木材力学性能参考
巴沙木得力学参数
巴沙木得力学参数全文共四篇示例,供读者参考第一篇示例:巴沙木得力学参数是指衡量巴沙木材料物理性能的一系列参数。
巴沙木是一种贵重的硬木,主要生长在东南亚地区,因其颜色优美,质地坚硬,被广泛应用于家具制作、地板、门窗等领域。
了解巴沙木的得力学参数对于材料的选择、设计和应用具有重要意义。
下面就让我们来详细了解一下巴沙木的得力学参数。
1. 密度巴沙木的密度是衡量其质地坚硬程度和稳定性的重要参数之一。
通常,巴沙木的密度在0.6-0.9g/cm³之间,密度较高的巴沙木通常质地更加坚硬,耐磨性更强,但也更加重,密度过低的巴沙木则可能质地较为松散。
2. 抗拉强度巴沙木的抗拉强度是指在拉伸作用下材料抵抗破坏的能力。
一般来说,巴沙木的抗拉强度在80-120MPa之间,抗拉强度越高,材料的耐久性和使用寿命也越长。
6. 弹性模量巴沙木的弹性模量是指材料在受力作用下产生弹性变形的能力。
巴沙木的弹性模量通常在10-15GPa之间,弹性模量高的巴沙木具有更好的弹性变形性能和抗变形能力。
巴沙木的得力学参数是衡量其物理性能和品质的重要参考指标,只有充分了解和掌握这些参数,才能更好地选择和应用巴沙木材料。
希望通过本文的介绍,读者对巴沙木的得力学参数有了更深入的了解,能够在实际应用中更加得心应手。
【字数达到了解】。
第二篇示例:巴沙木得力学参数是指在材料力学中对巴沙木材料力学性能的参数化描述。
巴沙木是一种常见的硬木材料,具有优良的物理力学性能,因此在家具制造、建筑材料等领域广泛应用。
我们需要了解巴沙木的常见得力学参数。
巴沙木的弹性模量通常在10-14 GPa之间,抗弯强度约为120-150 MPa,抗拉强度约为80-90 MPa,抗压强度约为50-60 MPa。
这些参数可以直观地体现巴沙木的硬度、韧性和稳定性,是评价材料力学性能的重要指标。
进一步,我们需要从微观角度探讨巴沙木的力学性能。
巴沙木的组成主要包括纤维、维管元素、细胞壁等结构,这些结构在不同方向上具有不同的力学性能。
木材的力学性质
木材的力学性质主要介绍了木材力学性质的基本概念、木材的应力—应变关系;木材的正交异向弹性、木材的黏弹性、木材的塑性;木材的强度与破坏、单轴应力下木材的变形与破坏特点;基本的木材力学性能指标;影响木材力学性质的主要因素等。
木材力学是涉及木材在外力作用下的机械性质或力学性质的科学,它是木材学的一个重要组成部分。
木材力学性质是度量木材抵抗外力的能力,研究木材应力与变形有关的性质及影响因素。
木材作为一种非均质的、各向异性的天然高分子材料,许多性质都有别于其它材料,而其力学性质和更是与其它均质材料有着明显的差异。
例如,木材所有力学性质指标参数因其含水率(纤维饱和点以下)的变化而产生很大程度的改变;木材会表现出介于弹性体和非弹性体之间的黏弹性,会发生蠕变现象,并且其力学性质还会受荷载时间和环境条件的影响。
总的来说,木材的力学性质涉及面广,影响因素多,学习时需结合力学、木材构造、木材化学性质的有关知识。
木材力学性质包括应力与应变、弹性、黏弹性(塑性、蠕变)、强度(抗拉强度、抗压强度、抗弯强度、抗剪强度、扭曲强度、冲击韧性等)、硬度、抗劈力以及耐磨耗性等。
8.1 应力与应变8.1.1 应力与应变的概念8.1.1.1 应力 物体在受到外力时具有形变的趋势,其内部会产生相应的抵抗外力所致变形作用的力,成为内力,当物体处于平衡状态时,内力与外力大小相等,方向相反。
应力就是指物体在外力作用下单位面积上的内力。
当外力均匀地作用于顺纹方向的短柱状木材端面上,柱材全长的各个断面上都将受到应力,此时,单位断面面积上的木材就会产生顺纹理方向的正应力(图8-1a )。
把短柱材受压或受拉状态下产生的正应力分别称为压缩应力和拉伸应力。
当作用于物体的一对力或作用力与反作用力不在同一条作用线上,而使物体产生平行于应力作用面方向被剪切的应力,这种应力被称为剪应力(图8-1b )。
应力单位曾一度使用dyn/cm 2、kgf/cm 2等,近年来开始采用国际单位中的N/mm 2(=MPa )。
不同树种的木材物理力学性能汇编
不同树种的木材物理力学性能不同树种的木材物理力学性能包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗弯强度、抗剪强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。
树木是木材的原体,是由它本身生命生存与繁衍的整个生长过程,积累了成为不同木材的物质,直到生命自然终结,或被认为终结生命,而成为被利用的材料。
树木是木质多年生植物,通常把它分为乔木和灌木两种。
乔木是l.3米以上,只有一个直立主干的树木;灌木是直立的、具有丛生茎的树木。
我国现有木本植物约7000多种,属乔木者约占1/3以上,但是作为工业用材而供应市场的只不过1000种,常见的约300种。
树木是人类繁衍延续到今天的必要条件。
它靠空气、水和阳光存活,通过一系列化学反应,形成树木肢体的物理变化,为人类营造出了天然的乐园。
“碳”是形成木材物理力基础。
树木在生长发育过程中,形成了高度发达的营养体。
水分及营养液等流体的输运现象始终伴随着树木营养生长的生理过程。
树木由树梢沿主轴向上生长(高生长),也在土壤深处向下生长(根生长),中间的树干部分沿着径向生长。
前一年形成的树干部分到了次年不会再进行高生长。
树木从天上接受阳光的沐浴,到地下去寻觅水分,把原料从树根输送到叶片。
由叶子制造养分,将养分向下输送,供给树木生长需要。
