比例电磁铁综述-完整版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 比例电磁铁的结构原理

比例电磁铁结构主要由衔铁、导套、极靴、壳体、线圈、推杆等组成。其工作原理是:磁力线总是具有沿着磁阻最小的路径闭合,并有力图缩短磁通路径以减小磁阻。

图1 比例电磁铁的结构

动子由两种不同的材料组成,中间的是导磁材料(电磁纯铁—中间开孔),左边的推杆导磁,右边的推杆非导磁。动子由油布轴承支承,推杆用以输出力。为了动子可以左右运动,在左端右挡板,在右端装有弹簧组成的调零机构。

导套前后两段由导磁材料制成,中间用一段非导磁材料—隔磁环。导套前段和极靴组合,形成带锥形端部的盆形极靴,导套和外筒间配置同心螺线管式控制线圈。外壳采用导磁材料,以形成磁回路。本电磁铁中因为有导套中隔磁环的特殊设计才有了输出力是准恒定的特性。

图2 隔磁环(焊铜)

在一定的位移范围内,动子的输出力为一准恒定值。根据电磁铁基本工作原理,在动子运动过程中,磁阻会越来越小,动子受力越来越大,不会出现输出力恒定的情况,为了使电磁铁能在一定位移内输出近视恒定的力,电磁铁采用结构的特殊—隔磁环就是使动子输出力恒定的原因。

当给比例电磁铁控制线圈通入一定电流时,在线圈电流控制磁势左右下,形成两条磁路,一条磁路1φ由前端盖经盆形极靴底部沿轴向工作气隙进入衔铁,穿过导套后段、导磁外壳回到前端盖极靴,产生轴向力1a F ;另一条磁路2φ经盆形极靴锥形周边(导套前段)径向穿过工作气隙,再进入衔铁,而后与1φ汇合形成附加轴向力2a F ,二者综合得到比例电磁铁输出力a F 相对于衔铁位移的水平特性。

图3 比例电磁铁的磁路分布

φ产生的端面力为:

1

φ产生的轴向附加力为:

2

图4 不同时刻电磁铁内部磁力线分布

2. 比例电磁铁的工作过程

对工作中的电磁铁来说,在通电或断电或一定电流(电压)下动子能快速准确地到达指定位置,但实际上由于存在电感和动子质量,或负载的原因,使得动子的运动过程变得复杂。

电磁阀吸合运动过程可分为两个阶段:吸合触动时间t1和吸合运动时间t2,t1是从线圈得到电压起到电流按指数曲线增至吸合电流为止的过程,在此过程中衔铁尚未运动,这段时间是由于电与磁的惯性引起的滞后时间,取决于电磁铁的结构、材料、线圈电压、电感的大小和弹簧预紧力大小;进入t2阶段后,吸力大于预紧力,衔铁开始运动,电流变化规律就比较复杂:由于工作气隙在衔铁运动过程中逐渐减小,使线圈电感逐渐增大并产生反电势,它与线圈自感电势一起,共同阻止线圈电流的增长,致使线圈电流增大到一定程度后不仅不再增大,反而有减小趋势,直到衔铁闭合,工作气隙不再变化,反电势为零,电流按新的指数曲线上升至稳态电流。这段时间取决于阀芯所受的各种阻力。对于电磁阀的释放过程,如果忽略磁导体中涡流的影响,当线圈信号切除后,电流立即降为零,衔铁随即开始运动,故其释放触动时间接近于零,远较吸合触动时间短。

图5 电磁铁的电流曲线

图6 (不同电流下)比例电磁铁的力——位移曲线

电磁力的大小为S Ni S F M 0202)(2121μδ

μφ==,与线圈匝数平方成正比,与气隙间隙平方成反比。

在电磁阀其它结构参数和驱动电流以及气隙宽度大小相同时,线圈匝数越多,气隙的磁场强度就越强,则气隙磁感应强度也越大,电磁吸力也就越大。但实际上线圈匝数不是越多越好,随着匝数的增加,会使线圈电感和线圈电阻增大,从而在衔铁吸合初始阶段限制了驱动电流的迅速增大,在释放过程中使电流衰减速度变慢。

电磁阀气隙宽度包括衔铁工作行程和残余间隙宽度两个部分。当衔铁完全开启时,此时气隙宽度等于衔铁工作行程和残余间隙宽度之和。当衔铁完全吸合时,气隙宽度等于残余间隙宽度。

随着气隙宽度的增大,将使电磁吸力减小。衔铁工作过程中,气隙宽度减小,有利于电磁阀的打开。在残余间隙不变的前提下,如果衔铁工作行程增加,则在关闭过程和重新打开过程的时间增加,电磁力增加速度平缓,电磁阀的动态特性变差。

同时,驱动电路的形式及参数直接决定线圈电流波形,并极大地影响电磁阀的响应速度。驱动电压为24V 时,电磁阀响应时间为0.4ms ,当驱动电压为48V 时,电磁阀响应时间为0.25ms ,驱动电压的升高对电磁阀的响应速度有着明显的影响。不过,驱动电压从48V 到100V 之间,响应时间的提高率为o.02ms/2OV ,驱动电压从100V 提高到120V ,响应时间缩减的幅度更小了,仅为0.01ms 。

图7 不同电磁铁工作特性曲线

3. 比例电磁铁试验台测控系统

系统主要由工业机、数据采集单元、输出制单元、传感器和比例阀测试试验台等组成。工控机是整个测试系统的主控机它通过人机界面接收用户指令,并根据试验内容选择相应的程序进行数据采集处理、显示、打印和输出指令信号控制比例阀测试试验台的动作。传感器

单元括三个压力传感器和两个位移传感器,负责将表征被测系统的物理量转化为标电信号,送入数据采集卡进行显示或处理。输出控制单元包括4路数字量输出1路模拟量输出,负责将工控机的指令信号进行转换和放大,最终控制比例阀验台的执行元件。

图8 试验台测控系统的组成

图9 比例电磁铁测试装置

4. 比例电磁铁的材料

电磁阀的铁芯采用铁磁性材料,不同的铁磁性材料具有不同的磁化曲线,其磁感应强度B与磁场强度H的关系为B=μH,它对电磁阀的性能产生重大的影响,因此必须根据电磁阀的设计与性能要求进行合理的选择。

表1和表2列出一些常用软磁材料的主要特点、应用范围和主要性能参数。比较和分析这些参数,电工纯铁的极限磁感应强度很高,磁化曲线在宽广的范围内具有较高的磁导率,并且该材料的冷加工性能良好,价格适中,所以应选用铁芯材料为电工纯铁的电磁阀用于电控泵一管一阀一嘴燃油喷射系统中。电磁阀的锥阀阀芯部分山于在运动过程中阀芯锥形头部不断撞击阀体,因此可考虑锥阀阀芯的主体部分采用电工纯铁,而阀体头部选用硬度高,耐磨性好,抗振动冲击性能好的材料,如铁铝合金。

具有高饱和磁通密度和高电阻率的材料非常适合用于制造高速电磁阀。高饱和磁通密度意味着材料能将更多的电能转化为磁能,而高电阻率则意味着涡流损失更小,磁场渗透速度更快,电能转化为磁能的速度越快。另外,矫顽磁力对响应速度的影响并不明显,原因在于由于用强电能激励,产生强的外部磁场使磁材料迅速饱和,相较于外部

相关文档
最新文档