旋转知识点总结与练习

合集下载

第二十三章旋转知识点总结,经典例题,单元测试

第二十三章旋转知识点总结,经典例题,单元测试

e an dAl l t h i ng si nt he i rb ei n gare go od fo r第二十三章旋转知识点总结,经典例题,单元测试:1.旋转:把一个平面图形绕着平面内某一点0转动一个角度,就叫做图形的旋转。

点0叫做旋转中心,旋动的角叫做旋转角。

旋转方向:顺时针和逆时针。

2.旋转的特征:(旋转不改变图形的大小和方向)(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角都等于旋转角。

(3)旋转前、后的图形全等。

3.旋转对称图形:一个图形绕着某一动点转动一定的角度后能与自身完全重合,这种图形称为旋转对称图形,绕着转动的这一点,称为旋转中心。

注:结合旋转对称图形的定义知:正三角形绕其中心旋转1200后能与自身完全重合,故正三角形是旋转对称图形;正方形绕其对角线的交点(旋转中心)旋转900后能与自身完全重合,故正方形是旋转对称图形。

一般的正n (n ≥3)变形是旋转对称图形,那么最少旋转时,能与自身完全重合。

4.设计旋转对称图形:(1)确定旋转中心、旋转角度和旋转方向;这是旋转的三要素。

(2)确定图形中的关键点;(3)将这些关键点绕旋转中心绕指定方向旋转指定的角度。

(4)顺次连接新关键点,得到所求图形。

旋转的定义:【例1】如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF,在这个旋转过程中: 1.旋转中心是什么?旋转角是什么?2.经过旋转,点A 、B 分别移动到什么位置?【例2】如图所示,⊿ABC 和⊿ADE 都是等腰直角三角形,∠ACB 和∠AED 都是旋转对称图形:【例1】如图所示,它由哪个旋转得到的?旋转中心是哪里?旋转了多少度?旋转作图:【例1】请画出⊿ABCA.旋转角不变,改变旋转中心以下所示图形,四边形ABCD分别为O、O为中心,旋转角都为at i t he i rb ei n ga re go 因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美2】如图,正方形网格中,△ABC 为格点三角形(顶点都是格点)11AB C △.(1)在正方形网格中,作出11AB C ;(不要求写作法)dooge.如图,以点为为旋转中心,将∠1nisgnihfo rs o m ABC ∆A 050'''C B A ∆0'33=∠B。

球类旋转知识点总结归纳

球类旋转知识点总结归纳

球类旋转知识点总结归纳一、篮球旋转1. 基本动作篮球旋转是指运动员以一定速度和力量向外侧或内侧旋转球的动作。

在进行篮球旋转动作时,要注意手掌的用力和运动的协调,以保证球的旋转和控制。

2. 技巧要领(1)手部动作:双手持球,一个手指向外侧,一个手指向内侧,然后用手腕和手臂的力量进行旋转动作;(2)身体协调:在旋转的同时,身体要配合动作,保持平衡和稳定;(3)目标控制:在进行篮球旋转时,要根据目标位置和力度,调整手法和力度,以确保球的发出和控制。

3. 训练方法(1)基本功训练:通过持球旋转、站立旋转、移动旋转等基础训练,提高手部力量和协调性;(2)实战模拟:通过模拟比赛场景,进行旋转球传递、投篮等训练,增强技术应用能力;(3)专项训练:针对不同位置运动员的特点和需求,设计不同的旋转训练课程,提高技术水平。

二、足球旋转1. 基本动作足球旋转是足球运动中常见的技术动作,主要是指运动员以一定速度和力量,通过脚部动作使球产生旋转,并控制球的方向和力度。

2. 技巧要领(1)脚部动作:通过踢球脚的内侧或外侧,利用足部力量和脚踝的灵活性,使球产生旋转;(2)身体协调:在进行足球旋转时,要保持身体平衡和稳定,以便更好地控制球的方向和力度;(3)目标控制:根据场地情况和比赛需求,调整脚法和力度,确保球的旋转和传递效果。

3. 训练方法(1)基本功训练:通过脚法训练、传球训练等基础训练,提高脚部力量和灵活性;(2)比赛模拟:通过模拟比赛场景,进行足球旋转传递、射门等训练,增强技术应用能力;(3)专项训练:根据不同位置和角色的需要,设计不同的旋转训练课程,提高技术水平。

三、排球旋转1. 基本动作排球旋转是排球运动中常见的技术动作,主要是指运动员以一定速度和力量,通过手部动作使球产生旋转,并控制球的方向和力度。

2. 技巧要领(1)手部动作:通过手腕和手臂的力量,使球产生旋转,控制球的方向和力度;(2)身体协调:在进行排球旋转时,要保持身体平衡和灵活性,保证旋转动作的协调和稳定;(3)目标控制:根据球场情况和比赛需求,调整手法和力度,确保球的旋转和传递效果。

最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习

最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习

第二十三章—旋转一、旋转变换1、旋转的定义把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。

点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P',那么这两个点叫做这个旋转的对应点。

2、旋转的性质(1)对应点到旋转中心的距离相等。

(旋转中心就是各对应点所连线段的垂直平分线的交点。

)(2)对应点与旋转中心所连线段的夹角等于旋转角。

(3)旋转前、后的图形全等。

3、作旋转后的图形的一般步骤(1)明确三个条件:旋转中心,旋转方向,旋转角度;(2)确定关键点,作出关键点旋转后的对应点;(3)顺次连结。

4、欣赏较复杂旋转图形图形是由什么基本图形,以哪个点为中心,按哪个方向(顺时针或逆时针)旋转多少度,连续旋转几次,便得到美丽的图案。

5、有关图形旋转的一些计算题和证明题例题练习1.将叶片图案旋转180°后,得到的图形是( )2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于()A.60°B.105°C.120°D.135°3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是()A.50°B.60°C.70°D.80°4.数学来源于生活,下列生活中的运动属于旋转的是 ( )A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输东西5.如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是 ( )6.如图,在△ABC中,AB=AC,∠ABC=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC.其中正确的为( )A.②③B.②③④C.①②③D.①②③④7.如图,将△ABC绕点A顺时针旋转得到△ADE,且点D恰好在AC上,∠BAE=∠CDE=136°,则∠C的度数是()8.如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.(1)求证:△FAC≌△BAE;(2)图中可以通过旋转△BAE而得到△FAC,请你说出旋转中心、旋转方向和旋转角的度数.9.如图,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE 绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,连接EN,作FG⊥BC交BC的延长线于点G.(1)求证:BE=CG;(2)若BE=2,DN=3,求EN的长.二、中心对称图形1、中心对称的定义把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。