这样,树木生长过程中,形成了非常协调完备的水分及养分的输送系统。
一株红杉(美)树高达112米,一株杏仁桉(奥)树竟高达156米,一株银杏(中)树龄达3000年,一株世界爷(美)树龄竟达7800年。
那么对于如此高大、如此年久的树木,体内各种物质(水、矿物质、可溶性碳水化合物和激素等等)是它的最外层是树皮(外皮),树皮里边一层是韧皮部(也叫内皮),经它将营养液由叶部输送到树木的其他部分(包括根在内)。
再向内一层是形成层,它的细胞不断分裂,使树木沿径向生长而不断加粗。
再往里是边材和心材,即木质部,木质部中被叫做导管的细胞组织,它将树液输送到茎和叶部。
木材材料力学特性测试与分析
木材材料力学特性测试与分析一、引言木材是一种常见的建筑材料,其在建筑、制造、家具工业和造船业中有广泛应用。
为了确保木材的质量和性能,需要对其力学特性进行测试和分析。
本文将简要介绍木材的力学特性,以及常用的测试方法和分析技术。
二、木材力学特性木材在力学方面的特性指的是其承载力、刚度和变形等方面的性能。
木材的强度和刚度受到许多因素的影响,包括木材的物种、年轮方向、含水率和温度等因素。
通常情况下,木材的强度和刚度主要通过抗弯强度、抗压强度、抗拉强度、剪切强度和应变等指标来衡量。
三、木材力学特性测试方法1. 木材弯曲测试弯曲测试是一种常用的测试方法,可用于测量木材抗弯强度和弯曲刚度。
该测试方法需要将木材放置在两个支撑点之间,并施加一个断面恒定直线负载。
此时,可以通过记录木材的挠度和应力来计算其抗弯强度和弯曲刚度。
2. 木材压缩测试压缩测试可用于测量木材抗压强度。
该测试方法需要将木材的端面放置在两个支撑点之间,并施加一个垂直于端面的直线负载。
在测试过程中,需要记录木材的应力和变形数据以计算其抗压强度。
3. 木材拉伸测试拉伸测试可用于测量木材的抗拉强度。
该测试方法需要将两个木材棒头拉伸并施加一个直线负载。
在测试过程中,需要记录木材的应力和变形数据以计算其抗拉强度。
4. 木材剪切测试剪切测试可用于测量木材剪切强度。
该测试方法需要将木材的断面放置在两个支撑点之间,并施加一个剪切负载。
在测试过程中,需要记录木材的应力和变形数据以计算其剪切强度。
四、木材力学特性分析技术1. 应力-应变关系分析应力-应变关系是描述木材力学性能的一种基本方法。
该方法可以通过实验数据计算得到,并可用于评估木材的强度和刚度。
此外,通过应力-应变关系还可以确定木材的断裂点和屈服点等关键特征点。
2. 弹性模量计算弹性模量是表征木材刚度的重要参数。
它可以通过测量木材的应变和应力来计算。
由于弹性模量受到多个因素的影响,包括木材物种、含水率和年轮方向等因素,因此需要根据不同的情况进行调整和修正。
五种家具常用木材弹性常数及力学性能参数的测定
材 的主要力 学性能指标包括压 缩强度 ( 含顺纹抗压 强
度、 横纹抗 压强度 、 局部 抗压强度 )拉伸 强度 ( 、 含顺 纹 抗拉强 度 、 横纹抗拉强度 )抗 弯强度及抗弯 弹性模 量 、 、 抗剪强度 、 曲强度 、 扭 冲击韧性 、 硬度 、 劈力等。 抗
张 帆。 李 黎, 张 立, 徐 卓
( 北京林业大 学材料科 学与技术 学院, 北京 10 8 ) 0 0 3
摘
要 :采 用电测法和三点弯曲法对 5种 家具 常用木材 的弹性 常数及主要 力学性 能参数进行 了试验测 定 , 并
根 据木材的正 交异性原理对试验 结果进行 了统计分析。对木材物理 力学性能参数测定 的试验 方法进行研 究和探
u e ห้องสมุดไป่ตู้n f r i r sc n u td usn n ee tia a u e n t o n h e on e dn to n ttsia s d i u n t ei o d ce i g a lcrc lme s r me tmeh d a d a tr e p i tb n ig meh d a d a saitc l u a ay i o ets e u t sma ea c r i gt h r or pcp icp eo o . h e tmeh dfrd tr nn h h sc l n lss f tr s l i d c od n t eo t to i rn il f t e h o h wo d T et s to o eemi igt ep y ia
Z HANG a , L , Z F n ILI HANG , XU u Li Zh o
( o ee f ae a c neadT cnl y B in oet n esy B in 00 3 C ia C l g t i s i c n eh o g, e ig rsyU i ri, e ig10 8 , hn ) l o M rlS e o j F r v t j
木材的力学性能
1.化学性质化学组成--纤维素、木质素和半纤维素是构成细胞壁的主要成分,此外还有脂肪、树脂、蛋白质、挥发油以及无机化合物等。
木材对酸碱有―定的抵抗力,对氧化性能强的酸,则抵抗力差;对强碱,会产生变色、膨胀、软化而导致强度下降。
―般液体的浸透对木材的影响较小.2.物理性质1)含水量木材中的含水量以含水率表示,指所含水的质量占干燥木材质量的百分比。
木材内部所含水分,可分为以下三种。
(1)自由水。
存在于细胞腔和细胞间隙中的水分。
自由水的得失影响木材的表观密度、保存性、燃烧性、抗腐蚀性、干燥性、渗透性.(2)吸附水.被吸附在细胞壁内细纤维间的水分。
吸附水的得失影响木材的强度和胀缩。
(3)化合水。
木材化学成分中的结合水。
对木材性能无大影响.纤维饱和点——指当木材中无自由水,仅细胞壁内充满了吸附水时的木材含水率。
