选修4-5不等式证明的基本方法
2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45
三 反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法 (1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.利用反证法证明不等式已知f (x )求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”. (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:选D “不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列,∴a =b -d ,c =b +d (其中d 为公差). ∴ac =b 2=(b -d )(b +d ). ∴b 2=b 2-d 2. ∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a ),与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ),于是有f (a )+f (-b )>f (b )+f (-a ),与已知矛盾.故假设不成立.∴a <b .利用放缩法证明不等式已知实数x x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).解答本题可对根号内的式子进行配方后再用放缩法证明.x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…当k =n 时,12n ≤1n +n <1n.∴将以上n 个不等式相加,得12=n 2n ≤1n +1+1n +2+…+12n <nn =1.5.设f (x )=x 2-x +13,a ,b ∈,求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b |=|(a -b )(a +b -1)|=|a -b ||a +b -1|. ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2,-1≤a +b -1≤1,|a +b -1|≤1.∴|f (a )-f (b )|≤|a -b |.课时跟踪检测(八)1.设a ,b ,c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C 必要性是显然成立的;当PQR >0时,若P ,Q ,R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是( ) A .|a -b |<2h B .|a -b |>2h C .|a -b |<hD .|a -b |>h解析:选A |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 3.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥2(2+1)解析:选A 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0. ∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0 B .1 C .2D .3解析:选C 若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾,故①对;当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;③显然不正确.5.若要证明“a ,b 至少有一个为正数”,用反证法证明时作的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A ,B 的大小关系是________.解析:A =x 1+x +y +y 1+x +y <x 1+x +y1+y =B .答案:A <B8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1.求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知a ,b ,c ,d ∈. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知a n =1×2+2×3+3×4+…+n n +1(n ∈N *).求证:n n +12<a n <n n +22.证明:∵n n +1=n 2+n ,∴nn +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵nn +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=n 2+(1+2+3+…+n )=n n +22.综上得n n +12<a n <n n +22.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在上的最大值为2,最小值为-52.求证:a ≠0且⎪⎪⎪⎪⎪⎪b a <2. 证明:假设a =0或⎪⎪⎪⎪⎪⎪b a ≥2.①当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件得|b |+(-|b |)=2-52=-12,这与|b |+(-|b |)=0相矛盾,所以a ≠0. ②当⎪⎪⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在上是单调函数,故其最值在区间的端点处取得 .所以⎩⎪⎨⎪⎧f 1=a +b +c =2,f -1=a -b +c =-52或⎩⎪⎨⎪⎧f 1=a +b +c =-52,f -1=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪⎪⎪b a <2. 由①②,得a ≠0且⎪⎪⎪⎪⎪⎪b a<2.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0.因此|a +b |<|1+ab |.2.(全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.已知b ,m 1,m 2都是正数,a <b ,m 1<m 2,求证:a +m 1b +m 1<a +m 2b +m 2. a +m 1b +m 1-a +m 2b +m 2=a +m 1b +m 2-a +m 2b +m 1b +m 1b +m 2=am 2+bm 1-am 1-bm 2b +m 1b +m 2=a -b m 2-m 1b +m 1b +m 2.因为b >0,m 1,m 2>0,所以(b +m 1)(b +m 2)>0. 又a <b ,所以a -b <0. 因为m 1<m 2,所以m 2-m 1>0. 从而(a -b )(m 2-m 1)<0. 于是a -b m 2-m 1b +m 1b +m 2<0.所以a +m 1b +m 1<a +m 2b +m 2. 综合法证明不等式逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a >0,b >0,a +b =1. 求证:1a +1b +1ab≥8.∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·21ab+4=8.∴1a +1b +1ab≥8.分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >b >0.求证:a -b <a -b . 要证a -b <a -b , 只需证a <a -b +b , 只需证(a )2<(a -b +b )2, 只需证a <a -b +b +2b a -b ,只需证0<2ba -b .∵a >b >0,上式显然成立,∴原不等式成立,即a -b <a -b .反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.已知:在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC (如右图所示).假设AD ≥12BC .①若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .②若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A . 因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A , 即∠A <90°,与已知矛盾. 故AD >12BC 不成立.由①②知AD <12BC 成立.放缩法证明不等式作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。
2014·高三复习数学(理)2选修4-5 第2讲 证明不等式的基本方法
b2)≥0,即( a)3+b3≥ab+ ab2.
选修4-5 第2讲
第22页
此题用的是作差比较法,其步骤:作差、变形、判断差 的符号、结论.其中判断差的符号为目的,变形是关键.常用的 变形技巧有因式分解、配方、拆项、拼项等方法.
选修4-5
第2讲
第23页
[变式探究] 求证:a2+b2≥ab+a+b-1.
第2讲
第16页
1. ≥ a=b=c 不小于 不小于 ≥ a1=a2=„=an 3 1 填一填:(1)3 (2)3 4
选修4-5
第2讲
第17页
2.填一填:(1)
2 2 2
1 21
2 2
提示:∵1=x+2y+
2
1 4z≤ x +y +z · 1+4+16 ,∴x +y +z ≥ 21 ,即x2+y2+z2 1 的最小值为21. (2)[-5 y)2, ∴-5 2≤2x-y≤5 2. 2 ,5 2] 提示:∵(x2+y2)[22+(-1)2]≥(2x-
选修4-5
第2讲
第34页
2 柯西不等式的一般结构为(a1 +a 2+„+a2)(b 2+b 2+„ 2 n 1 2
+b2)≥(a1b1+a2b2+„+anbn)2,在使用柯西不等式时,关键 n 是将已知条件通过配凑,转化为符合柯西不等式条件的式 子,为方便使用柯西不等式,有时常将 a 变形为 1×a 的形 式.
据集合相等确定m的值;(2)结合已知条件构造两个适当的数
组,变形为柯西不等式的形式.
选修4-5
第2讲
第33页
[解]
(1)因为f(x+2)=m-|x|,f(x+2)≥0等价于|x|≤m,
由|x|≤m有解,得m≥0,且其解集为{x|-m≤x≤m}. 又f(x+2)≥0的解集为[-1,1],故m=1. 1 1 1 + (2)由(1)知a+2b+3c=1,又a,b,c∈R ,由柯西不等式 1 1 1 1 1 得a+2b+3c=(a+2b+3c)( a + 2b + 3c )≥( a· + 2b· + a 2b 1 2 3c· ) =9.所以不等式得证. 3c
5.3证明不等式的基本方法(1) 课件(人教A版选修4-5)
2
ab b ) 0
2
即: 5 b 5 a 2 b 3 a 3 b 2 a 本题变形的方法— 因式分解法
例4
比较a
a
b 和 a
b
b
b 的
a
例5.甲、乙两人同时同地沿同一线路走到同一地点。甲有一半 时间以速度m行走,另一半时间以速度n行走;乙有一半路程以 速度m行走,另一半路程以速度n行走。如果m≠n,问甲、乙 两人谁先到达指定地点。
例2.已知 a , b , m 都是正数,并且 a b , 求证
证明:
a m b m a b
b ( a m ) a (b m ) b (b m )
a m b m
a b
m (b a ) b (b m )
∵ a , b , m 都是正数, 并且 a b ,
ab>0a>b,ab<0a<b,ab=0a=b
•
比较法是证明不等式的一种最基本、
最重要的一种方法,用比较法证明不等 式的步骤是: • 作差—变形—判断符号—下结论。 • 作商—变形—与1比较大小---下结论。 • 要灵活掌握配方法和通分法对差式进行 恒等变形。
6.3 不等式的证明(1)--比较法 例1.求证: 3 3 x x
b ) b (a
2 3 3
(a
2
b )( a
b ) ( a b )( a b ) ( a
ab b )
2
都是正数, ∴ a b 0 , a 2 a b b 2 0 ∵ a,b 又∵ a b , ( a b ) 0
( a b )( a b ) ( a
人教课标版高中数学选修4-5 基本方法与拓展延伸:数学归纳法证明不等式
基本方法与拓展延伸
2 数学归纳法的使用要点
例 2-1 下列式子若 n = k 时成立,能证出
(1)用数学归纳法进行证明时,要分 两个步骤.其中第一步是证明时递推 的基础,第二步是推理的根据.把第一 步结论与第二步结论联系在一起,才
n = k +1 时成立吗?若可以,能判断对任 意的 n N 都成立吗? ①1+2+3+…+ n = n(n 1) +1
[误解]忽视了这一表述.因此,数学归 证明:(1) n =1 时, xn y n = x y 能被
纳法通过两步证
x y 整除,命题成立.