初中几何旋转知识点总结

初中几何旋转知识点总结

初中几何旋转知识点总结一、基本概念1. 旋转的基本概念旋转是一种平移,比如将一张纸围绕桌子中心旋转,不移动位置但是角度改变。

可以定义一个点O为旋转中心,角度为θ,则旋转变换R(O,θ)将点P绕点O旋转θ度。

2. 旋转的表示方法通常用旋转中心和旋转的角度来表示一个旋转变换,如R(O,θ)表示以点O为旋转中心,按照角度θ进行旋转变换。

3. 旋转的方向根据旋转的角度正负可以表示旋转的方向,当角度为正时,表示顺时针旋转;当角度为负时,表示逆时针旋转。

二、旋转的性质1. 旋转中心的不变性对于任意一个固定的点P,在平面上做旋转变换后,点P相对于旋转中心O的距离不变,即OP'=OP。

2. 旋转中心的互易性两点围绕各自为中心的旋转之后,它们的连接线也围绕旋转后的两个点为中心进行旋转。

3. 旋转的对称性对于一个平面图形,绕着一个点做旋转变换之后,原来的平面图形与旋转后的图形具有对称性。

4. 旋转的组合性对于两个旋转变换R(O1,θ1)和R(O2,θ2),它们的组合旋转变换是R(O1,θ1) ◦R(O2,θ2)=R(O1O2,θ1+θ2),即先以O2为中心旋转θ2度,再以O1为中心旋转θ1度,等效于以点O1O2为中心旋转θ1+θ2度。

三、旋转的定理1. 旋转角度的性质(1)相等角度的旋转等效于一次旋转;(2)逆时针旋转θ度等效于顺时针旋转360-θ度;(3)旋转360度等效于不旋转。

2. 旋转的运动规律旋转的运动规律由旋转角度的规律和旋转方向的规律组成,它描述了一个点或者平面图形在旋转中的变化规律。

3. 旋转的应用(1)旋转的应用:如地球自转产生了昼夜交替、太阳绕地球公转产生了四季交替等;(2)旋转对称性:通过旋转对称性,可以简化问题的解决和推理过程。

四、常见问题解析1. 旋转的基本操作(1)绕平面上任一点旋转θ度的变换,可以用旋转矩阵R来表示,即对任意点(A, B),有(A', B') = R(A, B)。

第二十三章旋转知识点总结,经典例题,单元测试

第二十三章旋转知识点总结,经典例题,单元测试

第二十三章旋转知识点总结,经典例题,单元测试:1.旋转:把一个平面图形绕着平面内某一点0转动一个角度,就叫做图形的旋转。

点0叫做旋转中心,旋动的角叫做旋转角。

旋转方向:顺时针和逆时针。

2.旋转的特征:(旋转不改变图形的大小和方向)(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角都等于旋转角。

(3)旋转前、后的图形全等。

3.旋转对称图形:一个图形绕着某一动点转动一定的角度后能与自身完全重合,这种图形称为旋转对称图形,绕着转动的这一点,称为旋转中心。

注:结合旋转对称图形的定义知:正三角形绕其中心旋转1200后能与自身完全重合,故正三角形是旋转对称图形;正方形绕其对角线的交点(旋转中心)旋转900后能与自身完全重合,故正方形是旋转对称图形。

一般的正n(n≥3)变形是旋转对称图形,那么最少旋转时,能与自身完全重合。

4.设计旋转对称图形:(1)确定旋转中心、旋转角度和旋转方向;这是旋转的三要素。

(2)确定图形中的关键点;(3)将这些关键点绕旋转中心绕指定方向旋转指定的角度。

(4)顺次连接新关键点,得到所求图形。

旋转的定义:【例1】如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:1.旋转中心是什么?旋转角是什么?2.经过旋转,点A、B分别移动到什么位置?【例2】如图所示,⊿ABC 和⊿ADE 都是等腰直角三角形,∠ACB 和∠AED 都是直角,点C 在AD 上,如果⊿ABC 经旋转后能与⊿ADE 重合,那么哪一点是旋转中心?旋转角度是多少?并指出对应点。

CBDEAM DBC EAN练一练:如图所示,⊿ABC 是等腰三角形,∠ACB=900,D 是AB 边上一点,⊿CBD 经逆时针旋转后到达⊿CAE 的位置,则旋转中心是 ,旋转角度是 ,点B 的对应点是 ,点D 的对应点是 ,线段CB 的对应线段是 ,线段CD 的对应线段是 ,∠CBD 的对应角是 ,如果点M 是线段BC 的中点,点N 是线段AC 的中点,那么经过上述旋转之后,点M 旋转到了 。

