数学物理方程 练习题

合集下载

数学物理方程练习题第七版(学生用)

数学物理方程练习题第七版(学生用)

= u(0, t) 0= , ux (2,t) 1,
u(x= ,0)
cos π x + x3 − 3x2 − x.
2
3.求定解问题的解:
u
x= x + u yy
sinπ x,
0 < x < 1, 0 < y < 1,
= u(0, y) 1,= u(1, y) 2,
u(x,0) =1+ x,
7
u
rr
+
1 u
r
r
+
1 r2
uθθ
= 0,
u= (1,θ ) A cosθ (−π < θ ≤ π ).
4. 设 A, B 为常数,用试探法求如下定解问题的解:
u rr
1 +rur
+
1 r2
u
θθ
=
0,
r < a,
u r= =a A cosθ + B sinθ (−π < θ ≤ π ).
练习十五
练习六
1.求解如下定解问题:
ut = uxx + cosπ x, (0 < x < 1, t > 0), u= x (0,t) u= x (1,t) 0, u(x,0) = 0.
3
2.求解如下定解问题:
= u tt
a2u
xx
+
t
sin
π l
x
,
u= (0,t) u= (l,t) 0, t ≥ 0,
X= ′(0)
X= (l)
0.
3. 求如下定解问题的解:
= ut uxx , 0 < x < 2, t > 0, ux= (0, t) u= (2, t) 0,

数学物理方程考试试题及解答(1)

数学物理方程考试试题及解答(1)

数学物理方程考试试题及解答(1)数学物理方程考试试题及解答考试题目:求解一阶常微分方程y'+3y=x+e^(-2x)解答:1. 首先我们需要将原方程变形,得到y'和y的系数都为1的形式: y'+3y=x+e^(-2x)y'+3y-1*x= e^(-2x)即:y'+3y-(1*x)= e^(-2x)2. 根据一阶常微分方程的标准形式 y'+p(x)y=q(x) ,我们可以将上述方程的左侧写成d/dx(y*e^(3x))的形式。

具体步骤如下:(y'+3y)e^(3x) - x*e^(3x) = e^(3x)*e^(-2x)即:d/dx(y*e^(3x)) - x*e^(3x) = e^xd/dx(y*e^(3x)) = e^(3x)+x*e^(3x)+e^x3. 将方程两侧的d/dx和e^(3x)去掉,得到最终的含y的方程:y*e^(3x) = ∫(e^(3x)+x*e^(3x)+e^x)dx + C= (1/3)*e^(3x) + (1/2)*x*e^(3x) + e^x + C即:y = (1/3) + (1/2)*x + e^(-3x)*(e^(2x)*C+1)4. 因为是一阶线性齐次方程,存在唯一的初始条件y0,可以将解方程带入初始条件得到C的值。

考试题目:提出热传导方程的边界条件∂u/∂t = a(∂²u/∂x²)解答:热传导方程描述的是一个物质内部温度分布随时间变化的情况,它可以用数学模型来表示:∂u/∂t = a(∂²u/∂x²)其中,u(x,t)是时间t和空间x处的温度,a是热传导系数,代表了物质的传热速率。

热传导方程的边界条件通常有如下几种:1. 第一类边界条件(Dirichlet边界条件):即在给定的边界上已知温度u,通常写成形式u(x,t)|_∂Ω = f(x,t) 。

在第一类边界上,温度保持不变,而且是已知的,所以我们直接用Dirichlet边界条件就可以描述。

数理方程练习题(1)

数理方程练习题(1)

一、填空题1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是( 双曲 )型,取值为负对应的是( 椭圆)型,取值为零对应的是( 抛物 )型。

2.在实际中广泛应用的三个典型的数学物理方程:第一个叫( 弦自由横振动 ),表达式为(2tt xx u a B u =),属于(双曲)型; 第二个叫( 热传导 ),表达式为( 2t xx u a B u =),属于( 椭圆 )型; 第三个叫(拉普拉斯方程和泊松方程),表达式为(0x x y yu u+=,(,)xx yy u u x y ρ+=-),属于(椭圆)型;二、选择题1.下列泛定方程中,属于非线性方程的是[ B ](A) 260t xx u u xt u ++=; (B) sin i t tt xx u u u e ω-+=; (C) ()220y xxxxy u x yuu +++=; (D) 340t x xx u u u ++=;2. 下列泛定方程中,肯定属于椭圆型的是[ D ](A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=;(C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题()()()()()()2,0,00,,0,0,,0tt xx x x t u a u t x lu t u l t u x x u x xϕφ⎧=><<⎪==⎨⎪==⎩的形式解可写成[ D ](A) ()01,coscos2n n a n at n x u x t a ll ππ∞==+∑(B) ()001,coscosn n n at n x u x t a b t a llππ∞==++∑(C) ()0,cos sin cos n nn n at n at n x u x t a b l l l πππ∞=⎡⎤=+⎢⎥⎣⎦∑(D) ()001,cos sin cos n n n n at n at n xu x t a b t a b l llπππ∞=⎡⎤=+++⎢⎥⎣⎦∑ 4. 若非齐次边界条件为12(0,)(),(,)()x u t t u l t t μμ==,则辅助函数可取[C ] (A) ()()12(,)W x t t x t μμ=+; (B) ()()21(,)W x t t x t μμ=+; (C) ()()()12(,)W x t x l t t μμ=-+; (D) ()()()21(,)W x t x l t t μμ=-+;三、求解下列问题(1)2,0,tt xx u a u t x =>-∞<<∞ ,其中a 为常数。