明,代替了客观上无法实现的无限次 (2)假设 n =2 k -1 时( k N +),命题
验证,以“有
成立,
限”步骤证明涉及“无限”的问题,代 替了客观上
即 x 2k1 y 2k1 能被 x y 整除,
例 3-1-1 用数学归纳法证明:
1-(3+x) n ( n N +)能被 x+2 整除. 证明:(1)n =1 时,1-(3+x)=-(x+2), 能 被 x+2 整除,命题成立. (2)假设 n =k( k ≥1)时,1-(3+x) n 能被
的构成情况.解这类题的关键在于,第 x+2 整除,则可设 1-(3+x)k=(x+2)f(x)(f(x)
被 x y 整除. ∴ n =2 k +1 时命题仍成立.
由(1)(2)可知,当 n 为正奇数时
有关整除的知识,例如:(1)如果 xn y n 能被 x y 整除.
a 能被 c 整除,那么 a 的倍数 pa 也能 例 3-2 用数学归纳法证明
新人教选修4-5教案柯西不等式的证明及应用
柯西不等式的证明及应用柯西(Cauchy )不等式()22211n n b a b a b a +++Λ()()222221222221nnb b ba a a ++++++≤ΛΛ()n i Rb a ii Λ2,1,=∈等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=)现将它的证明介绍如下:证明1:构造二次函数 ()()()2222211)(n n b x a b x a b x a x f ++++++=Λ=()()()22222121122122n nn n n n a a a x a b a b a b x b b b +++++++++++L L L 22120n n a a a +++≥Q L()0f x ∴≥恒成立()()()2222211*********n n n n n n a b a b a b a a a b b b ∆=+++-++++++≤Q L L L即()()()2222211221212nn n n nn a b a b a b a a a bb b +++≤++++++L L L当且仅当()01,2i i a x b x i n +==L 即1212n na a ab b b ===L 时等号成立 证明(2)数学归纳法(1)当1n =时 左式=()211a b 右式=()211a b 显然 左式=右式 当2n =时, 右式 ()()()()2222222222121211222112a a b b a b a b a b a b =++=+++()()()2221122121212222a b a b a a b b a b a b ≥++=+=右式仅当即 2112a b a b = 即1212a ab b =时等号成立 故1,2n =时 不等式成立(2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()()2222211221212kk k k kk a b a b a b a a a bb b +++≤++++++L L L当 i i ka b =,k 为常数,1,2i n =L 或120k a a a ====L 时等号成立设22212k a a a A ====L 22212k b b b B ====L1122k k C a b a b a b =+++L则()()2222211111k k k k k a b ba b +++++A +B +=AB +A +()22221111112k k k k k k C Ca b a b C a b ++++++≥++=+ ()()22222222121121k k k k a a a a bb b b ++∴++++++++L L()2112211k k k k a b a b a b a b ++≥++++L当 i i ka b =,k 为常数,1,2i n =L 或120k a a a ====L 时等号成立即 1n k =+时不等式成立综合(1)(2)可知不等式成立柯西不等式是一个非常重要的不等式,灵活巧妙的应用运用它,可以使一些较为困难的问题迎刃而解,这个不等式结构和谐,应用灵活广泛,利用柯西不等式可处理以下问题: 1) 证明相关命题例1. 用柯西不等式推导点到直线的距离公式。
高二选修4-5_证明不等式的基本方法4
把 以 上 四 个 不 等 式 相 加得 abcd a b c d abcd abd bca cbd dac
abcd. 即 ab cd
1 a b c d 2 abd bca cba dac
分式型放缩可改变分子或分母, 或分子、分母同时改变,达到放缩的目的.
例2
已知a,b是实数,求证 a b 1 a b
【解析】当
n>1
1 1 11 时,n2>nn+1=n-n+1.
所以212+312+412+…+n12>2×1 3+3×1 4+4×1 5+…+nn1+1= 12-13+13-14+14-15+…+1n-n+1 1=12-n+1 1.
【例 1】
证
明
:12
-
1 n+1
<
1 22
+
1 32
+
1 42
+
…
x 1x
y 1 y
B
A B
方法2:特值法: 因为x>0,y.>0, 所以取x=1,y=1代入可比较。
含根式不等式的放缩
【例 3】 已知实数 x,y,z 不全为零,求证: x2+xy+y2+ y2+yz+z2+ z2+zx+x2>32(x+y+z).
【解题探究】 欲证不等式左端是三个根式的和,而右端 是有理式,若两边平方则十分复杂,可考虑对根号内的式子进 行配方后再用放缩法.
1.放缩法:在证明不等式的过程中,有时 利用不等式的_传__递_性____,通过对不等式的某些 部分作适当的__放_大_或_缩_小______,达到证明的目 的.
2.放缩法的实质是__非_等_价_转__化________,放 缩没有__一_定_的_准_则__和_程_序__________,需按题意适当 放缩,否则达不到目的.
5.3 证明不等式的基本方法 课件(人教A版选修4-5)
附课本例 3.已知 a , b 是正数,且 a b , 求证: a b a b 证明:∵ a , b 是正数,且 a b ,
a b b a
∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) , 只要证 a lg a b lg b b lg a a lg b . (a lg a b lg b) (b lg a a lg b)
4 求证: 1 a b . 3
4. 比较 loga (1 x) 与 loga (1 x)
的大小( a 0且a 1,0 x 1).
作业:课本 P 习题 2.2 第 1、2、3 题. 26
1.若实数 x 1 ,求证: 3(1 x 2 x4 ) (1 x x 2 )2 . 证明:采用差值比较法: 2 4 2 2 3(1 x x ) (1 x x ) = 3 3 x2 3 x4 1 x2 x4 2 x 2 x2 2 x3 = 2( x 4 x 3 x 1) = 2( x 1)2 ( x 2 x 1) 1 2 3 2 = 2( x 1) [( x ) ]. 2 4 1 2 3 2 x 1, ( x 1) 0, 且( x ) 0, 2 4 12 3 2 ∴ 2( x 1) [( x ) ] 0, ∴ 3(1 x 2 x4 ) (1 x x 2 )2 . 2 4
证明不等式的常用的方法有: 比较法、综合法、分析法,它们各有其 优点.解题有法,但无定法,具体运用时,应 该对具体问题的特点作具体分析,选择合适 的方法.当问题比较复杂时,通常用分析法寻 找证明的思路,而用综合法来叙述、表达整个 证明过程.