初中旋转知识点归纳总结

初中旋转知识点归纳总结

初中旋转知识点归纳总结一、旋转概念1. 旋转的定义旋转是物体围绕某一固定轴线或固定点,按照一定规律旋转。

在数学中,旋转通常是指平面内或空间内一个点围绕一个中心点旋转。

2. 旋转的要素旋转有固定轴线或固定点、旋转方向以及旋转的角度等要素。

3. 旋转的表现形式旋转可以通过旋转图形、旋转坐标轴等形式来表现。

4. 旋转的应用旋转在日常生活中有着广泛的应用,比如舞蹈中的旋转动作、工程中的旋转零件等。

二、旋转的基本性质1. 旋转的不变性旋转操作不改变原图形的大小和形状,这是旋转的基本性质之一。

2. 旋转的对称性旋转是一种对称操作,旋转后的图形与原图形是对称的。

3. 旋转的交换律两次旋转操作是可以交换顺序的,即先旋转图形A再旋转图形B,与先旋转图形B再旋转图形A是等价的。

4. 旋转的倍数问题同一图像旋转180°、360°等倍数角度后,它们之间是等价的。

三、旋转的基本步骤1. 旋转的基本步骤a. 确定旋转中心和旋转方向。

b. 以旋转中心为原点,旋转方向为正方向,建立新的坐标系。

c. 利用坐标系的变换规则进行计算,得到旋转后的新坐标。

2. 旋转坐标点的计算公式a. 绕原点旋转:新的坐标(x', y') = (x*cosθ - y*sinθ, x*sinθ + y*cosθ)b. 绕其他点旋转:新的坐标(x', y') = (x0 + (x - x0)*cosθ - (y - y0)*sinθ, y0 + (x - x0)*sinθ + (y - y0)*cosθ)四、旋转的常见图形1. 点的旋转点围绕旋转中心旋转后,它的位置由原来的坐标经过旋转计算公式得到新的坐标。

2. 直线的旋转直线围绕旋转中心旋转后,它变成一条新的直线,其方程可以通过旋转坐标点的方法来得到。

3. 图形的旋转不规则图形围绕旋转中心旋转后,保持图形的大小和形状不变。

五、旋转的应用1. 图像处理中的旋转在图像处理中,旋转可以改变图像的朝向和方位,使得图像更加美观。

认识旋转知识点总结初中

认识旋转知识点总结初中

认识旋转知识点总结初中一、旋转的基本概念1. 旋转的定义旋转是物体围绕某一固定轴线或者某一固定点进行的运动。

在旋转运动中,物体的各个点围绕着轴线或者固定点进行圆周运动,同时保持相对位置不变。

2. 旋转的方向围绕轴线进行旋转运动的物体,其运动可以是顺时针方向或者逆时针方向。

在物理学中,通常将顺时针方向定为正向,逆时针方向定为负向。

3. 旋转的角度旋转运动可以用角度来描述。

一个完整的旋转是360度,也可以表示为2π弧度。

物体围绕轴线或者固定点所经过的角度称为旋转角。

二、旋转运动的基本定律1. 旋转惯量旋转惯量是描述物体围绕轴线旋转运动的一种物理量,它与物体的质量和几何形状有关。

物体的旋转惯量越大,其旋转运动越难以改变。

2. 角动量在旋转运动中,角动量是描述物体旋转运动的一种物理量,它等于物体的旋转惯量乘以物体围绕轴线旋转的角速度。

3. 旋转运动的动能物体进行旋转运动时,具有旋转动能。

其大小等于物体的旋转惯量乘以物体所具有的角速度的平方再除以2。

4. 角速度角速度是描述物体围绕轴线旋转运动的物理量,它等于物体围绕轴线旋转的角度变化量与时间的比值。

5. 动量定理在旋转运动中,动量定理也适用。

它可以描述物体围绕轴线旋转运动时所受到的力和物体的角加速度之间的关系。

三、旋转运动的应用1. 陀螺的原理陀螺是一种利用旋转运动原理制作的玩具。

它的工作原理是利用陀螺的高速旋转使得陀螺保持一定的平衡状态,从而能够在平滑的表面上保持稳定的旋转运动。

2. 自行车轮的稳定性自行车的骑行稳定性也与旋转运动有关。

自行车前轮的旋转运动可以使得自行车保持稳定的前进方向,而不会出现侧倾的情况。

3. 地球自转和公转运动地球自转和公转运动也是旋转运动的一种应用。

地球每天围绕自己的轴线旋转一圈,并且围绕太阳做公转运动,这些运动都是旋转运动的应用。

四、旋转运动的实验1. 旋转惯量实验通过测量不同物体的旋转惯量,可以观察到物体的形状和质量对旋转惯量的影响,从而了解旋转运动的基本定律。

旋转知识点总结

旋转知识点总结

旋转知识点总结旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O沿某个方向转动一个角度,这样的图形运动称为旋转。

定点O称为旋转中心,转动的角称为旋转角。

如果图形上的点P经过旋转到点P',那么这两个点叫做这个旋转的对应点。

如图1,线段AB绕点O顺时针转动90度得到AB',这就是旋转,点O就是旋转中心,∠BOB'和∠AOA'都是旋转角。

说明:旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略。

决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向。

知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的。

由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同。

⑵任意一对对应点与旋转中心的连线所成的角都是旋转角。

⑶对应点到旋转中心的距离相等。

⑷对应线段相等,对应角相等。

例1:如图2,D是等腰Rt△ABC内一点,BC是斜边,如果将△ADB绕点A逆时针方向旋转到△ADC的位置,则∠ADD'的度数是()。

分析:抓住旋转前后两个三角形的对应边相等、对应角相等等性质,本题就很容易解决。

由△ADC是由△ADB旋转所得,可知△ADB≌△ADC,∴AD=AD',∠DAB=∠D'AC,∵∠DAB+∠___,∴∠D'AC+∠___,∴∠ADD'=45,故选D。

评注:旋转不改变图形的大小与形状,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键。

知识点3:旋转作图1.明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角。

2.理解作图的依据:(1)旋转的定义:在平面内,将一个图形绕一个定点O沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等。