中北大学数学物理方程典型例题与解法范例

中北大学数学物理方程典型例题与解法范例

例1下列各方程是线性的, 还是非线性的? 如果是线性的, 指出是齐次的,还是非齐次的, 并确定它的阶数. (1) 22sin sin 0xx xy yy u xu xu ++=, (2) 12=+y x u u u (3) 320xxxx xxyy yyyy u u u ++=(4)0ln =++u u u xyy xxx , (5) 5352sin xxx xy yy y u u xu u u x -+++=解:(1) 原方程为二阶齐次线性方程(2) 由于2,x y u uu 都为非线性项,因此原方程为一阶非线性方程(3) 原方程为四阶齐次线性方程(4) 由于ln u 为非线性项,因此原方程为三阶非线性方程 (5) 原方程为三阶非齐次线性方程(非齐次项2sin x ) 例2 验证函数 (3)u f x y =+ 是方程: 30x y u u -=的解, 其中f 为任意连续可微函数.证:左(3)3(3)f x y f x y x y ∂∂=+-+∂∂()(3)3()(3)f x y f x y x y ξξ∂∂''=+-+∂∂ 3()3()0f f ξξ''=-==右 (3)x y ξ=+例3 验证函数 22ln()u x y =+是方程: 0xx yy u u +=的一个解证: 222222,x y x y u u x y x y ==++,2222222222222(02)24,()()xx yy x x y u u x y x y x y x y -=+=-++++ 左22222222222224240()()x y x y x y x y x y =-+-==++++右 例4 (1) 长为l 的弦, 两端点固定, 且在初始时刻0=t 处于水平状态, 初始速度为23sinxlπ, 作微小横振动, 试写出此定解问题.(2) 设有一长度为l 的杆, 它的表面是绝热的, 在0=x 的一端温度为5C ,另一端l x=处外界媒介的温度为5C ,且初始温度分布为)(x ϕ, 试写出此定解问题.解:(1) 定解问题为 0(0,)(,)02(,0)0,3s i n t t x x t u u u t u l t u x u x t lπ==⎧⎪==⎪⎨∂⎪==⎪∂⎩(2) 定解问题为 (0,)5,[(,)]5(,0)()t x x x lu u u u t u x t x u x x κϕ==⎧⎪∂⎪=+=⎨∂⎪⎪=⎩例5 将下列二阶线性偏微分方程化为标准型(1)22222320u u u x x y y∂∂∂++=∂∂∂∂,解:(1)特征方程2320y y ''-+=,特征线12,2x y C x y C -=-=,作变量代换2x yx yξη=-⎧⎨=-⎩2,x y u u u u u u ξηξη=+=-- , 22444xx u u u u u u u u ξξξηηξηηξξξηηη=+++=++ 32xy u u u u ξξξηηη=---,2yy u u u u ξξξηηη=++代入原方程,化为0u ξη-=, 所以原方程的标准型为 0u ξη=(2) 22222u u a t x∂∂=∂∂ 解 :特征方程22()dx a dt =,特征线12,x at C x at C +=-=, 作变量代换x at x atξη=+⎧⎨=-⎩, 原方程化为 2222a u a u ξηξη-=,所以原方程的标准型为 0u ξη=(3)22222320u u u u u x x y y x y∂∂∂∂∂++++=∂∂∂∂∂∂解:特征方程2320y y ''-+=,特征线12,2x y C x y C -=-=,作变量代换2x y x y ξη=-⎧⎨=-⎩原方程化为0u u ξηη-+=, 所以原方程的标准型为 0u u ξηη-=例6.证明直角坐标系下的拉普拉斯方程: 22220u ux y∂∂+=∂∂在极坐标系下为01122222=∂∂+∂∂+∂∂θu r r u r ru证:cos ,sin tan r x r y y r x θθθ⎧==⎧⎪⎨⎨=⎩=⎪⎩2()x r x y u u u r r θ=+- , 2y r y xu u u r rθ=+222234412[]xx rr r x x x xyu u u u u r r r r r θθθ=+-++222234412[]yy rr r y y y xyu u u u u r r r r rθθθ=+-+-2222222342[]xx yy rr r x y x y x y u u u u u r r r rθθ++++=+-+222()r x y =+2221111[]rr r rr r u u u u u u r r r r rθθθθ=+-+==++,所以拉普拉斯方程:22220u ux y ∂∂+=∂∂在极坐标系下为 01122222=∂∂+∂∂+∂∂θu r r u r r u。