思考二.(课本第 25 页例 4) a 2b2 b2c 2 c 2a 2 ≥ abc . 已知 a , b, c 0, 求证: abc
最新人教版高中数学选修4-5《不等式的基本性质和证明的基本方法》知识讲解
数学人教B 选修4-5第一章不等式的基本性质和证明的基本方法知识建构综合应用专题一 含绝对值不等式的解法1.公式法|f (x )|>g (x )f (x )>g (x )或f (x )<-g (x );|f (x )|<g (x )-g (x )<f (x )<g (x ).2.平方法|f (x )|>|g (x )|[f (x )]2>[g (x )]2.3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.应用1解下列关于x 的不等式:(1)|x -x 2-2|>x 2-3x -4;(2)|x -2|-|2x +5|>2x .提示:根据绝对值的意义,先去掉绝对值符号,再解不等式.应用2若f 1(x )=3|x -p 1|,f 2(x )=2·3|x -p 2|,x ∈R ,p 1,p 2为常数,且f (x )=⎩⎪⎨⎪⎧f 1(x ),f 1(x )≤f 2(x ),f 2(x ),f 1(x )>f 2(x ).求f (x )=f 1(x )对所有实数x 成立的充要条件(用p 1,p 2表示).专题二 基本不等式的应用利用基本不等式求最值问题一般有两种类型:(1)和为定值时,积有最大值;(2)积为定值时,和有最小值.在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.应用1(1)已知0<x <2,求函数y =x (8-3x )的最大值.(2)已知x >1,求函数y =x 2-2x +22x -2的最小值. 提示:先通过恒等变形,使不等式具备“一正、二定、三相等”的条件,再应用基本不等式求最值.应用2已知a >b >0,求a 2+16b (a -b )的最小值. 提示:适当变形后,可多次应用基本不等式,但应注意验证等号是否成立. 专题三 恒成立问题对于恒成立不等式求参数范围问题,常见类型及其解法如下:(1)分离参数法运用“f (x )≤a f (x )max ≤a ,f (x )≥a f (x )min ≥a ”可解决恒成立中的参数范围问题.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观地解决问题.应用1已知函数f (x )在定义域(-∞,1]上是减函数,问是否存在实数k ,使得f (k -sinx )≥f (k 2-sin 2x )对一切x ∈R 恒成立?并说明理由.提示:首先应根据函数的单调性去掉函数符号,转化为关于sin x 的不等式恒成立问题. 应用2设有关于x 的不等式lg(|x +3|+|x -7|)>a .(1)当a =1时,解此不等式;(2)当a 为何值时,此不等式的解集是R?提示:对于(1),根据对数函数的单调性转化为绝对值不等式求解.(2)可转化为函数最值问题求解.专题四 不等式的证明证明不等式的主要方法有作差比较法、作商比较法、平方差比较法、综合法、分析法.其次还有反证法、放缩法、换元法、判别式法、构造函数法等,但这些方法不是孤立的,它们相互渗透、相辅相成,有的题目可以有多种证法,而有的题目要同时用几种方法才能解决,因此我们在平时解题中要通过一题多解,一解多法的反复训练,加强对各种方法的区别与联系的认识,把握每种方法的优点和缺点,从而不断提高我们分析问题和解决问题的能力.应用1已知a ,b ,c ,d ∈R ,求证:ac +bd ≤(a 2+b 2)(c 2+d 2).提示:本题可用分析法、综合法、比较法、三角代换法、构造函数法等证明.应用2用反证法证明钝角三角形最大边上的中线小于该边长的一半.答案:综合应用专题一应用1:解:(1)解法一:原不等式等价于x -x 2-2>x 2-3x -4或x -x 2-2<-(x 2-3x -4),解得1-2<x <1+2或x >-3,∴原不等式的解集为{x |x >-3}.解法二:∵|x -x 2-2|=|x 2-x +2|=x 2-x +2,∴原不等式等价于x 2-x +2>x 2-3x -4x >-3.∴原不等式的解集为{x |x >-3}.(2)分段讨论:①当x <-52时,原不等式变形为 2-x +2x +5>2x ,解得x <7,∴原不等式的解集为{x |x <-52}. ②当-52≤x ≤2时,原不等式变形为2-x -2x -5>2x , 解得x <-35. ∴原不等式的解集为{x |-52≤x <-35}. ③当x >2时,原不等式变形为x -2-2x -5>2x ,解得x <-73,∴原不等式无解. 综上可得,原不等式的解集为{x |x <-35}. 应用2:解:f (x )=f 1(x )恒成立f 1(x )≤f 2(x )3|x -p 1|≤2·3|x -p 2|3|x -p 1|-|x -p 2|≤2|x -p 1|-|x -p 2|≤log 32.(*)若p 1=p 2,则(*)式0≤log 32,显然成立;若p 1≠p 2,记g (x )=|x -p 1|-|x -p 2|.当p 1>p 2时,g (x )=⎩⎪⎨⎪⎧p 1-p 2, x <p 2,-2x +p 1+p 2, p 2≤x ≤p 1,p 2-p 1, x >p 1, 所以g (x )max =p 1-p 2,故只需p 1-p 2≤log 32.当p 1<p 2时,g (x )=⎩⎪⎨⎪⎧ p 1-p 2, x <p 1,2x -p 1-p 2, p 1≤x ≤p 2,p 2-p 1, x >p 2,所以g (x )max =p 2-p 1,故只需p 2-p 1≤log 32.综上所述,f (x )=f 1(x )对所有实数x 成立的充要条件是|p 1-p 2|≤log 32.专题二应用1:解:(1)∵0<x <2,∴0<3x <6,∴8-3x >0,∴y =x (8-3x )=13·3x ·(8-3x ) ≤13⎝⎛⎭⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时取等号, ∴当x =43时,y =x (8-3x )有最大值163. (2)∵x >1,∴y =x 2-2x +22x -2=(x -1)2+12(x -1)=12[(x -1)+1x -1] ≥12×2(x -1)·1x -1=1. 当且仅当x -1=1x -1,即x =2时取等号, 所以当x =2时,y =x 2-2x +22x -2有最小值1. 应用2:解:解法一:因为a >b >0,所以a -b >0,所以a 2+16b (a -b )≥a 2+16⎝⎛⎭⎫b +a -b 22=a 2+64a 2≥16, 当且仅当a =2b ,a 2=8,即a =22,b =2时,等号成立,所以a 2+16b (a -b )的最小值为16. 解法二:因为a >b >0,所以a -b >0,所以a 2+16b (a -b )=[(a -b )+b ]2+16(a -b )b≥(2(a -b )b )2+16(a -b )b=4(a -b )b +16(a -b )b≥24(a -b )b ·16(a -b )b=16, 当且仅当a =2b ,(a -b )b =2,即a =22,b =2时,等号成立,所以a 2+16b (a -b )的最小值为16. 专题三应用1:解:存在.理由:∵f (x )在(-∞,1]上是减函数,∴k -sin x ≤k 2-sin 2x ≤1.假设存在实数k 符合题意.∵k 2-sin 2x ≤1,即k 2-1≤sin 2x 对一切x ∈R 恒成立,且sin 2x ≥0,∴k 2-1≤0,∴-1≤k ≤1.①由k -sin x ≤k 2-sin 2x ,得(sin x -12)2≤k 2-k +14, ∴k 2-k +14≥(sin x -12)2对一切x ∈R 恒成立, 又(sin x -12)2的最大值为94, ∴k 2-k +14≥94,解得k ≤-1或k ≥2.② 由①②知k =-1.应用2:解:(1)当a =1时,lg(|x +3|+|x -7|)>1,|x +3|+|x -7|>10,⎩⎪⎨⎪⎧ x ≥7,2x -4>10,或⎩⎪⎨⎪⎧ -3<x <7,10>10,或⎩⎪⎨⎪⎧ x ≤-3,4-2x >10,x >7或x <-3.所以不等式的解集为{x |x <-3或x >7}.(2)设f (x )=|x +3|+|x -7|,有f (x )≥|(x +3)-(x -7)|=10,当且仅当(x +3)(x -7)≤0,即-3≤x ≤7时,f (x )取得最小值10,∴lg(|x +3|+|x -7|)≥1.要使lg(|x +3|+|x -7|)>a 的解集为R ,只要a <1.专题四应用1:证明:证法一:(1)当ac +bd ≤0时,显然成立.(2)当ac +bd >0时,欲证原不等式成立,只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2). 即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2.即证2abcd ≤b 2c 2+a 2d 2.即证(bc -ad )2≥0.因为a ,b ,c ,d ∈R ,所以上式恒成立.故原不等式成立.综合(1)、(2)知,原不等式成立.证法二:(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=(a 2c 2+2abcd +b 2d 2)+(b 2c 2-2abcd +a 2d 2)=(ac +bd )2+(bc -ad )2≥(ac +bd )2.∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd ,即原不等式成立.