树种不同,纤维饱和点随之不同,―般介于25%~35%,平均值约为30%。
纤维饱和点是木材物理力学性质发生变化的转折点.平衡含水率--木材长期处于―定温、湿度的空气中,达到相对稳定(即水分的蒸发和吸收趋于平衡)的含水率。
平衡含水率是随大气的温度和相对湿度的变化而变化的。
木材的含水率:新伐木材常在35%以上;风干木材在15%~25%;室内干燥木材在8%~15%.2)湿胀、干缩的特点当木材从潮湿状态干燥至纤维饱和点时,自由水蒸发,其尺寸不变,继续干燥时吸附水蒸发,则发生体积收缩。
反之,干燥木材吸湿时,发生体积膨胀,直至含水量达纤维饱和点为止。
继续吸湿,则不再膨胀,见图10.7.1.―般地,表观密度大的,夏材含量多的,胀缩就较大。
因木材构造不均匀,其胀缩具有方向性,同―木材,其胀缩沿弦向最大,径向次之,纤维方向最小,见图10.7.1。
这主要是受髓线的影响,其次是边材的含水量高于心材含水量。
图10.7.1含水量对松木胀缩变形的影响木材长期湿胀干缩交替,会产生翘曲开裂.因而潮湿的木材在加工或使用前应进行干燥处理,使木材的含水率达到平衡含水率,与将来使用的环境湿度相适应。
木材的力学性能参数分析整理
木材的力学性能参数分析整理木材作为一种常见的建筑材料,其力学性能参数对于工程设计和产品应用十分重要。
本文将对木材的力学性能参数进行分析整理,以帮助读者更好地了解木材的力学特性和应用。
1.弹性模量(E):弹性模量是描述材料在受力后恢复原状的能力。
对于木材而言,弹性模量可以衡量其在受到拉伸或压缩力时的变形程度。
一般来说,木材的弹性模量随着纤维方向的不同而有所变化。
纵向弹性模量较高,而横向弹性模量较低。
2.抗压强度(Fc):抗压强度是指木材在受到压力时所能承受的最大力量。
它是衡量木材抗压能力的重要指标。
抗压强度通常比抗拉强度低,且与木材的纤维方向有关。
3.抗拉强度(Ft):抗拉强度是指木材在受到拉伸力时所能承受的最大力量。
它也是评价木材力学性能的关键参数之一、抗拉强度通常比抗压强度高,并且与木材的纤维方向有关。
4.抗剪强度(Fv):抗剪强度是指木材在受到剪切力时所能承受的最大力量。
与抗压强度和抗拉强度不同,抗剪强度是以相对较小的截面积来计算的。
抗剪强度与木材纤维方向的垂直性有关。
5.单剪胶合强度(Iv):单剪胶合强度是指胶合接头在受到单向剪切力时所能承受的最大力量。
对于胶合木材而言,胶合接头的强度对整个结构的稳定性和耐久性具有重要影响。
6.密度(ρ):密度是指单位体积的木材质量。
它不仅与木材的力学性能有关,还与木材的隔热性能、声学性能和阻燃性能等方面有关。
一般来说,密度较高的木材具有较高的强度。
7.弯曲强度(Fb):弯曲强度是指木材在受到弯曲力时所能承受的最大力量。
对于梁、桁架等结构,弯曲强度是评价其承载能力的关键指标之一除了上述参数外,还有一些其他的力学性能参数也需要在实际应用中进行考虑,例如冲击强度、抗冲击性、弹性系数等。
此外,木材的性能还受到湿度、温度、木材品种和处理方式等因素的影响。
综上所述,了解木材的力学性能参数对于正确应用木材、合理设计和评估结构的稳定性和可靠性至关重要。
通过分析和整理木材的力学性能参数,可以更好地理解木材的力学特性,选择适合的木材种类和处理方法,确保木材在工程和产品应用中能够发挥最佳效果。
木材力学性能参考
contents
目录
• 木材的基本性质 • 木材的力学性能 • 木材的力学性能测试 • 木材力学性能的影响因素 • 木材力学性能的应用 • 木材力学性能的未来研究和发展
01
木材的基本性质
木材的构造
01
02
03
木纤维
木材的主要组成部分,由 管状细胞构成,具有较高 的强度和弹性。
木射线
压缩测试
总结词
压缩测试是评估木材在压缩载荷下的性 能表现,主要考察木材的抗压强度和压 缩弹性模量等参数。
VS
详细描述
在压缩测试中,试样通常被放置在两个平 行的平板之间,并在两端施加逐渐增大的 压力。通过测量试样的变形和载荷,可以 计算出木材的抗压强度和压缩弹性模量等 参数。这些参数反映了木材在承受压缩载 荷时的力学性能和稳定性。
弯曲测试
总结词
弯曲测试是评估木材在弯曲载荷下的性能表 现,主要考察木材的抗弯强度、弯曲弹性模 量和剪切模量等参数。
详细描述
在弯曲测试中,试样通常被放置在一个曲梁 上,并在两端施加逐渐增大的压力。通过测 量试样的变形和载荷,可以计算出木材的抗 弯强度、弯曲弹性模量和剪切模量等参数。 这些参数反映了木材在承受弯曲载荷时的力 学性能和稳定性。
导热性
木材的热传导系数较低, 具有良好的保温性能。
02
木材的力学性能
弹性模量
总结词
弹性模量是木材抵抗弹性变形的能力,反映了木材刚度的指 标。
详细描述
木材的弹性模量通常用弹性模量E来表示,它反映了木材在受 力时抵抗弹性变形的能力。弹性模量越大,木材的刚度越大 ,不易发生变形。
强度
总结词
强度是指木材在受到外力作用时抵抗破坏的能力。
木材力学性能参考共85页文档
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
木材力学性能参考
4有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
木材力学性质实验报告(3篇)
第1篇一、实验目的1. 了解木材的基本力学性质。
2. 掌握木材力学性质实验的基本方法和步骤。
3. 通过实验,分析影响木材力学性质的主要因素。
二、实验原理木材的力学性质主要包括强度、硬度、刚度和韧性等。