数学物理方程试卷

数学物理方程试卷

数学物理方程试卷一、选择题1.在一个匀速运动中,物体的速度v与物体的位移s的关系是:A.v=s/tB.v=s/t^2C.v=s*tD.v=s*t^22.以下哪个物理量属于标量?A.速度B.力C.加速度D.距离3.物体质量为m,重力加速度为g,物体所受重力的大小为:A. mgB. mg/2C. 2mgD. mg^24.物体自由落体下落t秒后的位移s与时间t的关系为:A. s=gtB. s=gt^2C. s=gt^3D. s=1/gt5.以下哪个物理量属于矢量?A.面积B.速度C.力D.质量二、填空题1.一辆车以10m/s的速度匀速行驶了20秒,那么它的位移是_____________米。

2.物体在一个小时内匀速运动40千米,速度为_____________米每秒。

3.物体在水平地面上受到10牛的推力,质量为2千克,加速度为_____________。

4.一个物体从100米高的地方自由落体,下落10秒后的速度是_____________米每秒。

5.物体质量为5千克,重力加速度为10米每秒的平方,所受重力的大小是_____________牛。

三、解答题1.用物理公式解释为什么月亮绕地球运动?答:根据万有引力定律,任意两个物体之间都存在引力。

月球的质量相对较小,在地球的引力作用下,它会受到向地心的引力,从而绕着地球进行运动。

2.一个物体以10m/s的速度沿水平方向运动,另一个物体以5m/s的速度沿同一方向追赶第一个物体,如果第二个物体和第一个物体质量相同,两个物体发生碰撞后,它们的速度是多少?答:根据动量守恒定律,两个物体的总动量在碰撞前后保持不变。

因此,第一个物体的动量为10 kg·m/s,第二个物体的动量为5 kg·m/s。

由于两个物体质量相同,碰撞后它们的速度将相等。

设碰撞后的速度为v,则第一个物体的动量为10v kg·m/s,第二个物体的动量为5v kg·m/s。

《数学物理方程》习题参考答案(A)

《数学物理方程》习题参考答案(A)