证法三:∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0,∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2,∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd ,即ac +bd ≤(a 2+b 2)(c 2+d 2).证法四:不妨设⎩⎪⎨⎪⎧ a =r 1cos α,b =r 1sin α,⎩⎪⎨⎪⎧c =r 2cos βd =r 2sin β, 则ac +bd =r 1r 2cos αcos β+r 1r 2sin αsin β=r 1r 2cos(α-β).又∵|r 1r 2|=|r 1|·|r 2|=a 2+b 2c 2+d 2=(a 2+b 2)(c 2+d 2),及r 1r 2cos(α-β)≤|r 1r 2|,∴ac +bd ≤(a 2+b 2)(c 2+d 2).证法五:构造函数f (x )=(a 2+b 2)x 2+2(ac +bd )x +(c 2+d 2)=(a 2x 2+2acx +c 2)+(b 2x 2+2bdx +d 2)=(ax +c )2+(bx +d )2.不论x 取任何实数,函数f (x )的值均为非负数,因此,(1)当a 2+b 2≠0时,方程f (x )=0的判别式Δ≤0,即[2(ac +bd )]2-4(a 2+b 2)(c 2+d 2)≤0.即(ac +bd )2≤(a 2+b 2)(c 2+d 2),∴ac +bd ≤|ac +bd |≤(a 2+b 2)(c 2+d 2).(2)当a 2+b 2=0时,原不等式显然成立.综合(1)(2),可知原不等式成立. 应用2:解:已知:如图,在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC .证明:假设AD ≥12BC . (1)若AD =12BC ,由平面几何中的定理“若三角形一边上的中线等于该边长的一半,那么这条边所对的角为直角”,可知∠A =90°,与题设矛盾. 所以AD ≠12BC . (2)若AD >12BC ,因为BD =DC =12BC , 所以在△ABD 中,AD >BD .从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD ,即∠B +∠C >∠CAB .因为∠B +∠C =180CAB ︒-∠,所以180CAB ︒-∠>∠CAB .则∠CAB <90°,这与题设∠CAB >90°矛盾.所以AD >12BC 不成立. 由(1)(2)知,AD <12BC . 真题放送1.(2011·陕西高考)设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b 2<b C .a <ab <b <a +b 2 D .ab <a <a +b 2<b 2.(2011·山东高考)不等式|x -5|+|x +3|≥10的解集是( )A .[-5,7]B .[-4,6]C .(-∞,-5]∪[7,+∞)D .(-∞,-4]∪[6,+∞)3.(2011·广东高考)不等式|x +1|-|x -3|≥0的解集是____________.4.(2011·浙江高考)设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________.5.(2011·辽宁高考)已知函数f (x )=|x -2|-|x -5|.(1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.6.(2011·安徽高考)(1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy ; (2)设1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c .答案:1.B ∵0<a <b ,∴a ·a <ab ,∴a <ab . 由基本不等式,知ab <a +b 2(a ≠b ). 又∵0<a <b ,∴a +b <b +b ,∴a +b 2<b , ∴a <ab <a +b 2<b . 2.D 方法一:令y =|x -5|+|x +3|,此函数对应的图象如下图所示.令y =10,即|x -5|+|x +3|=10,解得x =-4或x =6.结合图象可知|x -5|+|x +3|≥10的解集为(-∞,-4]∪[6,+∞).方法二:将x =6代入可知适合已知不等式,故排除选项C ;将x =0代入可知不适合已知不等式,故排除选项A ,B.故选D.3.[1,+∞) 原不等式可化为⎩⎪⎨⎪⎧ x ≤-1,-(x +1)-(3-x )≥0,或⎩⎪⎨⎪⎧-1<x <3,x +1-(3-x )≥0,或⎩⎪⎨⎪⎧x ≥3,x +1-(x -3)≥0. 解得不等式的解集为[1,+∞).4.2105设2x +y =m ,则y =m -2x ,代入4x 2+y 2+xy =1, 得6x 2-3mx +m 2-1=0.由Δ=9m 2-24(m 2-1)≥0,得m 2≤85, 所以-2105≤m ≤2105,所以2x +y 的最大值为2105. 5.解:(1)证明:f (x )=|x -2|-|x -5|=⎩⎪⎨⎪⎧ -3, x ≤2,2x -7, 2<x <5,3, x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}.6.证明:(1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y+xyxy (x +y )+1≤y +x +(xy )2.而[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy (x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1),又因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0.从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式,得log c a =1xy ,log b a =1x ,log c b =1y,log a c =xy .于是,所要证明的不等式即为x +y +1xy ≤1x +1y+xy ,其中x =log a b ≥1,y =log b c ≥1. 故由(1)可知所要证明的不等式成立.。
选修4-5-证明不等式的基本方法-综合法与分析法
12
分析法
证明命题时,我们还常常从要证的结论出 发,逐步寻找使它成立的充分条件,直至所需 条件为已知条件或一个明显成立的事实(定义、 公理或已证明的定理、性质等),从而得出要 证的命题成立,这种证明方法叫做分析法.
这是一种执果索因 的思考和证明方法
2021/3/10
讲解:XX
13
例 1 .求 证 2736
证 : a i 0 ( i 1 , 2 ,, n ) , 所 以 有
1 a1 2 a1, 1a2 2 a2 ,
1an 2 an ,
各 式 相 乘 得 ( 1 a 1 ) ( 1 a 2 )( 1 a n ) 2 n a 1 a 2a n 2 n 当 且 仅 当 a i 1 时 , 1 a i a i取 等 号 ,
a , b , c 不 全 相 等 , 以 上 三 式 中 至 少 有 一 个 不 取 等 号 ,
2021三 /3/10式 相 加 , 即 得 要 证 讲解的 :XX不 等 式 . 3
综合法: 综合法又叫顺推法或由因导果法
一般地,从已知条件出发,利用定义、公 理、定理、性质等,经过一系列的推理、论证 而得出命题成立,这种证明方法叫综合法.
2 021/3原 /10 式 在 a 1 a 2 讲解 :Xa X n 时 取 等 号 . 6
变式练习: 已知a,b,cR,且abc1,求证:
1a1b111c18
分 析 :1 1abc 1bc2b c,
a
a
aa
同 理 112ac, 112ab, b bc c
三 式 相 乘 即 得 要 证 的 不 等 式 .
4
例2.已知a1,a2,...,an∈R+,且a1a2...an=1,求证 (1+a1)(1+a2)…(1+an)≥2n
选修4-5 第二节 不等式证明的基本方法
4.反证法 先假设要证的命题 不成立 ,以此为出发点,结合已知条 件,应用公理、定义、定理、性质等,进行正确的 推理 ,得到和命题的条件(或已证明的定理、性质、明显 成立的事实等) 矛盾 的结论,以说明假设 不正确 ,从而 证明原命题成立,我们把它称为反证法.
5.放缩法 证明不等式时,通过把不等式中的某些部分的值放大 或, 缩小 简化不等式,从而达到证明的目的,我们把这种方法 称为放缩法.
返回
解析:∵1<1a<1b,∴0<b<a<1. ∴logab>1>logba>0. ∴A、B、C选项均正确,选项D错误.
答案:D
返回
4.若|x|<1,|y|<1,则xy+1与x+y的大小关系为________. 解析:xy+1-x-y =(y-1)(x-1), ∵|x|<1,|y|<1,∴y-1<0,x-1<0. ∴(y-1)(x-1)>0.∴xy+1>x+y. 答案:xy+1>x+y
返回
(2) bac+ abc+ acb=a+abb+c c.
在(1)中已证 a+b+c≥ 3.
因此要证原不等式成立,只需证明
1≥ abc
a+
b+
c,
即证 a bc+b ac+c ab≤1,
即证 a bc+b ac+c ab≤ab+bc+ca.
返回
而 a bc= ab·ac≤ab+2 ac, b ac≤ab+2 bc,c ab≤bc+2 ac. ∴a bc+b ac+c ab≤ab+bc+ca(当且仅当 a=b=c= 33时 等号成立). ∴原不等式成立.
返回
2.综合法 从已知条件 出发,利用定义、公理、定理、性质等,经 过一系列的推理、论证而得出命题成立,即“由因导果” 的方法,这种证明不等式的方法称为综合法或顺推法.
最新人教版高中数学选修4-5证明不等式的基本方法整合1
a2+b2+c2≥3.