本实验通过测定木材的抗拉、抗压、抗弯和抗剪等力学性能,分析木材的力学性质及其影响因素。
三、实验材料与设备1. 实验材料:木材试件(硬木、软木、针叶木等)。
2. 实验设备:万能试验机、切割机、量具、砝码等。
四、实验步骤1. 样品准备:将木材试件切割成规定尺寸,如100mm×100mm×10mm。
2. 抗拉强度测试:a. 将试件固定在万能试验机上,确保试件平行于拉伸方向。
b. 拉伸速度设定为10mm/min。
c. 记录试件断裂时的最大拉力值。
3. 抗压强度测试:a. 将试件固定在万能试验机上,确保试件垂直于压缩方向。
b. 压缩速度设定为5mm/min。
c. 记录试件破坏时的最大压力值。
4. 抗弯强度测试:a. 将试件放置在万能试验机上,确保试件平行于弯矩方向。
b. 弯曲速度设定为10mm/min。
c. 记录试件破坏时的最大弯矩值。
5. 抗剪强度测试:a. 将试件放置在万能试验机上,确保试件平行于剪切方向。
b. 剪切速度设定为10mm/min。
c. 记录试件破坏时的最大剪切力值。
五、实验结果与分析1. 抗拉强度:硬木试件的抗拉强度最高,软木试件次之,针叶木试件最低。
2. 抗压强度:硬木试件的抗压强度最高,软木试件次之,针叶木试件最低。
3. 抗弯强度:硬木试件的抗弯强度最高,软木试件次之,针叶木试件最低。
4. 抗剪强度:硬木试件的抗剪强度最高,软木试件次之,针叶木试件最低。
六、实验结论1. 木材的力学性质与其种类、密度、含水率、木纹方向等因素密切相关。
2. 硬木试件的力学性能普遍优于软木和针叶木试件。
3. 实验结果与理论分析基本一致。
七、实验注意事项1. 实验过程中,确保试件表面平整、无损伤。
木材硬度对照表
木材硬度对照表木材硬度是木材在拉伸、压缩、剪切、抗弯曲等力学性能检测中,衡量木材强度和刚性的有效指标。
从木材硬度这个指标来看,木材的硬度可以分为硬木和软木。
硬木一般是指硬度高于一定值的木材,它们通常包括木头、梯子等;软木一般指硬度低于一定值的木材,它们通常包括木棉、羊毛、乳香等。
根据不同的木材的性质,硬度的单位有所不同,具体如下:木材硬度对照表一. 以微米(μm)为单位的硬度:木材种类度值(μm)橡木 200羊毛 15-20木棉 5-10梯子木 100乳香木 20-25红木 200以上二.以帕(P)为单位的硬度:木材种类度值(P)橡木 4羊毛 0.5-1.0木棉 0.2-0.3梯子木 2.5乳香木 0.5-1.0红木 6.1三.以千斤力(KN)为单位的硬度:木材种类度值(KN)橡木 40羊毛 2-3木棉 1-2梯子木 20乳香木 2-4红木 80总之,木材的硬度取决于它的种类、组织、结构和处理方法等因素,所以应该根据实际使用场景,选择适合自己的木材以达到最佳效果。
例如,家具制作者和建筑工木匠应该选择硬度比较高的木材,以确保结构牢固、抗压和抗拉力强,抗腐蚀能力较强;而曲艺家应该选择硬度比较低的木材,以保证制作出细腻、柔软、曲折灵活、曲艺表演稳定的木制品。
要想实现一个高质量的木制品,必须仔细考虑木材硬度,制作出更适合环境及其应用的木制品。
由于木材硬度和木材强度和剪切力、抗压力、抗弯力等力学性能控制在一定范围内都有重要的意义,木材硬度的测定和调节制备木制品,都是提高木制品品质的关键一步。
因此,在实际应用时,要根据具体的应用需求,结合木材种类和木材硬度对照表,选择木材,以保证木制品的质量和稳定性。
此外,在使用木材时,还要注意性能参数的选择,及时对木材进行改良和保养,以便在使用期限内实现木制产品的最佳效果。
木材的力学性能参数分析
木材的力学性能参数目录1.1木材的力学性质………………………………………………P32.1木材力学基础理论……………………………………………P3~ P82.1.2弹性和塑性2.1.3柔量和模量2.1.4极限荷载和破坏荷载3.1木材力学性质的特点…………………………………………P8~ P203.1.1木材的各向异性3.1.2木材的正交对称性与正交异向弹性3.1.3木材的粘弹性3.1.5木材塑性3.1.6木材的强度、韧性和破坏4.1木材的各种力学强度及其试验方法………………………P20~ P285.1木材力学性质的影响因素…………………………………P28~ P316.1木材的允许应力…………………………………………P31~ P336.1.6木材容许应力应考虑的因素7.1常用木材物理力学性能……………………………………P34~ P361.1木材的力学性质主要介绍:木材力学性质的基本概念、木材的应力—应变关系;木材的正交异向弹性、木材的黏弹性、木材的塑性;木材的强度与破坏、单轴应力下木材的变形与破坏特点;基本的木材力学性能指标;影响木材力学性质的主要因素等。
1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。
1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。
1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。
因此,木材力学性质指标有顺纹、横纹、径向、弦向之分。
1.1.4了解木材力学性质的意义:掌握木材的特性,合理选才、用材。
2.1木材力学基础理论(stress and strain)应力定义:材料在外力作用下,单位面积上产生的内力,包括压应力、拉应力、剪应力、弯应力等。
