次数
写出下列各多项式的项数和次数,并指出是几次几项式.
(1)23
x 2
-3x +5;
(2)a +b +c -d ;
(3)-a 2+a 2b +2a 2b 2
. 解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.
解:(1)23
x 2
-3x +5的项数为3,次数为2,二次三项式;
(2)a +b +c -d 的项数为4,次数为1,一次四项式;
(3)-a 2+a 2b +2a 2b 2
的项数为3,次数为4,四次三项式. 方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.
【类型三】 根据多项式的概念求字母的取值
已知-5x m +104x m -4x m y 2
是关于x 、y 的六次多项式,求m 的值,并写出该多项式. 解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.
解:由题意得m +2=6, 解得m =4,
此多项式是-5x 4+104x 4-4x 4y 2
. 方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.
【类型四】 与多项式有关的探究性问题
若关于x 的多项式-5x -mx +(n -1)x -1不含二次项和一次项,求m 、n 的值. 解析:多项式不含二次项和一次项,则二次项和一次项系数为0.
解:∵关于x 的多项式-5x 3-mx 2
+(n -1)x -1不含二次项和一次项, ∴m =0,n -1=0,则m =0,n =1.
方法总结:多项式不含哪一项,则哪一项的系数为0. 探究点二:多项式的应用
如图,某居民小区有一块宽为2a 米,长为b 米的长方形空地,为了美化环境,准
备在此空地的四个顶点处各修建一个半径为a 米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?
解析:四个角围成一个半径为a 米的圆,阴影部分面积是长方形面积减去一个圆面积.
解:花台面积和为πa 2平方米,草地面积为(2ab -πa 2
)平方米.所以需资金为[100πa 2+50(2ab -πa 2)]元.
方法总结:用式子表示实际问题的数量关系时,首先要分清语言叙述中关键词的含义,理清它们之间的数量关系和运算顺序.
三、板书设计
多项式:几个单项式的和叫做多项式.
多项式的项:多项式中的每个单项式叫做多项式的项. 常数项:不含字母的项叫做常数项.
多项式的次数:多项式里次数最高项的次数叫做多项式的次数.
整式:单项式与多项式统称整式.
这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.。

相关文档
最新文档