1
-4-
1.1 DNA重组技术的基本工具
首 页
随堂练习 重点难点 J 基础知识 Z 知识网络 S专题探究 Z
ICHU ZHISHI
HONGDIAN NANDIAN HI SHI WANG LUO
UITANG LIANXI HUAN TI TAN JIU
专题一
专题二
专题三
专题四
首 页
随堂练习 重点难点 J 基础知识 Z 知识网络 S专题探究 Z
ICHU ZHISHI
HONGDIAN NANDIAN HI SHI WANG LUO
UITANG LIANXI HUAN TI TAN JIU
专题一
专题二
专题三
专题四
专题五
专题三
分析法
分析法证明不等式的依据:不等式的基本性质、 已知的重要不等式和逻 辑推理的基本理论.分析法证明不等式的思维方向是“逆求”(但绝不是逆推), 即由待证的不等式出发,逐步逆求使其成立的充分条件(执果索因),最后得 到充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可 考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有 效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由 因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法, 一般说来,对于较复杂的不等式,直接用综合法往往不易入手,因此,常用分 析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使 用.
专题五
【例 2】若 a= 2 ,b= 3 ,c= A.a<b<c B.c<b<a C.c<a<b D.b<a<c 解析:∵ =
高考数学总复习 第2节 证明不等式的基本方法课件 新人教A版选修4-5
放缩法证明不等式,就是利用不等式的传递性进行证明
不等关系,即要证 a> b ,只需先证明 a >p ,且 p > b. 其中 p 的 确定是最重要,也是最困难的,要凭借对题意的深刻分析, 对式子巧妙变形的能力,以及一定的解题经验.
设 m 是|a|,|b|和 1 中最大的一个,当|x|>m 时. a b 求证:|x+x2|<2. 【思路点拨】根据已知条件有:“m≥|a|,m≥|b|,m≥
|f(-1)|=|1-p+1|=|2-p|<2,
则4=(2+p)+(2-p)≤|2+p|+|2-p|<4矛盾, ∴假设不成立. ∴原结论成立.
【活学活用】 3.若 a,b,c 均为实数,且 a=x2-2y π π π 2 2 + 2 ,b=y -2z+ 3 ,c=z -2x+ 6 . 求证:a,b,c 中至少有一个大于 0.
【活学活用】 1.已知:a+b+c=0,求证:ab+bc+ ca≤0.
证明:证法一(综合法) ∵a+b+c=0,∴(a+b+c)2=0, a2+b2+c2 展开,得 ab+bc+ca=- .∴ab+bc+ca≤0. 2
证法二(分析法) 要证 ab+bc+ca≤0, ∵a+b+c=0,故只需证 ab+bc+ca≤(a+b+c)2, 即证 a2+b2+c2+ab+bc+ca≥0, 1 即2[(a+b)2+(b+c)2+(a+c)2]≥0, ∴显然原式成立. 证法三:∵a+b+c=0,∴-c=a+b, ∴ab+bc+ca=ab+(a+b)c=ab-(a+b)2 =-a2-b2-ab b 2 3b2 =-[(a+ ) + ]≤0. 2 4
(2)作商比较法 a ①理论依据:b>0,b>1⇒ a>b ; a b<0, >1⇒ a<b b .
高中数学选修4-5第二讲证明不等式的基本方法第2讲1人教版
数学 选修4-5
第二讲 证明不等式的基本方法
预习学案 课堂学案 课后练习
2.综合法 已知条件 出发,利用_________________________ 定义、公理、定理、性质 等, 从_________ 经过一系列的推理、论证而得出命题成立,这种证明方法叫做 综合法,又叫_______________________ 顺推证法或由因导果法 . 3.分析法 充分条件 , 从要证的结论 __________出发,逐步寻求使它成立的___________
数学 选修4-5
第二讲 证明不等式的基本方法
预习学案 课堂学案 课后练习
解析: ∵a2+b2-1-a2b2≤0 ∴a2b2-a2-b2+1≥0 ∴(a2-1)(b2-1)≥0 由分析法的步骤可知
答案: D
数学 选修4-5
第二讲 证明不等式的基本方法
预习学案 课堂学案 课后练习
3.已知 a,b 是正实数,比较大小 aabb________abba.
abba>0,
答案: aabb≥abba.
数学 选修4-5
第二讲 证明不等式的基本方法
预习学案 课堂学案 课后练习
4.求证: 7-1> 11- 5.
证明: 要证 7-1> 11- 5, 只需证 7+ 5> 11+1, 即证 7+2 35+5>11+2 11+1, 即证 35> 11, 即证 35>11(显然成立), 因为 35>11 成立,所以原不等式成立.
[ 解题过程]
(1)a2+b2-2(a-b-1)
=(a-1)2+(b+1)2≥0, ∴a2+b2≥2(a-b-1).
数学 选修4-5
第二讲 证明不等式的基本方法
预习学案 课堂学案 课后练习
选修4-5第二节不等式的证明+Word版
第二节不等式的证明 突破点 不等式的证明 基础联通 抓主干知识的“源”与“流” 1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.定理2:如果a ,b >0,那么a +b 2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证A B≥1. 3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点贯通 抓高考命题的“形”与“神”比较法证明不等式[例1] 设a ,b 是非负实数求证:a 2+b 2≥ab (a +b ).[方法技巧]作差比较法证明不等式的步骤(1)作差;(2)变形;(3)判断差的符号;(4)下结论.其中“变形”是关键,通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.综合法证明不等式[例2] 已知a ,b ,c >0且互不相等,abc =1.试证明:a +b +c <1a +1b +1c.[方法技巧]综合法证明时常用的不等式(1) a 2≥0.(2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ;a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b 2≥ab ,它的变形形式有: a +1a ≥2(a >0);a b +b a ≥2(ab >0); a b +b a≤-2(ab <0). 分析法证明不等式 本节重点突破1个知识点:不等式的证明.[例3] (2017·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥ 3;(2) a bc + b ac + c ab≥ 3(a +b +c ).[方法技巧]分析法的应用当所证明的不等式不能使用比较法,且和重要不等式(a 2+b 2≥2ab )、基本不等式⎝⎛⎭⎫ab ≤a +b 2,a >0,b >0没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.能力练通 抓应用体验的“得”与“失”1.[考点三]已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .2.[考点一]已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .3.[考点二]已知a ,b ,c ,d 均为正数,且ad =bc .(1)证明:若a +d >b +c ,则|a -d |>|b -c |;(2)t ·a 2+b 2c 2+d 2=a 4+c 4+b 4+d 4,求实数t 的取值范围.[全国卷5年真题集中演练——明规律]1.(2016·全国甲卷)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.2.(2015·新课标全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.3.(2014·新课标全国卷Ⅰ)若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.4.(2013·新课标全国卷Ⅱ)设a ,b ,c 均为正数,且a +b +c =1.证明:(1) ab +bc +ac ≤13; (2) a 2b +b 2c +c 2a≥1.[课时达标检测] 基础送分题——高考就考那几点,练通就能把分捡1.已知函数f (x )=|x +3|+|x -1|,其最小值为t .(1)求t 的值;(2)若正实数a ,b 满足a +b =t ,求证:1a +4b ≥94.2.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由.3.(2017·广州模拟)已知定义在R 上的函数f (x )=|x -m |+|x |,m ∈N *,存在实数x 使f (x )<2成立.(1)求实数m 的值;(2)若α,β≥1,f (α)+f (β)=4,求证:4α+1β≥3.4.(1)已知a ,b 都是正数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2;(2)已知a ,b ,c 都是正数,求证:a 2b 2+b 2c 2+c 2a 2a +b +c≥abc .5.已知x ,y ∈R ,且|x |<1,|y |<1.求证:11-x 2+11-y 2≥21-xy.6.(2017·长沙模拟)设α,β,γ均为实数.(1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|;(2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1.7.(2017·重庆模拟)设a ,b ,c ∈R +且a +b +c =1.求证:(1)2ab +bc +ca +c 22≤12; (2)a 2+c 2b +b 2+a 2c +c 2+b 2a≥2.8.(2017·贵阳模拟)已知函数f (x )=2|x +1|+|x -2|.(1)求f (x )的最小值m ;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c ≥3.。
人教A版选修4-5证明不等式的基本方法
ba
ba
2、分析法:(执果索因)
从要证的结论出发,逐步寻求使它成立的充
分条件,直至所需条件为已知条件或一个明显成 立的事实(定义、公理或已证的定理、性质等), 从而得出要证的命题成立,这种证明方法叫做分 析法.这是一种执果索因的思考和证明方法.