单位:N/mm2(=MPa)压缩应力:短柱材受压或受拉状态下产生的正应力称为压缩应力;压应力:σ=-P/A拉伸应:短柱材受压或受拉状态下产生的正应力称为拉伸应力;拉应力:σ=P/A剪应力:当作用于物体的一对力或作用力与反作用力不在同一条作用线上,而使物体产生平行于应力作用面方向被剪切的应力;τ=P/A Q应变定义:外力作用下,物体单位长度上的尺寸或形状的变化;应变:ε=±⊿L / L应力与应变的关系应力—应变曲线:曲线的终点M表示物体的破坏点。
松木力学参数-概述说明以及解释
松木力学参数-概述说明以及解释1.引言1.1 概述松木作为一种常见的木材材料,具有其独特的力学参数。
力学参数是描述材料在受力时的性能和行为的物理量,对于了解松木的力学性能以及使用松木制作各种结构和器具具有重要意义。
松木的力学参数包括:弹性模量、抗弯强度、抗压强度、抗拉强度等。
弹性模量是描述松木在受力时变形抵抗能力的物理量,它越大表示松木的刚性越高,即松木在受力时会有较小的变形。
抗弯强度是描述松木在承受弯曲力时的最大抵抗能力,它反映了松木的抗弯能力。
抗压强度是指松木在受到压力时所能承受的最大抵抗能力,它反映了松木的抗压能力。
抗拉强度是指松木在受到拉伸力时所能承受的最大抵抗能力,它反映了松木的抗拉能力。
了解松木的力学参数对于合理设计和使用松木材料的产品至关重要。
在各种应用领域,如建筑、家具、造船等,都需要考虑材料的力学性能。
例如,在设计家具时,需要知道材料的抗弯强度,以保证家具在受力时不容易变形或破坏。
在建筑结构设计中,需要考虑到材料的抗压强度和抗拉强度,以确保结构的稳定性和安全性。
因此,本文将重点介绍松木的力学参数,包括其弹性模量、抗弯强度、抗压强度和抗拉强度等。
通过对这些参数的了解,我们可以更好地理解松木材料的力学性能,从而更好地应用于实际工程和制造中。
同时,我们还将探讨松木力学参数的影响因素以及如何提高松木材料的力学性能。
这将有助于进一步推动松木材料在各个领域的应用与发展。
1.2 文章结构文章结构部分的内容应该包括对整篇文章的结构和内容进行介绍。
可以按照以下方式进行撰写:文章结构:本文主要包括引言、正文和结论三个部分。
引言部分主要概述了文章的背景和论文的目的;正文部分则详细阐述了关于松木的力学参数的相关内容;结论部分总结了本文的主要观点,并对未来的研究方向进行展望。
引言部分介绍了本文的研究背景和目的。
为了进一步了解松木的力学参数,本文将对其进行详细的研究和分析。
通过对松木的力学参数进行深入的探讨,可以更好地了解其力学性能和应用价值。
木材力学性能参考
(4)木材蠕变特性研究简介
➢ 木材的蠕变特性曲线是一 粘弹性曲线。
J (t )
(t ) 0
➢ 木材的蠕变变形由三个部 分组成:
第一部分 是由木材内部高度结晶的微纤丝构架而引起的 弹性变形,这种变形是瞬间完成;
(4)木材蠕变特性研究简介
第二部分是链段的伸展而 引起的延迟弹性 变形,这种变形 是随时间而变化 的;
值约为0.7,针叶树材该比值约为0.78,软阔叶树材为0.70,硬阔 叶树材为0.66。针叶树材具有较高比例极限的原因是,它的构造较 单纯且有规律;硬阔叶树环孔材因构造不均一,使这一比值最低。
(2)顺纹抗压强度试样破坏的形状
根据试样破坏面的状态,顺纹抗压试样的破坏 可分为以下六种形状:压缩、楔形劈裂、剪切、 劈裂、压缩与顺纹剪切和压披,
学习木材力学性质的意义
—— 掌握木材的特性,合理选才、用材。
学习难点
—— 木材力学性质基本概念的理解、木材力学性
质特点及其影响因素。 本章重点
—— 掌握木材主要力学性质的种类、受力方式及 其测定方法。
—— 木材允许应力的确定。
6.1 木材力学基础理论与特点 6.1.1 应力与应变 6.1.1.1 应力
6.1. 3 刚度、脆性、韧性和塑性
(1)刚度——材料抵抗变形的能力 木材具有较高的刚度-密度比,故
可用于建筑材料。
(2)脆性——材料在破坏之前无明显变形的 性质。
➢ 木材的脆性与树种、生长环境、遗传、生长 应力、缺陷和腐朽有关。
➢ 脆性大的木材,一 般质量较轻,纤维 素的含量低。
➢ 生长轮特别宽的针叶树材及生长轮特别窄的 阔叶树材易形成脆性木材。
5.1.5.2 多孔性
木材主要是细胞组成,微观构造上横切面所观 察到细胞断面为孔眼;径切面、弦切面上为中 空管状,及细胞壁上纹孔等;宏观构造上,导 管分子孔状结构等。
木材的力学性能参数分析整理
木材的力学性能参1.1木材的力学性质......................................... P32.1木材力学基础理论....................................... P3~ P82.1.1应力与应变2.1.2弹性和塑性2. 1 .3柔量和模量2. 1 .4极限荷载和破坏荷载3.1木材力学性质的特点........................................ P8~ P20 3.1.1木材的各向异性3.1.2木材的正交对称性与正交异向弹性3.1.3木材的粘弹性3.1.4木材的松弛3.1.5木材塑性3.1.6木材的强度、韧性和破坏3.1.7单轴应力下木材的变形与破坏特点4.1木材的各种力学强度及其试验方法P20~ P284.1.1力学性质的种类5.1木材力学性质的影响因素.................................. P28~ P31 5.1.1木材密度的影响5.1.2含水率的影响5.1.3温度的影响5.1.4木材的长期荷载5.1.5纹理方向及超微构造的影响5.1.6缺陷的影响6.1木材的允许应力....................................... P31~ P33 6.1.1木材强度的变异6.1.2荷载的持久性6.1.3木材缺陷对强度的影响6.1.4构件干燥缺陷的影响6.1.5荷载偏差的折减6.1.6木材容许应力应考虑的因素7.1常用木材物理力学性能.................................... P34~ P361.1木材的力学性质主要介绍:木材力学性质的基本概念、木材的应力一应变关系;木材的正交异向弹性、木材的黏弹性、木材的塑性;木材的强度与破坏、单轴应力下木材的变形与破坏特点;基本的木材力学性能指标;影响木材力学性质的主要因素等。