旋转图形知识点总结

旋转图形知识点总结

旋转图形知识点总结一、旋转的基本概念1. 旋转的定义:旋转是指把一个图形绕着一个固定的点旋转一定的角度,使得原图形和旋转后的图形具有相同的形状和大小。

2. 旋转的中心:旋转的中心是一个固定的点,图形绕着这个点进行旋转。

3. 旋转角度:旋转角度是指图形经过旋转后,原始图形和旋转后的图形之间的角度差。

通常用度数来表示旋转角度。

4. 旋转方向:旋转方向是指图形在旋转过程中的运动方向,可以是顺时针方向或者逆时针方向。

二、旋转图形的特点1. 旋转图形的不变性:当一个图形绕着一个固定的点进行旋转时,它的形状和大小不会发生改变,只是方向和位置发生了变化。

2. 旋转图形的对称性:旋转图形和原始图形之间具有一定的对称性,通过旋转可以得到图形的对称图形。

三、旋转的基本操作1. 如何进行旋转:要进行图形的旋转操作,首先需要确定旋转的中心点和旋转的角度,然后按照旋转规则进行操作。

2. 旋转后的图形:根据旋转的角度和方向,可以得到旋转后的图形,通常可以通过计算或者直接作图的方式来得到旋转后的图形。

四、旋转图形的相关性质和定理1. 判断旋转对称图形:通过观察图形的对称性,可以判断出一个图形是否具有旋转对称性。

2. 旋转对称图形的性质:旋转对称图形具有一些特殊的性质,比如对称轴上的点经过旋转后还是对称轴上的点。

3. 旋转变换的相关定理:旋转变换有一些相关的定理,比如旋转变换是一种保持长度和角度不变的变换。

五、常见的旋转图形1. 旋转正多边形:正多边形是一种常见的图形,在进行旋转操作时,可以通过旋转规则来得到旋转后的正多边形。

2. 旋转圆形:圆形是一种特殊的图形,通过旋转操作可以得到不同位置和方向的圆形。

3. 旋转长方形和正方形:长方形和正方形在进行旋转操作时,可以根据旋转的规则来得到旋转后的图形。

六、应用举例1. 旋转图形的应用:旋转图形不仅在几何学中有应用,还可以在实际生活中得到应用,比如在工程设计、建筑设计等领域中可以通过旋转图形来实现设计需求。

旋转的知识点总结

旋转的知识点总结

旋转的知识点总结一、旋转的基本概念1. 旋转的定义旋转是物体绕着某一点或某一条轴心进行的运动。

在旋转运动中,物体的各个部分绕着轴心或转动中心做圆周运动,同时保持相对位置不变。

2. 旋转的基本术语(1)轴心:旋转的固定点或固定轴。

(2)转动中心:物体绕轴心旋转时,轴心在物体外部的点称为转动中心。

(3)转动轴:绕着轴心旋转的直线称为转动轴。

(4)转动惯量:物体绕轴心旋转时所具有的惯性度量。

(5)角速度:描述物体旋转的速度大小和方向的物理量。

(6)角加速度:描述物体旋转的加速度大小和方向的物理量。

二、旋转的数学描述1. 转动角度旋转的大小通常用角度或弧度来描述。

角度是一种常用的角度单位,表示一个圆心角所占的平面角度为360度。

弧度是一种物理角度单位,表示一个圆心角所对应的圆弧长度等于半径的长度。

2. 旋转的向量描述在物理学中,旋转通常被描述为一个向量。

这个向量被称为“角速度向量”,它表示物体垂直于转动平面的旋转方向和速度大小。

3. 旋转的运动方程旋转的运动方程描述了物体在旋转运动中的运动规律。

通常包括角速度、转动半径、转动角度、角加速度等物理量之间的关系。

三、旋转的力学原理1. 物体的转动惯量转动惯量是描述物体绕轴心旋转时所具有的惯性度量。

转动惯量取决于物体的形状和质量分布。

通常用符号I表示,单位是千克·米平方。

2. 物体的角动量物体的角动量是描述物体旋转运动状态的物理量。

它与物体的转动惯量和角速度有关。

通常用符号L表示,单位是千克·米平方/秒。

3. 牛顿第二定律在旋转运动中的应用牛顿第二定律(F=ma)在旋转运动中的形式为τ=Iα,其中τ表示力矩,I表示物体的转动惯量,α表示角加速度。

这个公式描述了物体在受力作用下的转动运动规律。

四、旋转的应用1. 刚体旋转刚体旋转是刚体围绕轴心或转动中心进行的旋转运动。

刚体旋转的应用广泛,包括汽车的转向、水泵的旋转、风车的旋转等。

2. 陀螺运动陀螺是一种常见的旋转运动装置,可以应用于导航、稳定、测量等领域。

旋转知识点总结大全初中

旋转知识点总结大全初中

旋转知识点总结大全初中一、基本概念1. 旋转的定义旋转是指把一个点或者一个图形绕着一个旋转中心进行旋转操作,使其在平面内按照一定的方向进行转动。

在旋转中,点或图形的位置会发生改变,但其大小和形状不会发生改变。

2. 旋转的要素旋转包括旋转中心、旋转角度和旋转方向三个要素。

旋转中心是确定旋转的点,在平面上可以是任意一点;旋转角度是指旋转的角度大小,通常用弧度或者度数表示;旋转方向是指顺时针旋转或者逆时针旋转。

3. 旋转的表示旋转可以用旋转矩阵、向量旋转、复数旋转等多种数学方法进行表示,不同表示方法适用于不同的场景和问题。

二、旋转的性质1. 旋转的封闭性旋转是封闭的,即两个旋转图形的旋转之后的结果仍然是一个图形。

2. 旋转的不变性旋转不改变图形的大小和形状,只是改变了其位置。

3. 旋转的对称性旋转具有对称性,旋转之后的图形与原图形具有镜像对称关系。

4. 旋转的交换律两个旋转操作可以交换次序,即先进行一个旋转再进行另一个旋转的结果与先进行另一个旋转再进行一个旋转的结果是相同的。

三、旋转的计算方法1. 旋转矩阵对于平面上的点(x, y)进行绕原点逆时针旋转θ度,旋转后的坐标为(x', y'),可以用旋转矩阵进行表示:\[ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]2. 向量旋转对于任意向量(a, b)进行绕原点逆时针旋转θ度,旋转后的向量为(a', b'),可以通过向量的线性变换进行计算。