用分析法证明不等式的逻辑关系:
B B1 B2 Bn A
a+b+c
即 aabbcc abc 3 .
补充例题 :已知a 2,求证 : loga (a 1) log(a1) a.
分析:由于不等式两边对数的底数不同,故不宜采用作 差比较法,解答本题可采用作商比较法.
证明: a 2, a 1 1,loga a 1 0,loga1 a 0.
由于
loga a 1
下面给出证明.将不等式两边相减,得 b m b
a m a m(b a) b m b b(b m)
a b,b a 0,又 a,b,m都是正数,
m(b a) 0,b(b m) 0
m(b a) 0 ,即 a m a 0, a m a ,
b(b m)
bm b
bm b
例4、已知a,b,c 0,求证:a2b2 b2c2 c2a2 abc. abc
分析 : 要证的不等式可以化为 a2b2 b2c2 c2a2 abc(a b c),即 a2b2 b2c2 c2a2 a2bc b2ac c2ab. 观察上式,左边各项是两个字母的 平方之积,右边各项涉及三个字母, 可以考虑用x2 ( y2 z2 ) 2x2 yz.
证明: b2 c2 2bc,a 0,a(b2 c2 ) 2abc c2 a2 2ac,b 0,b(c2 a2 ) 2abc
a2 b2 2ab,c 0,c(a2 b2 ) 2abc
数学·选修4-5(人教A版)课件:第二讲2.1比较法
左边 a+1- a a+ a-1
证明: =
=
<1,
右边 a- a-1 a+1+ a
又 a+1- a>0, a- a-1>0.
所以原不等式成立.
1.比较法是证明不等式的一种最基本、最常用的方 法,比较法除了课本中介绍的作差比较法(即利用 a>b⇔ a-b>0),还有作商比较法 即要证明a>b,而b>0,只要证明ab>1.
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
如何利用规律实现更好记忆呢?
超级记忆法-记忆规 律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
+(a2b-ab2)=(a-b)(a2+ab+b2)+ab(a-b)=(a-b)(a+
b)2≥0,所以 a3+a2b≥ab2+b3.故应选 B. 答案:B
3.已知 a,b 都是正实数,则下列关系式成立的是 ()
A.aabb=abba B.aabb≥abba C.aabb<abba D.aabb≤abba 解析:因为 a,b∈R+,故 abba>0.
答案:(1)√ (2)√ (3)√ (4)×
2.若 a>b,则代数式 a3+a2b 与 ab2+b3 的值的大小 关系是( )
A.a3+a2b<ab2+b3 B.a3+a2b≥ab2+b3 C.a3+a2b=ab2+b2 D.不能确定 解析:因为 a>b,所以(a3+a2b)-(ab2+b3)=(a3-b3)
消化
固化
模式
拓展
小思 考
TIP1:听懂看到≈认知获取; TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
选修4-5第二讲-证明不等式的基本方法-课件
(a b)(a b)2
a,b 0,a b 0
又a b(a b)2 0
故(a b)(a b)2 0即(a3 b3 ) (a2b ab2 ) 0
判断一个数或式子与0的大小关系.作商比较法的实质是把两个数或式 子的大小判断问题转化为判断一个数或式子与1的大小关系. 2.作商比较法适用于哪些类型的问题?
提示:主要适用于积、商、幂、对数、根式等形式的不等式证明.
3.
已知
a
1,a
2∈(
0
,
1
)
,
M
=a
1a
2,N
=a
1+a
+
2
1,
则M
,N
的
大
小关系是________.
m(b a) 0 即 a m a 0 a m a
b(b m)
bm b
bm b
(2)作商比较法
例3 已知a,b是正数,求证aabb abba ,当且仅当a b时,等号成立.
证明:
aabb abba
aabbba
a
ab
b
根据要证的不等式的特点(交换a, b的位置, 不等式不变)
为_a_b___1或__a_b 2
6.若0
a
b
1, P
log 1
2
a
b 2
,Q
1 2
(log 1
2
a
log 1
2
b), M
log 1 (a
2
数学(选修4-5)课件1.2比较法证不等式
1.2 比较法证不等式
学习目标
重点难点
1.了解比较法证明不等式的意义.
2.理解比较法的解题步骤及书面表
1.重点是利用比较法 证明不等式.
达.
2.难点是利用分类讨
3.能够应用比较法证明简单的不等
式.
论思想证不等式.
1.比较法 (1)求差比较法 我们已经知道a>b⇔a-b>0,a<b⇔a-b<0,因此,要 证明a>b,只要证明__a_-__b_>__0__即可,这种方法称为求差比较 法. (2)求商比较法 由于 a>b>0⇔ba>1 且 a>0,b>0,因此,当 a>0,b>0 时,要证明 a>b,只要证明___ba_>__1____即可,这种方法称为求
;
当 b>a>0 时,0<ab<1,a-2 b<0,
由指数函数的性质,得aba-2 b
a+b
>1,∴aabb>(ab) 2
.
a+b
综上知,aabb>(ab) 2 .
【点评】 当被证明的不等式(或变形后)的两端都是正数 且为乘积形式或幂指数形式时,一般用求商比较法.
a+b
2.当 a,b∈(0,+∞)时,求证:abba≤(ab) 2 .
商比较法.
(1)求差比较法主要适用的类型是什么?实质是什么? (2)求商比较法主要适用的类型是什么? 提示:(1)求差比较法主要适用于具有多项式结构特征的不 等式证明.实质是把判断两个数(或式子)大小的问题转化为判 断一个数(或式子)与0大小的问题. (2)求商比较法主要适用于积(商)、幂(根式)、指数式形式 的不等式证明.
点击进入WORD链接
点击进入WORD链接
谢谢观看!