1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。
建筑构件受力计算各种参数
一、材料的力学性能参数木材的力学性能参数:弹性模量E=9000N/mm2,抗弯强度f m=13.00N/mm2,抗剪强度f v=1.400N/mm2钢材的力学性能参数:弹性模量E=20600N/mm2,抗弯强度f m=205.00N/mm2,抗剪强度f v=120.00N/mm2二、荷载标准值计算:1、模板及支架自重标准值:每平米平板模板及小楞的重量:0.3kN/m2每平米楼板模板重量(包括梁模板):0.5 kN/m2每平米楼板模板及其支架重量(层高4m以下):0.75 kN/m22、新浇混凝土自重标准值:24kN/m33、钢筋自重标准值:楼板1.1 kN/m2,梁1.5 kN/m24、施工人员及设备荷载标准值:计算模板及支撑小楞结构构件时,对均布荷载取2.5 kN/m2,另以集中荷载进行验算,取二者弯矩值较大者采用计算直接支撑小楞结构构件时,均布活荷载取1.5 kN/m2计算支架立柱及其它结构构件时,均布活荷载取1.0 kN/m25、振捣混凝土产生的荷载:水平模板可采用2.0 kN/m2,竖向模板可采用4.0 kN/m26、新浇混凝土侧压力:F1=0.22c ·tο·β1β2V0.5F2=γc·H (此公式类似于计算水压力)F:新浇混凝土对模板的最大侧压力(KN/㎡)γc:新浇混凝土的重力密度(KN/m³)(一般取24kn/m3)t0:新浇混凝土的初凝时间(h),可按实测确定。
当缺乏试验资料时,可采用t=200/(T+15)计算T:混凝土的入模温度,一般取20~30度。
H:混凝土侧压力计算位置至新浇筑混凝土顶面时的高度(m)β1:外加剂影响修正系数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2β2:混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时取1.15v:混凝土浇筑速度,一般取2.5米/小时F1、F2取小值有效压头高度:混凝土侧压力设计值/混凝土容重:h=F/γ c7、倾倒混凝土产生的荷载标准值:用导管输出砼时取2.0 kN/m2三、荷载设计值计算:四:模板及其支架荷载组合计算:五、相关参数计算公式截面抵抗抗拒W=bh2/6,(bh为截面长宽:b与受力方向垂直边长,h与受力方向相同边长)截面惯性矩I= bh3/12,(bh为截面长宽:b与受力方向垂直边长,h与受力方向相同边长)1、抗弯强度验算单跨简支梁均布荷载弯矩计算公式:M= ql2(q均布荷载,l梁长度)连续简支梁均布荷载弯矩计算公式:M max=K M ql2(K M弯矩系数,可通过查表获得)抗弯强度σ= M max/W2、抗剪强度验算剪力最大值:V max=K v ql,( K v为抗剪系数可通过查表获得,q为均布荷载,l为梁长度,)抗剪强度τ=3/2*(V max /bh),(b截面宽度,h截面厚度)3、挠度验算最大挠度值υmax=Kυql4/(100EI),( Kυ挠度系数,q作用在模板上的侧压力线荷载,l计算跨度(竖楞间距)) 最大容许挠度值υ=L/250,( υmax必须小于等于υ)六、柱箍受力计算1、柱箍所受最大集中荷载计算公式:P=(1.2*q1*0.9+1.4*q2*0.9)*l*1/(n-1)q1:新浇混凝土侧压力标准值,q2:倾倒混凝土产生的荷载,l:集中荷载最大间距(即竖楞最大间距),n:计算简图跨数,0.9为荷载折减系数。
木材力学性质
力学模型
,
数学模型
根据流变学理论,其任一瞬时的蠕变柔量J(t)为:
J (t ) J 0
t
0
,
J i (1 e
i 1
n
t / zi
)
5.1.5 木材力学性质的特点
5.1.5.1 木材性质的层次性 针叶材阔叶树层次状明显,木材横切面上可以 见到致密的晚材与组织疏松的早材构成年轮而 成同心园状。径切面上早晚材交替为平行的条 纹;弦切面上则交替为“V”形花纹;木材力学 性能各轮多少有点差异。
木材顺纹抗拉力学试样及其受力方向 试验时采用附有自动对直和拉紧夹具的试验机进行,试验以均匀速度加荷,在 1.5-2.0分钟内使试样破坏。顺纹抗拉强度按下式计算。 σw=P/a.b 式中:P——最大荷载,N; a,b一试样工作部位横断面(cm2); W一试验时的木材含水率(%)。
5.2.1.2 横纹抗拉强度
5.2.1 木材的抗拉强度
木材顺纹抗拉强度,是指木材沿纹理方向承受拉力荷载 的最大能力。木材的顺纹抗拉强度较大,各种木材平均 约为117.7-147.1MPa,为顺纹抗压强度的2-3倍。 木材在使用中很少出现因被拉断而破坏。
木材顺纹拉伸破坏主要是纵向撕裂粗微纤丝和微纤丝间 的剪切。微纤丝纵向的C-C、C-O键结合非常牢固,所 以顺拉破坏时的变形很小,通常应变值小于1%~3%, 而强度值却很高。
应力:分布内力的集度(N/m2) 应力的基本类型:拉应力、压应力、剪应力
拉应力
P
P