3. 复数旋转对于复数z=a+bi进行绕原点逆时针旋转θ度,旋转后的复数为z'=a'+bi',可以通过复数的乘法进行计算。

数学旋转知识点总结归纳

数学旋转知识点总结归纳

数学旋转知识点总结归纳一、旋转的基本概念旋转是指让物体按照某个中心点绕轴旋转一定角度的变换过程。

在数学中,我们通常将旋转定义为一个平面内的变换,它可以用一个角度来描述。

旋转变换可以分为逆时针旋转和顺时针旋转两种方式。

逆时针旋转是指物体按照顺时针的方向旋转,角度取正值;而顺时针旋转则是指物体按照逆时针的方向旋转,角度取负值。

二、旋转的表示方式在数学中,我们可以使用不同的表示方式来描述旋转变换。

常用的表示方式有以下几种:1. 旋转矩阵:旋转矩阵是描述旋转变换的一种方式,它可以用一个2x2的矩阵来表示。

在二维平面内,我们可以通过旋转矩阵来描述物体的旋转变换,从而得到旋转后的坐标。

2. 旋转向量:旋转向量是描述旋转变换的另一种方式,它可以用一个三维向量来表示。

在三维空间内,我们可以通过旋转向量来描述物体的旋转变换,从而得到旋转后的坐标。

3. 旋转角度:旋转角度是描述旋转变换的最直观方式,它可以用一个角度值来表示。

在二维平面和三维空间内,我们可以通过旋转角度来描述物体的旋转变换,从而得到旋转后的坐标。

三、旋转的基本性质旋转变换具有一些基本的性质,这些性质对于我们理解旋转变换的特点非常重要。

以下是旋转变换的一些基本性质:1. 旋转变换是线性的:旋转变换是一种线性变换,它满足加法和数乘的性质。

也就是说,如果我们对一个物体进行旋转变换,然后再对旋转后的物体进行一次旋转变换,那么这两次旋转变换的结果等于先将旋转变换合并成一个变换,然后再对原物体进行这个变换。

2. 旋转变换满足结合律:旋转变换满足结合律,也就是说,如果我们对一个物体依次进行三次旋转变换,那么这三次旋转变换的结果等于先将前两次旋转变换合并成一个旋转变换,然后再进行第三次旋转变换。

3. 旋转变换的逆是自身的逆:旋转变换的逆变换就是将原旋转变换的角度取负值,旋转的方向取相反方向。

也就是说,如果我们对一个物体进行旋转变换,然后再对旋转后的物体进行相反方向的旋转变换,那么这两次旋转变换的结果等于恢复到原来的物体。

旋转运动知识点总结

旋转运动知识点总结

旋转运动知识点总结旋转运动是物体绕着某一固定轴线或者某一固定轨道进行运动的一种动力学运动形式。

在自然界和日常生活中,我们都能够看到许多旋转运动的例子,比如地球的自转、风车的旋转、运动员的体操表演等等。

本文将从角速度、角加速度、牛顿第二定律、角动量、角动量守恒定律等方面对旋转运动进行系统的总结。

一、角速度1.1 角速度的定义角速度是指物体绕着某一轴线旋转的速度,通常用符号ω表示,它的大小等于单位时间内通过的弧度数。

角速度的国际单位是弧度每秒(rad/s)或者角度每秒(deg/s)。

1.2 角速度的计算物体的角速度可以通过如下公式来计算:ω = Δθ / Δt其中,ω表示角速度,Δθ表示在时间Δt内物体绕轴线旋转的角度变化,Δt表示时间变化量。

1.3 角速度的方向在右手定则下,如果指尖指向旋转的方向,大拇指指向旋转轴线的方向,那么角速度的方向也是指向旋转轴线的方向。

二、角加速度2.1 角加速度的定义角加速度是指物体旋转运动的速度变化率,用符号α表示,它表示单位时间内角速度的变化量。

角加速度的国际单位是弧度每秒平方(rad/s²)或者角度每秒平方(deg/s²)。

2.2 角加速度的计算物体的角加速度可以通过如下公式来计算:α = Δω / Δt其中,α表示角加速度,Δω表示在时间Δt内角速度的变化量,Δt表示时间变化量。

2.3 角加速度与速度的关系在匀加速旋转运动中,角加速度和角速度之间的关系可以用如下公式来表示:ω = ω0 + αt其中,ω表示时间t内的角速度,ω0表示初始角速度,α表示角加速度。

三、牛顿第二定律在旋转运动中的应用在旋转运动中,牛顿第二定律也同样适用,其数学表达式可以表示为:τ = Iα其中,τ表示合力对物体产生的力矩,I表示转动惯量,α表示角加速度。

在牛顿第二定律的应用中,我们需要注意以下几点:1)转动惯量的计算2)力矩的计算3)角加速度的计算四、角动量4.1 角动量的定义角动量是指物体绕固定轴线的旋转运动所具有的动量,通常用符号L表示,它的大小等于物体运动速度的矢量叉乘转动惯量的大小。