3.已知-π2≤α≤π2,-π2≤β≤π2,求α+2 β,α-2 β的取值范
选修4-5_高考不等式证明的基本方法(good)
选修4-5 等式证明的基本方法不等式的证明方法: ①作差法②作商法 ③综合法:由因到果 ④分析法:执果索因 ⑤放缩法:常见类型有⑴nn n n n n n n n 111)1(11)1(11112--=-<<+=+- (放缩程度较大);⑵)1111(2111122+--=-<n n n n(放缩程度较小);⑶1(212221--=-+<=n n n n nn )⑥数学归纳法:常用于数列类的不等式 ⑦利用函数单调性法1.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+(1a +1b +1c )2≥63,并确定a ,b ,c 为何值时,等号成立. 证明:法一:因为a ,b ,c 均为正数,由平均值不等式得a 2+b 2+c 2≥3(abc )23,① 1a +1b +1c ≥3(abc )31-,② 所以(1a +1b +1c )2≥9(abc ) 23-.故a 2+b 2+c 2+(1a +1b +1c)2≥3(abc )23+9(abc )23-. 又3(abc )23+9(abc )23-≥227=63,③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc ) 23=9(abc )23-时,③式等号成立.即当且仅当a =b =c =314时,原式等号成立.法二:因为a ,b ,c 均为正数,由基本不等式得 a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac . 所以a 2+b 2+c 2≥ab +bc +ac ,① 同理1a 2+1b 2+1c 2≥1ab +1bc +1ac ,②故a 2+b 2+c 2+(1a +1b +1c )2≥ab +bc +ac +31ab +31bc +31ac ≥6 3.③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立. 即当且仅当a =b =c =314时,原式等号成立. 2.已知x ,y 均为正数,且x >y ,求证:2x +1x 2-2xy +y 2≥2y +3.解:因为x >0,y >0,x -y >0,2x +1x 2-2xy +y 2-2y =2(x -y )+1(x -y )2=(x -y )+(x -y )+1(x -y )2≥33(x -y )21(x -y )2=3, 所以2x +1x 2-2xy +y 2≥2y +3.3.已知正实数a ,b ,c 满足1a +2b +3c =1,求证:a +b 2+c 3≥9.证明:因为a ,b ,c 均为正实数,所以1a +2b +3c ≥331a ·2b ·3c .同理可证:a +b 2+c 3≥33a ·b 2·c 3. 所以(a +b 2+c 3)(1a +2b +3c )≥33a ·b 2·c 3·331a ·2b ·3c =9. 因为1a +2b +3c =1,所以a +b 2+c 3≥9,当且仅当a =3,b =6,c =9时,等号成立.4.已知x 、y 、z ∈R, 且2x +3y +3z =1,求x 2+y 2+z 2的最小值.解:由柯西不等式得,(2x +3y +3z )2≤(22+32+32)(x 2+y 2+z 2). ∵2x +3y +3z =1,∴x 2+y 2+z 2≥122,当且仅当x 2=y 3=z 3,即x =111,y =z =322时,等号成立, ∴x 2+y 2+z 2的最小值为122.5.设f (x )=2x 2-2x +2 010,若实数a 满足|x -a |<1 ,求证:|f (x )-f (a )|<4(|a |+1). 证明:∵f (x )=2x 2-2x +2 010,∴|f (x )-f (a )|=2|x 2-x -a 2+a |=2|x -a |·|x +a -1|<2|x +a -1|,又∵2|x +a -1|=2|(x -a )+2a -1|≤2(|x -a |+|2a -1|)<2(1+|2a |+1)=4(|a |+1). 6.求证:1n +1+1n +2+…+13n >12(n ≥2,n ∈N *).证明:法一:利用数学归纳法:(1)当n =2时,左边=13+14+15+16>12,不等式成立.(2)假设当n =k (k ≥2,k ∈N *)时不等式成立.即1k +1+1k +2+…+13k >12.则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13k +3=1k +1+1k +2+…+13k +(13k +1+13k +2+13k +3-1k +1)>12+(3×13k +3-1k +1)=12. 所以当n =k +1时不等式也成立, 由(1),(2)知原不等式对一切n ≥2,n ∈N *均成立. 法二:利用放缩法: ∵n ≥2,∴1n +1+1n +2+…+13n >13n +13n +…+13n =23>12.即1n +1+1n +2+…+13n >12(n ≥2,n ∈N *).7.已知a ,b ,c 为实数,且a +b +c +2-2m =0,a 2+14b 2+19c 2+m -1=0.(1)求证:a 2+14b 2+19c 2≥(a +b +c )214; (2)求实数m 的取值范围.解:(1)由柯西不等式得[a 2+(12b )2+(13c )2]()12+22+32≥(a +b +c )2,即(a 2+14b 2+19c 2)×14≥(a +b +c )2. ∴a 2+14b 2+19c 2≥(a +b +c )214. 当且仅当|a |=14|b |=19|c |取得等号.(2)由已知得a +b +c =2m -2,a 2+14b 2+19c 2=1-m ,∴14(1-m )≥(2m -2)2.即2m 2+3m -5≤0.∴-52≤m ≤1. 又∵a 2+14b 2+19c 2=1-m ≥0,∴m ≤1,∴-52≤m ≤1.一.函数思想例1已知b a ,是两个不相等的正数, 求证:22233)())((b a b a b a +>++证明:构造二次函数)()(2)()(33222b a x b a x b a x f +++++=,0)()()(22>+++=b x b a x a x f ,0))((4)(43322<++-+=∆∴b a b a b a从而,22233)())((b a b a b a +>++例2 求证||1||||||1||||b a b a b a b a +++≥+++ 证明:设xx x x x x f +-=+-+=+=1111111)(,所以,函数f(x)的定义域为)1,|{≠∈x R x x 且,且函数f(x)在定义域上单调递增,0||||||≥+≥+b a b a ||1||||||1|||||)(||)||(|b a b a b a b a b a f b a f +++≥++++≥+∴即 二、数形结合思想例3 (课本P 23例3)已知 |a| < 1, | b |< 1 ,求证:11<++abb a分析:因为a+ b = 1/2[(1+ a)( 1+ b )-(1- a)(1 – b)], 1 + ab = 1/2[ (1+ a)( 1+ b )+(1- a)(1 – b)] 所以ab b a ++1=)1)(1()1)(1()1)(1()1)(1(b a b a b a b a --+++---++,这与过两点的斜率公式1212x x y y k --=相同,因此,可用比较斜率大小的方法来证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修4-5 不等式选讲第2课时不等式证明的基本方法(对应学生用书(理)200~202页)1. 设a 、b ∈R +,试比较a +b2与a +b 的大小. 解:∵ (a +b)2-⎝⎛⎭⎪⎫a +b 22=(a -b )22≥0,∴ a +b ≥a +b2. 2. 若a 、b 、c ∈R +,且a +b +c =1,求a +b +c 的最大值.解:(1·a +1·b +1·c)2≤(12+12+12)(a +b +c)=3,即a +b +c 的最大值为 3.3. 设a 、b 、m ∈R +,且b a <b +m a +m ,求证:a >b.证明:由b a <b +m a +m ,得b a -b +m a +m =(b -a )m a (a +m )<0.因为a 、b 、m ∈R +,所以b -a <0,即b <a.4. 若a 、b ∈R +,且a ≠b ,M =a b +ba,N =a +b ,求M 与N 的大小关系. 解:∵ a ≠b ,∴ a b +b>2a ,ba+a>2b , ∴a b +b +b a +a>2b +2a ,即a b +ba>b +a ,即M>N. 5. 用数学归纳法证明不等式1n +1+1n +2+…+1n +n >12(n>1,n ∈N *)的过程中,用n =k +1时左边的代数式减去n =k 时左边的代数式的结果是A ,求代数式A.解:当n =k 时,左边=1k +1+1k +2+…+1k +k ,n =k +1时,左边=1k +2+1k +3+…+1(k +1)+(k +1),故左边增加的式子是12k +1+12k +2-1k +1,即A =1(2k +1)(2k +2).1. 不等式证明的常用方法(1) 比较法:比较法是证明不等式的一种最基本的方法,也是一种常用方法,基本不等式就是用比较法证得的.比较法有差值、比值两种形式,但比值法必须考虑正负.比较法证明不等式的步骤:作差(商)、变形、判断符号.其中的变形主要方法是分解因式、配方,判断过程必须详细叙述.(2) 综合法:综合法就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直到推出要证明的结论,即为“由因导果”,在使用综合法证明不等式时,常常用到基本不等式.(3) 分析法:分析法就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,直至推出显然成立的不等式,即为“执果索因”.2. 不等式证明的其他方法和技巧(1) 反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定结论是正确的证明方法.(2) 放缩法欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得A≥C1≥C2≥…≥C n≥B,利用传递性达到证明的目的.(3) 数学归纳法[备课札记]题型1 用比较法证明不等式例1求证:a 2+b 2≥ab +a +b -1.