σ=P/A
压应力
P P
σ=-P/A
剪应力
P P P
P
τ=P/AQ
6.1.1.2
P
应变
L ⊿L
椴木原木的木材力学性能与应用价值分析
椴木原木的木材力学性能与应用价值分析椴木,学名Tilia amurensis,是一种常见的木材资源,广泛分布于东亚地区。
椴木原木具有很高的经济和生态价值,但其木材力学性能与应用价值的分析对于科学管理和合理利用椴木资源至关重要。
本文将对椴木原木的木材力学性能以及在各个领域中的应用价值进行详细的分析。
首先,我们来分析椴木原木的木材力学性能。
椴木的木材密度较低,一般在0.38-0.52 g/cm³之间,使得其重量轻、易加工。
然而,由于椴木的材质较为柔软,其硬度相对较低,容易受到机械划伤和压痕等损伤。
此外,椴木的耐久性较差,易受腐朽菌和昆虫侵蚀,因此需要经过适当的防腐处理以延长使用寿命。
然而,椴木具有较好的韧性和抗震性能,适用于一些对抗震要求较高的建筑结构。
其次,我们来探讨椴木原木在不同领域中的应用价值。
由于椴木原木的特性,椴木被广泛应用于家具制作和室内装修领域。
椴木具有轻质、均匀的质地和较好的加工性,使得其成为制作家具和木制品的理想原料。
椴木家具外观优美、色泽淡雅,深受消费者的喜爱。
此外,椴木还被广泛用于室内地板和墙板等装修材料的制作。
除了家具和室内装修,椴木原木还在建筑和造船领域有着重要的应用价值。
由于椴木具有抗震性能较好的特点,它在一些建筑结构中得到了应用。
椴木的韧性和抗张强度使其成为制作建筑桁架和横梁的理想材料。
此外,椴木还常用于制作船舶的龙骨和船板等结构件,因其轻巧和耐久性能能有效减少船舶的自重,提高船舶的载荷能力。
此外,在纸浆和纸张工业中,椴木原木也具有一定的应用价值。
椴木的纤维特性使其成为制作高品质纸浆的理想原料之一。
椴木纸浆制作的纸张具有较好的质地和光滑度,广泛用于制作书籍、杂志和包装材料等。
除了以上提到的领域,椴木原木还可以用于生态修复和环保产业中。
椴木树种具有较快的生长速度,可以帮助恢复退化的森林生态系统。
此外,椴木原木在纤维板和木质颗粒板等人造板材的制造中也有广泛应用,并且可以提高木材的利用率,减少大面积采伐的需求,符合可持续发展的要求。
常用木材物理力学性能
15.0
III
II,III
II,III
II,III
II,III
秋枫
15.0
III
II,III
II,III
II,III
IV
青冈
15.0
IV
III,IV
IV
V
IV,V
水青 冈
15.0
IV
III
III
IV
III
麻栎
15.0
IV
III,IV
III,IV
III-V
IV
白栎
15.0
IV
III
III,IV
IV
III
杯裂 香
15.0
IV,V
III,IV
IV
V
II,IV
IV
双翅 龙脑 香
15.0
III,IV
III,V
III,V
III,IV
III
IV,V
I,III
III,I V
龙脑 香
15.0
IV
III
II
IV
IV
V
III,V
IV
低垂 坡垒
15.0
V
II
II,III
III,IV
III
V
IV,V
渐尖 叶坡 垒
15.0
端面硬度/N
径向
弦 向
肉豆 蔻
15.0
II,III
II
II
II
II
II
III
III
羽叶 番龙 眼
15.0
III
IV
III
III
IV
IV
子京 木
木材的抗风性能和抗弯曲能力
木结构建筑的发展趋势
环保性:木结构建筑更加环保,符合可 持续发展理念
抗震性能:木结构建筑具有良好的抗震 性能,能够减少地震灾害的影响
节能性:木结构建筑具有良好的保温隔 热性能,能够降低能耗
舒适性:木结构建筑具有良好的透气性 和吸湿性,能够提高居住舒适度
美观性:木结构建筑具有独特的自然美 感,能够满足人们对美的追求
木材在景观绿化中的应用
木材在景观绿化中的优势:自然美观,环保可再生,易于加工和安装 木材在景观绿化中的用途:制作花架、凉亭、座椅、围栏等 木材在景观绿化中的设计原则:遵循自然规律,注重生态平衡,体现地域特色 木材在景观绿化中的维护:定期检查,及时处理损坏部分,确保安全使用
木材在景观设计中的发展趋势
抗冲击能力:木材抵 抗冲击载荷的能力
抗扭转能力:木材抵 抗扭转变形的能力
抗弯曲能力的评估指标
木材的弹性模 量:衡量木材 抵抗弯曲变形
的能力
木材的剪切模 量:衡量木材 抵抗剪切变形
的能力
木材的抗拉强 度:衡量木材 抵抗拉伸变形
的能力
木材的抗压强 度:衡量木材 抵抗压缩变形
的能力
木材的抗剪强 度:衡量木材 抵抗剪切变形
控制木材含水率:保持木材含水率在合理范围内,避免木材因含水率过高 或过低而弯曲变形
采用合理的加工工艺:在加工过程中,采用合理的加工工艺,如干燥、热 处理等,以提高木材的抗弯曲能力
采用结构设计:在设计过程中,采用合理的结构设计,如增加支撑、加强 连接等,以提高木材的抗弯曲能力
Part Four
木材在建筑结构中 的应用
撑、加强连接等
采用防腐处理:采用防腐处 理,提高木材的耐久性,增
强抗风性能
Part Three
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
木材属于非完全弹性材料,仅在一定范围内具有 弹性,超过此范围后,木材即产生塑性变形。
木材的塑性与树种、树龄、温度、含水率有关。 一般地,木材的塑性随温度及含水率的升高而增 大。(木材的主要成分)
木材塑性的工程应用——
6.1.4 木材的粘弹性 6.1.4.1 弹性固体与粘性流体的变形特性
(1)弹性固体 具有确定的形状,变形只与外力有关,与