小学五年级旋转知识点总结

小学五年级旋转知识点总结

小学五年级旋转知识点总结1. 旋转的概念旋转是指一个物体或者平面围绕某个中心点进行转动的运动。

在数学中,旋转可以描述为沿着一个轴线围绕某一点或者某一个角度进行转动。

在平面几何中,我们常常用逆时针或者顺时针的方向来描述旋转的方向。

2. 旋转的表示在坐标平面上,我们可以使用坐标变换的方式来表示旋转。

对于平面上的点(x,y),如果我们要将这个点绕原点旋转θ度,我们可以使用下面的公式来表示旋转后的坐标(x',y'):x' = x * cosθ - y * sinθy' = x * sinθ + y *cosθ这个公式就是一个点绕原点旋转θ度后的坐标变换公式。

当然,我们也可以表示以其他点为中心进行旋转,只需要将坐标平面进行平移就可以了。

3. 旋转的性质旋转有很多有趣的性质,其中一个重要的性质就是旋转不改变物体的大小和形状。

无论是顺时针还是逆时针的旋转,物体的大小和形状都不会改变,这是因为旋转只是改变了物体的位置而已。

另外,旋转也具有可逆性,也就是说我们可以对一个物体进行旋转,然后再对其进行相反方向的旋转,物体就会回到原来的位置。

4. 旋转的应用旋转在现实生活中有很多应用,比如地球围绕太阳的公转运动、地球自转、车轮的旋转、舞蹈中人体的旋转等等。

在几何学中,我们也可以利用旋转来解决很多问题,比如求解旋转后的坐标、确定一个点围绕另一个点进行旋转后的位置等等。

5. 旋转的相关知识除了基本的旋转概念和性质外,我们还需要了解一些与旋转相关的知识,比如旋转角度的计算、旋转矩阵的表示、旋转的复合等等。

这些知识可以帮助我们更深入地理解和应用旋转的原理。

总结:旋转是一个重要的数学知识点,它在几何学、物理学和生活中都有着广泛的应用。

通过学习旋转,我们可以更好地理解空间的变换和物体的运动,同时也可以提高自己的数学运算能力。

希望小学五年级的同学们能够认真学习旋转这一知识点,加强对旋转的理解和掌握,为未来的学习打下坚实的基础。

旋转知识点总结大全

旋转知识点总结大全

旋转知识点总结大全1. 旋转的基础概念在物理学中,旋转是指物体围绕轴线进行的转动运动。

旋转运动可以分为两种:平面旋转和立体旋转。

在平面旋转中,物体围绕一个固定的轴线旋转;在立体旋转中,物体围绕一个移动的轴线旋转。

物体旋转的速度可以用角速度来描述,角速度是单位时间内物体转过的角度。

角速度和角加速度是描述旋转运动的重要物理量。

2. 旋转的力学方程在旋转运动中,物体受到一些力的作用,根据牛顿第二定律,这些力会导致物体产生角加速度。

角加速度和力之间有着一定的关系,可以用力矩来描述。

力矩是力对轴线产生的转动效果的物理量,它等于力乘以力臂的长度。

力矩和角加速度之间的关系可以用牛顿第二定律的旋转形式来表示,即力矩等于惯性矩乘以角加速度,这就是著名的牛顿第二定律的旋转形式。

3. 刚体的旋转在旋转运动中,我们经常会遇到刚体的旋转。

刚体是一个保持形状不变的物体,它在旋转运动中具有一些特殊的性质。

首先,刚体的质心在旋转运动中保持不变,这就是著名的质心定理。

其次,刚体的旋转可以用转动惯量来描述,转动惯量是刚体对旋转运动的固有性质,它等于质量乘以距离质心的平方。

转动惯量和角加速度之间的关系可以用牛顿第二定律的旋转形式来表示,即力矩等于转动惯量乘以角加速度。

4. 陀螺陀螺是一个在空间中旋转的物体,它具有一些特殊的性质。

首先,陀螺在旋转运动中会产生回转力,这是由于陀螺的角动量在旋转过程中保持不变。

其次,陀螺在旋转运动中会产生进动运动,这是由于陀螺受到重力和支持力的作用。

最后,陀螺在空间中的旋转可以用欧拉角来描述,欧拉角是描述物体在空间中旋转的一种数学工具。

5. 其他相关知识点除了上述的知识点之外,旋转还涉及到一些其他的重要概念。

例如,角动量守恒定律是描述旋转运动的重要定律,它说明在没有外力作用下,物体的角动量保持不变。

此外,角动量矩是描述旋转运动中角动量变化的物理量,它等于力矩对时间的积分。

最后,旋转运动还涉及到一些实际的应用,例如陀螺仪、飞行器的姿态控制等。

初一上旋转知识点总结

初一上旋转知识点总结

- 1 -旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度,这样的图形运动称为旋转,定点O 称为旋转中心,转动的角称为旋转角;如果图形上的点P 经过旋转到点P ',那么这两个点叫做这个旋转的对应点.如图1,线段AB 绕点O 顺时针转动090得到B A '',这就是旋转,点O 就是旋转中心,A AO B BO '∠'∠,都是旋转角.说明: 旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略.决定旋转的因素有三个:★一是旋转中心;二是旋转角;三是旋转方向.典例剖析例1如图1,D 是等腰Rt ABC △内一点,BC 是斜边,如果将ABD △绕点A 逆时针方向旋转到ACD '△的位置,则ADD '∠的度数是(D )A.25B.30 C.35 D.45 解析:根据旋转性质可知△ABD ≌△D AC ',∴∠BAD =∠D CA ',AD =D A ',∵∠BAD +∠CAD =090,∴∠D CA '+∠CAD =090,∴ADD '∠=()000459018021=-,故应选D. 评注:旋转不改变图形的大小与形状,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键.'图1 D 图1- 2 -知识点2:旋转作图掌握作图的步骤:①连:即连图形中的每一个关键点与旋转中心;②转:即把连线按要求绕旋转中心转过一定角度;③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点; ★为了避免作图时的混乱,每个点独立完成后,再进行下一个点的旋转;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论(方格纸内作图可以略写结论). ★步骤:联结、角度、长度、结论四.旋转作图的考查形式(1)已知原图、旋转中心和一对对应点,求作旋转后的图形;(2)已知原图、旋转中心和一对对应线段,求作旋转后的图形;(3)已知原图、旋转中心和旋转角,求作旋转后的图形.例2:如图2,该图形围绕自己的旋转中心,按下列角度旋转后,不能..与其自身重合的是( ) A.72 B.108 C.144 D.216解析:整个图形可以看作是图形的五分之一绕中心位置,按照同一方向连续旋转72、144、216、0288、0360和原来图形共同组成的,所以本题应选B。