证明:∵ (a 2+b 2)-(ab +a +b -1)=a 2+b 2-ab -a -b +1 =12(2a 2+2b 2-2ab -2a -2b +2) =12[(a 2-2ab +b 2)+(a 2-2a +1)+(b 2-2b +1)] =12[(a -b)2+(a -1)2+(b -1)2]≥0. ∴ a 2+b 2≥ab +a +b -1. 备选变式(教师专享) 已知a>0,b>0,求证:a b +ba≥a + b. 证明:(证法1)∵ ⎝⎛⎭⎫a b +b a -(a +b)=⎝⎛⎭⎫a b -b +⎝⎛⎭⎫b a -a =a -b b +b -aa =(a -b )(a -b )ab =(a +b )(a -b )2ab≥0,∴ 原不等式成立.(证法2)由于a b +b a a +b =a a +b b ab (a +b )=(a +b )(a -ab +b )ab (a +b )=a +bab-1≥2abab-1=1.又a>0,b>0,ab>0,∴a b +ba≥a + b. 题型2 用分析法、综合法证明不等式 例2 已知x 、y 、z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z.证明:(证法1:综合法)因为x 、y 、z 都是正数,所以x yz +y zx =1z ⎝⎛⎭⎫x y +y x ≥2z .同理可得yzx +z xy ≥2x ,z xy +x yz ≥2y .将上述三个不等式两边分别相加,并除以2,得x yz +y zx +z xy ≥1x +1y +1z. (证法2:分析法)因为x 、y 、z 均为正数,要证x yz +y zx +z xy ≥1x +1y +1z .只要证x 2+y 2+z 2xyz ≥yz +zx +xyxyz ,只要证x 2+y 2+z 2≥yz +zx +xy ,只要证(x -y)2+(y -z)2+(z -x)2≥0,而(x -y)2+(y -z)2+(z -x)2≥0显然成立,所以原不等式成立.变式训练已知a>0,求证:a 2+1a 2-2≥a +1a-2.证明:要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a +1a+2,只需证a 2+1a 2+4+4a 2+1a 2≥a 2+1a2+2+22⎝⎛⎭⎫a +1a +2, 即证2a 2+1a2≥2⎝⎛⎭⎫a +1a , 只需证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+1a 2+2, 即证a 2+1a 2≥2,此式显然成立.∴ 原不等式成立.题型3 均值不等式与柯西不等式的应用 例3 求证:a 2+b 2+c 23≥a +b +c3. 证明:∵ (12+12+12)(a 2+b 2+c 2)≥(a +b +c)2, ∴ a 2+b 2+c 23≥(a +b +c )29,即a 2+b 2+c 23≥a +b +c3.变式训练若实数x 、y 、z 满足x +2y +3z =a(a 为常数),求x 2+y 2+z 2的最小值. 解:∵ (12+22+32)(x 2+y 2+z 2)≥(x +2y +3z)2=a 2,即14(x 2+y 2+z 2)≥a 2, ∴ x 2+y 2+z 2≥a 214,即x 2+y 2+z 2的最小值为a 214.备选变式(教师专享)用数学归纳法证明:当n 是不小于5的自然数时,总有2n >n 2成立. 证明:(1) 当n =5时,25>52,结论成立.(2) 假设当n =k(k ∈N ,k ≥5)时,结论成立,即有2k >k 2,那么当n =k +1时,左边=2k +1=2·2k >2·k 2=(k +1)2+(k 2-2k -1)=(k +1)2+(k -1-2)(k -1+2)>(k +1)2=右边.∴ 也就是说,当n =k +1时,结论成立.∴ 由(1)、(2)可知,不等式 2n >n 2对n ∈N ,n ≥5时恒成立.例4 求函数y =1-x +4+2x 的最大值.解:∵y 2=(1-x +2·2+x)2≤[12+(2)2](1-x +2+x)=3×3,∴ y ≤3,当且仅当11-x =22+x时取“=”号,即当x =0时,y max =3.备选变式(教师专享)(2011·湖南改编)设x 、y ∈R ,求⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2的最小值. 解:由柯西不等式,得⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2≥(1+2)2=9.∴ ⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2的最小值为9.1. (2013·陕西)已知a 、b 、m 、n 均为正数,且a +b =1,mn =2,求(am +bn)(bm +an)的最小值.解:利用柯西不等式求解,(am +bn)(an +bm)≥(am·an +bn·bm)2=mn·(a +b)2=2·1=2,且仅当am an =bn bmm =n 时取最小值2.2. (2013·湖北)设x 、y 、z ∈R ,且满足x 2+y 2+z 2=1,x +2y +3z =14,求x +y +z 的值.解:由柯西不等式可知(x +2y +3z)2=14≤(x 2+y 2+z 2)·(12+22+32),因为x 2+y 2+z 2=1,所以当且仅当x 1=y 2=z3时取等号.此时y =2x ,z =3x 代入x +2y +3z =14得x =1414,即y =21414,z =31414, 所以x +y +z =3147. 3. (2013·江苏)已知a ≥b>0,求证:2a 3-b 3≥2ab 2-a 2b.证明:∵ 2a 3-b 3-2ab 2+a 2b =(2a 3-2ab 2)+(a 2b -b 3) =2a(a 2-b 2)+b(a 2-b 2)=(a 2-b 2)(2a +b)=(a +b)(a -b)(2a +b),又a ≥b>0,∴ a +b>0,a -b ≥0,2a +b ≥0, ∴ (a +b)(a -b)(2a +b)≥0, ∴ 2a 3-b 3-2ab 2+a 2b ≥0, ∴ 2a 3-b 3≥2ab 2-a 2b. 4. (2013·新课标Ⅱ)设a 、b 、c 均为正数,且a +b +c =1.证明: (1) ab +bc +ca ≤13;(2) a 2b +b 2c +c 2a≥1.证明:(1) 由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca. 由题设得(a +b +c)2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca)≤1,即ab +bc +ca ≤13.(2) 因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c)≥2(a +b +c), 即a 2b +b 2c +c 2a ≥a +b +c. 所以a 2b +b 2c +c 2a≥1.1. 已知正数a 、b 、c 满足abc =1,求证:(a +2)(b +2)(c +2)≥27. 证明:(a +2)(b +2)(c +2)=(a +1+1)(b +1+1)(c +1+1)≥3·3a ·3·3b ·3·3c =27·3abc =27(当且仅当a =b =c =1时等号成立). 2. 已知函数f(x)=m -|x -2|,m ∈R ,且f(x +2)≥0的解集为[-1,1]. (1) 求m 的值;(2) 若a ,b ,c ∈R ,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1) ∵ f(x +2)=m -|x|≥0,∴ |x|≤m ,∴ m ≥0,-m ≤x ≤m ,∴ f(x +2)≥0的解集是[-1,1],故m =1.(2) 由(1)知1a +12b +13c =1,a 、b 、c ∈R ,由柯西不等式得a +2b +3c =(a +2b +3c)⎝⎛⎭⎫1a +12b +13c ≥(a ·1a +2b ·12b +3c ·13c)2=9. 3. 已知x ,y ,z ∈R +,且x +y +z =1(1) 若2x 2+3y 2+6z 2=1,求x ,y ,z 的值.(2) 若2x 2+3y 2+tz 2≥1恒成立,求正数t 的取值范围.解:(1) ∵ (2x 2+3y 2+6z 2)(12+13+16)≥(x +y +z)2=1,当且仅当2x 12=3y 13=6z16时取“=”.∴ 2x =3y =6z ,又∵ x +y +z =1,∴ x =12,y =13,z =16.(2) ∵ (2x 2+3y 2+tz 2)⎝⎛⎭⎫12+13+1t ≥(x +y +z)2=1,∴ (2x 2+3y 2+tz 2)min =156+1t . ∵ 2x 2+3y 2+tz 2≥1恒成立, ∴156+1t ≥1.∴ t ≥6. 4. (1) 求函数y =x -1+5-x 的最大值;(2) 若函数y =a x +1+6-4x 最大值为25,求正数a 的值.解:(1) ∵ (x -1+5-x)2≤(1+1)(x -1+5-x)=8, ∴ x -1+5-x ≤2 2. 当且仅当1·x -1=1·5-x 即x =3时,y max =2 2.(2) (a x +1+6-4x)2=⎝⎛⎭⎫a x +1+232-x 2≤(a 2+4)(x +1+32-x)=52(a 2+4), 由已知52(a 2+4)=20得a =±2,又∵ a>0,∴ a =2.1. 算术—几何平均不等式若a 1,a 2,…,a n ∈R +,n>1且n ∈N *,则a 1+a 2+…+a nn叫做这n 个正数的算术平均数,na 1a 2…a n 叫做这n 个正数的几何平均数.基本不等式:a 1+a 2+…+a n n≥n a 1a 2…a n (n ∈N *,a i ∈R +,1≤i ≤n).2. 绝对值三角形不等式若a 、b 是实数,则||a|-|b||≤|a±b|≤|a|+|b|. 推论1:|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.推论2:如果a 、b 、c 是实数,那么|a -c|≤|a -b|+|b -c|,当且仅当(a -b)(b -c)≥0时,等号成立.3. 柯西不等式若a 、b 、c 、d 为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd)2. 4. 三角不等式设x 1、y 1、x 2、y 2∈R ,则x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.请使用课时训练(B )第2课时(见活页).[备课札记]。