时间无关。卸除外力后,变形消失,恢复原形。
(2)粘性流体
无确定的形状,取决于容器。变形除与外力有 关外还与时间有关,产生不可逆的流动变形。 6.1.4.2 木材的粘弹性
木材为生物高分子材料,具有弹性固体和粘性流 体的特性。同时具有弹性和粘性两种不同机制的变形。 体现着弹性固体和流体的综合特性。木材的这种特性 称为木材的粘弹性。如蠕变及松弛。
有蠕变必有松弛, 反之亦然。
蠕变及松弛与木材的树种 (密度)有关,还与温度 及含水率有关。
(3)蠕变与松弛对工程的影响
(4)木材蠕变特性研究简介
➢ 木材的蠕变特性曲线是一 粘弹性曲线。
J (t )
(t ) 0
➢ 木材的蠕变变形由三个部 分组成:
第一部分 是由木材内部高度结晶的微纤丝构架而引起的 弹性变形,这种变形是瞬间完成;
5.1.5.3 木材力学性质各向异性
前述木材物理性质(干缩性、热、电、声学等)构造性质各向异性, 同样木材力学性质亦存在着各向异性。木材大多数细胞轴向排列,仅 少量木射线径向排列。木材为中空的管状细胞组成,其各个方向施加 外力,木材破坏时产生的极限应力不同。例如顺纹抗拉强度可达 120.0-150.0Mpa,而横纹抗拉强度仅3.0-5.0Mpa(C-H,H-O), 这主要与其组成分子的价键不同所致。轴向纤维素链状分子是以C-C、 C-O键连接,而横向纤维素链状分子是以C-H、H-O连接,二者价键 的能量差异很大。
质特点及其影响因素。 本章重点
—— 掌握木材主要力学性质的种类、受力方式及 其测定方法。
—— 木材允许应力的确定。
6.1 木材力学基础理论与特点 6.1.1 应力与应变 6.1.1.1 应力
应力:分布内力的集度(N/m2) 应力的基本类型:拉应力、压应力、剪应力
拉应力
P
σ=P/A
P
压应力
σ=-P/A
(4)木材蠕变特性研究简介
第二部分是链段的伸展而 引起的延迟弹性 变形,这种变形 是随时间而变化 的;
第三部分是高分子的相 互滑移引起的 粘性流动。
力学模型
,
数学模型
根据流变学理论,其任一瞬时的蠕变柔量J(t)为:Fra bibliotekJ (t)
J0
t
0
n i 1
J i (1 et / zi )
,
5.1.5 木材力学性质的特点
5.1.5.4 木材的亲湿性
前述纤维饱和点是材性变化转折点,木材含水 率在纤维饱和点以下时,如木材中纤维素和半 纤维素分子上游离羟基吸收空气中水分子,会 使木材体积、密度发生变化,从而导致木材强 度发生变化。
5.1.5.5 木材力学性质变异性
不同树种,木材力学性质不同。同一树种,不同 部位不同力学性质不同.同一树种,生长条件不同 力学性质不同;同时木材各种缺隙如节子,纹 理、腐朽等都会影响木材力学性能。
(1)木材蠕变 木材蠕变——木材在恒应力下其变形随时间的增加 而增大的现象。 木材蠕变过程的三种变形:
➢ 瞬时弹性变形(服从胡克定理) ➢ 弹性滞后变形(粘弹性)纤维素分
子链的卷曲或伸展所致。
➢ 塑性变形(塑性)纤维素分子链间的相对滑动所致。
(2)木材松弛现象
木材松弛——木材在恒应变下应力随时间的增长 而减小的现象。
6.1. 2 比例极限、弹性变形、永久变形
(1)比例极限(σP) (比例极限工程意义)
实验表明: 木材抗压比例 极限σP 比抗 拉时小得多。
(2)弹性变形 (3)永久变形
6.1. 3 刚度、脆性、韧性和塑性
(1)刚度——材料抵抗变形的能力 木材具有较高的刚度-密度比,故
可用于建筑材料。
(2)脆性——材料在破坏之前无明显变形的 性质。
5.1.5.1 木材性质的层次性 针叶材阔叶树层次状明显,木材横切面上可以
见到致密的晚材与组织疏松的早材构成年轮而 成同心园状。径切面上早晚材交替为平行的条 纹;弦切面上则交替为“V”形花纹;木材力学 性能各轮多少有点差异。
5.1.5.2 多孔性
木材主要是细胞组成,微观构造上横切面所观 察到细胞断面为孔眼;径切面、弦切面上为中 空管状,及细胞壁上纹孔等;宏观构造上,导 管分子孔状结构等。
5.2 木材主要力学性质测定原理与方法
木材力学性质研究,适及到力学种类、受力方 向、静力荷载与动力荷载以及加工工艺等。木 材的强度象其它材料一样,可分为抗拉、抗压、 抗剪、抗弯、抗扭、抗劈、耐磨性、抗冲击和 硬度等。木材是非均质性的各向异性材料,其 纵向、径向和弦向三个方向力学强度具有明显 的差异。木材主要力学性质的测定主要采用静 力荷载进行。
➢ 木材的脆性与树种、生长环境、遗传、生长 应力、缺陷和腐朽有关。
➢ 脆性大的木材,一 般质量较轻,纤维 素的含量低。
➢ 生长轮特别宽的针叶树材及生长轮特别窄的 阔叶树材易形成脆性木材。
(3)韧性——材料抵抗冲击的能力(KJ/m2)
韧性大的木材抗冲击能力强,抗劈性也强。 所以工程中用木材的抗冲击性和抗劈性来表示木 材的韧性。
木材力学性质的各向异性 (材料力学的基本假设)
—— 与一般钢材、混凝土及石材等材料不同,木材属生物 材料,其构造的各向异性导致其力学性质的各向异性。 因此,木材力学性质指标有顺纹、横纹、径向、弦向 之分。
学习木材力学性质的意义
—— 掌握木材的特性,合理选才、用材。
学习难点
—— 木材力学性质基本概念的理解、木材力学性
剪应力 P τ=P/AQ
P
P
P
P P
6.1.1.2 应变
ε=±⊿L / L
6.1.1.3 应力、应变 的关系
在弹性范围内,有
σ∝ε
P ⊿L L
引入的比例常数 E
σ ε = E (胡克定理)
式中:E ——拉压弹性模量,与材料有关,由 实验获得,是材料的刚性指标。
实验表明: 木材的抗压、抗拉及抗弯时的 E 值 大 致相等。