中考数学旋转知识点总结

中考数学旋转知识点总结

中考数学旋转知识点总结一、旋转的基本概念1. 旋转的定义旋转是几何变换的一种,它将图形绕某一定点进行旋转,使得原图形经过旋转后仍符合原图形的性质。

在平面几何中,这一定点通常被称为旋转中心,而旋转的角度则是旋转的重要参数。

2. 旋转的表示在数学中,旋转可以通过不同的表示方法来描述。

最常见的是使用坐标系中的点和向量表示旋转,也可以使用矩阵来进行描述。

3. 旋转的性质旋转具有许多重要的性质,比如旋转是等距变换,旋转后的图形与原图形的关系等。

这些性质对于理解旋转的本质和应用都具有重要的意义。

二、旋转的基本公式1. 二维平面的旋转公式在平面几何中,二维平面上的点可以通过旋转变换而成。

对于坐标系中的点(x, y),绕原点逆时针旋转θ度后的新坐标可以根据公式进行计算。

2. 三维空间的旋转公式在三维空间中,点的旋转也是常见的几何变换。

旋转的角度可以沿着不同轴进行,因此三维空间中的旋转公式相对复杂一些,但也是可以通过矩阵等方式进行描述的。

三、旋转的应用1. 图形的旋转在几何中,通过旋转可以使得图形的位置和方向发生变化。

通过学习旋转的原理和公式,可以对图形的旋转进行分析和计算,从而更好地理解和掌握图形的性质和特点。

2. 向量的旋转在向量几何中,旋转是常见的几何变换。

向量的旋转不仅可以通过公式进行计算,还可以通过向量的性质和几何特点进行分析,从而更深入地理解向量的旋转。

3. 坐标系的旋转在空间几何和三维几何中,经常需要对坐标系进行旋转变换。

通过学习旋转的原理和方法,可以更清晰地理解坐标系的旋转规律,从而更好地应用于实际问题的解决中。

四、旋转的相关定理1. 旋转对称性质在平面几何中,旋转对称是一种重要的对称方式。

通过学习旋转对称的定理和性质,可以更好地理解和应用旋转对称在几何图形中的作用。

2. 旋转角度的性质旋转角度的性质是旋转的重要定理和性质之一。

通过学习旋转角度的性质,可以更深入地理解和应用旋转的基本特点。

3. 旋转的复合变换旋转可以与其他几何变换进行复合,比如平移、翻转等。

旋转知识点总结以及练习

旋转知识点总结以及练习

旋转知识点总结以及练习一、旋转的基本概念1. 旋转的定义旋转是指围绕一个中心点进行旋转运动的现象。

在数学中,旋转可以用一种简单的方式来描述:将任意点绕着某个固定点进行旋转。

2. 旋转的要素旋转有三个基本要素:旋转中心、旋转方向和旋转角度。

- 旋转中心:围绕哪一个点进行旋转。

- 旋转方向:是顺时针还是逆时针。

- 旋转角度:旋转的角度大小。

3. 旋转的表示方法在数学中,旋转可以用代数方式进行描述,通常使用旋转矩阵或者旋转向量来表示。

二、旋转的应用1. 旋转在几何变换中的应用在几何变换中,旋转是一种重要的变换方式。

通过旋转,可以改变形状的朝向和位置,在计算机图形学中,旋转是常用的操作之一。

2. 旋转在物理学中的应用在物理学中,旋转是指物体以某一点为中心进行旋转运动。

例如地球的自转、地球绕太阳的公转等都是旋转的现象。

三、旋转的相关定理和公式1. 旋转矩阵旋转矩阵是表示旋转变换的一种方式。

对于二维空间中的点(x,y)绕原点逆时针旋转角度θ的变换公式为:```x' = x*cos(θ) - y*sin(θ)y' = x*sin(θ) + y*cos(θ)```在三维空间中,绕x轴、y轴、z轴的旋转矩阵分别为:```绕x轴旋转:|1 0 0||0 cos(θ) -sin(θ)||0 sin(θ) cos(θ)|绕y轴旋转:| cos(θ) 0 sin(θ)|| 0 1 0||-sin(θ) 0 cos(θ)|绕z轴旋转:|cos(θ) -sin(θ) 0||sin(θ) cos(θ) 0|| 0 0 1|```2. 旋转的性质- 旋转变换是一个保持向量长度和夹角不变的线性变换。

- 旋转矩阵乘法满足结合律:R1(R2(x)) = (R1*R2)(x)。

四、旋转的练习题1. 试计算下列向量关于指定旋转中心和旋转角度的旋转后的坐标:(1) 向量(2,3)关于原点逆时针旋转90°;(2) 向量(-1,1)关于点(2,2)逆时针旋转45°。

旋转知识点总结和题型总结

旋转知识点总结和题型总结

旋转知识点总结和题型总结一、旋转知识点总结旋转是几何学中的一个重要概念,它涉及到图形围绕某个中心点进行转动的运动。

在高中数学中,旋转通常是指平面图形绕坐标原点或其他指定点进行旋转。

旋转的性质和相关定理在解决几何问题和证明几何定理中起着重要的作用。

下面我们来总结一下旋转的相关知识点。

1. 旋转的基本概念旋转是指一个平面图形绕着一个固定的中心点旋转。

通常我们用一个角度来表示旋转的大小,这个角度可以是正数也可以是负数,正数表示逆时针旋转,负数表示顺时针旋转。

旋转后的图形与原图形相似,它们的对应部分保持着等长和等角关系。

2. 旋转的公式当平面图形沿着坐标原点以逆时针旋转θ度时,点(x,y)绕原点旋转后得到的新点的坐标为(x',y')可以由以下公式得到:x' = xcosθ - ysinθy' = xsinθ + ycosθ3. 旋转的性质a. 图形绕原点旋转180°后的性质:如果一个平面图形绕坐标原点旋转180°之后得到的图形恰好与原图形重合,那么这个图形就是轴对称的。

b. 图形绕原点旋转360°之后的性质:如果一个平面图形绕坐标原点旋转360°之后得到的图形与原图形完全相同,那么这个图形就是旋转对称的。

c. 图形绕原点旋转90°或270°之后的性质:如果一个平面图形绕坐标原点逆时针旋转90°或顺时针旋转270°得到的图形与原图形重合,那么这个图形就是垂直对称的。

4. 旋转的应用旋转在几何学中有着广泛的应用,例如在解析几何中,我们可以利用旋转的公式来求解相关的几何问题;在立体几何中,旋转可以帮助我们解决求体积、曲面积等问题;在实际生活中,旋转也被广泛应用在工程、建筑、航空航天等领域。

5. 旋转的相关定理a. 复合旋转定理:两次旋转可合成一次旋转。

b. 示例旋转定理:一个图形旋转180°之后,再旋转180°后得到了与原图形相同的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;
(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的)
6.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有_______.
中心对称的性质:
(1)指出旋转中心和旋转角度
(2)求DE的长度
(3)BE与DF的位置关系如何?
知识5综合证明
半角及三线共点问题
【例1】 、 分别是正方形 的边 、 上的点,且 , , 为垂足,求证: .
【巩固】如图,正方形 的边长为1, 、 上各存一点 、 ,若 的周长为2,求 的度数.
【例2】如图,在正方形 中, 是 上一点, 是 延长线上一点,且 .
中心对称的两个图形,对称点所连线段经过_____,并且被对称中心所_____.中心对称的两个图形是____.
7.如图,已知△ABC和点O.在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点成中心对称.
知识点3
中心对称图形
把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形____,那么这个图形叫做_________,这个点叫它的_______.
(1)求证: ;
(2)在图1中,若 在 上,且 ,则 成立吗?为什么?
(3)运用⑴⑵解答中所积累的经验和知识,完成下题:
如图2,在直角梯形 中, , , , 是 上一点,且 , ,求 的长.
【例3】如图所示,在等腰直角 的斜边 上取两点 、 ,使 ,记 , , ,求证:以 、 、 为边长的三角形的形状是直角三角形.
旋转知识点总结与练习
知识点1
旋转的定义
把一个平面图形绕着平面内某一点O转动一个角度的图形变换叫做_____,点O叫做旋转中心,________叫做旋转角.
要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.
1.如图,将正方形图案绕中心O旋转180°后,得到的图案是 ( )
2.如图2,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自
三线共点问题
☞考点说明:图形中出现有公共端点的相等线段,可考虑将含有相等线段的图形绕公共端点旋转
两相等线段的夹角后与另一相等线段重合.
【例4】如图,在 中, , , 是 内的一点,且 ,求 的度数.
【巩固】如图, 是等边 内一点,若 , , ,求 的度数.
【例6】如图, 为正方形 内一点, ,将 绕着 点按逆时针旋转
要点诠释:(1)中心对称图形指的是一个图形;
(2)线段,平行四边形,圆等等都是中心对称图形.
8.下列图形中,既是轴对称图形又是中心对称图形的是( )
9.如图,直线EF经过平行四边形ABCD的对角线的交点,若AE=3cm,பைடு நூலகம்边形AEFB的
面积为15cm2,则CF=______,四边形EDCF的面积为_______.
身重合的是()
A. B. ﻩC. ﻩD.
旋转的性质
(1)对应点到旋转中心的距离________;
(2)对应点与旋转中心所连的线段的夹角等于________;
(3)旋转前后的两个图形______.
要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.
3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′
到 的位置.(1)求 的值;(2)求 的度数.
【巩固】如图所示, 为正方形 内一点,若 , , .
求:⑴ 的度数;⑵正方形的面积.
5.在下图4×4的正方形网格中,△MNP绕某点旋转一定的角度, 得到△M1N1P1,则其
旋转中心可能是 ( )
A.点AB.点BC.点CD.点D
知识点2
中心对称
把一个图形绕着某一点旋转_____,如果它能够与另一个图形____,那么就说这两个图形关于这个点对称或______,这个点叫做______,旋转后能够重合的对应点叫做关于对称中心的_______.
知识点4
求关于原点对称的点的坐标
两个点关于原点对称时,它们的坐标符号____________,即点P(x,y)关于原点的对称点为P′_________.
10.在平面直角坐标中,点(4,-5)关于原点的对称点坐标是( )
A.(4,5) B.(4,-5)C.(-4,5)D.(-4,-5)
11.点A(a-1,-3)与点B(-2,1-b)关于原点对称,则a+b的值为_______.
12.△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;
(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.
13、四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,求
位置,若AC⊥A′B′,则∠BAC的度数是()
A.50°B.60°C.70°D.80°
4.如图,直线 与 轴、 轴分别交于 、 两点,把△ 绕点 顺
时针旋转90°后得到△ ,则点 的坐标是
A. (3,4)B. (4,5)C. (7,4)D. (7,3)
旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键,沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.
相关文档
最新文档