《数学物理方程》习题参考答案(A)习题一1.判断方程的类型,并将其化成标准形式:0212222=∂∂+∂∂+∂∂y uyu y x u . 解:⎪⎩⎪⎨⎧==><<>-=-≡∆.0,0. ,00,.0,02211212时,抛物型当椭圆型时当时,双曲型当y y y y a a a①当0<y 时,所给方程为双曲型,其特征方程为,0)()(22=+dx y dy 即 ,0])([)(22=--dx y dy就是 0))((=---+dx y dy dx y dy .积分之,得 c y x =-±2,此即两族相异的实特征线.作可逆自变量代换⎪⎩⎪⎨⎧--=-+=,2,2y x y x ηξ则.1 ,1 ,1 ,1yy yy x x -=∂∂--=∂∂=∂∂=∂∂ηξηξ,2 ,2222222ηηξξηξηηξξ∂∂+∂∂∂+∂∂=∂∂∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u u u x u u u y u x u x u ),(1ηξ∂∂+∂∂--=∂∂u u yyu ).1)(2()(121 ]1)1( 1)1([1)()(12122222222222322y u u u u u y y yu yu yuy u y u u y y u -∂∂+∂∂∂-∂∂+∂∂+∂∂---=-∂∂+--∂∂∂++-∂∂∂---∂∂--+∂∂+∂∂--=∂∂ηηξξηξηξηηξξηξ将这些偏导数代入原方程,得附注:若令⎩⎨⎧=-⇒-==0 ,2,ηηξξηξu u y x 碰巧(双曲型的另一标准形),这是巧合.②当0>y 时,所给方程为椭圆型,其特征方程为0)()(22=+dx y dy即 .0))((=-+dx y i dy dx y i dy 其特征线为 )2 ( 2c ix y c y i x =±=±或.作可逆自变量代换 ⎩⎨⎧==,2,y x ηξ则, 1 , 0 , 0 ,1y y y x x =∂∂=∂∂=∂∂=∂∂ηξηξ, 1 , ηξ∂∂=∂∂∂∂=∂∂u y y u u x u . 1121 , 22222222ηηξ∂∂+∂∂-=∂∂∂∂=∂∂u y u y y yu u x u 将这些偏导数代入原方程,得, 021212222=∂∂+∂∂+∂∂-∂∂ηηηξuy u u y u , 0 2222=∂∂+∂∂∴ηξu u 此即(0>y 时)所求之标准形. ③0=y 时,原方程变为 , 02122=∂∂+∂∂y uxu 已是标准形了(不必再化).2.化标准形:. 0222222222222=∂∂∂+∂∂∂+∂∂∂+∂∂∂+∂∂+∂∂t z ut x u z x u y x u zu x u解: u Lu )2222(434131212321δδδδδδδδδδ+++++≡.这是 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t z y x4321δδδδδ 的二次型,于是 , u A Lu Tδδ=其中 010*********1111⎪⎪⎪⎪⎪⎭⎫⎝⎛=A 为实对称矩阵.则∃可逆矩阵M ,使 TMAM B = 为对角形. 令 , 'δδT M = 其中 , '4'3'2'1'''''⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂=δδδδδt z y x 则 u B u MAM Lu T T T '''')()(δδδδ==.M 的找法很多,可配方,可从矩阵入手等.取 ,11000110001100011-=⎪⎪⎪⎪⎪⎭⎫⎝⎛---=N M , 1000110011101111)(1⎪⎪⎪⎪⎪⎭⎫⎝⎛==-TT M N . , 1''''''⎪⎪⎪⎪⎪⎭⎫⎝⎛===⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-t zy x M MX X N t z y x X N T δδ则.)( )( 2222'2'2'2'2'''tu z uy u x u u B uMAM u A Lu TT T T ∂∂-∂∂+∂∂-∂∂====δδδδδδ这是超双曲型方程的标准形式.习题二1.决定任意函数法:(1).求解第一问题(0))(0) ( ).(),( , 002ψϕψϕ=⎪⎩⎪⎨⎧======-x ux u u a u at x at x xx tt .解:所给方程为双曲型,其特征线为 c at x =±. 令⎩⎨⎧-=+=,,at x at x ηξ 则可将方程化为 0=ξηu .其一般解为)()(),(21at x f at x f t x u -++= (其中21,f f 为二次连续可微函数). 由定解条件有)0()0()0()0( ).()2()0(),()0()2(212121ψϕψϕ==+⇒⎩⎨⎧=+=+f f x x f f x f x f . 则 ⎪⎩⎪⎨⎧-=-=⇒⎩⎨⎧-=-=).0()2()(),0()2()( ),0()()2(),0()()2(12211221f Y Y f f X X f f x x f f x x f ψϕψϕ 故 )()(),(21at x f at x f t x u -++=).0()2()2()]0()0([)2()2(21ϕψϕψϕ--++=+--++=at x at x f f atx at x (2).求解第二问题 ))0()0( ( ).(),( ,101002ϕϕϕϕ=⎪⎩⎪⎨⎧=====x u x u u a u t at x xx tt解:泛定方程的一般解为)()(),(21at x f at x f t x u -++=由定解条件有 (0))(0)(0)( ).()()(),()0()2(021121021ϕϕϕ=+⎩⎨⎧=+=+f f x x f x f x f x f 则 ),0()2()(201f xx f -=ϕ).0()2()()()()(201112f x x x f x x f +-=-=ϕϕϕ故 )()(),(21at x f at x f t x u -++= ).()2()2(100at x atx at x -+--+=ϕϕϕ (3).证明方程22222)1(])1[(tu h x a x u h x x ∂∂-=∂∂-∂∂ 的解可以写成)]()([1),(21at x f at x f xh t x u -++-=. 由此求该方程满足Cauchy 条件 ⎩⎨⎧====)(),(00x u x u t t t ψϕ 的解.解:令 ),,()(),(t x u x h t x v -= 则 ),(t x v 满足方程 xx tt v a v 2=.)()(),( 21at x f at x f t x v -++=∴.故 )]()([1),(21at x f at x f xh t x u -++-=. 因),(t x v 满足 ⎪⎩⎪⎨⎧≡-=≡-====),()()(),()()( ,10002x x x h vx x x h v v a v t t t xx tt ψϕϕϕ由D'Alembert 公式,得⎰+-+-++=atx atx d a at x at x t x v ααψϕϕ)(21)]()([21),( )]())(()())([(2100at x at x h at x at x h ---+++-=ϕϕ+ααϕαd h a atx at x ⎰+--)()(211 故 ),(1),(t x v xh t x u -=[]⎭⎬⎫⎩⎨⎧-+---+++--=⎰+-atx atx d h a at x at x h at x at x h x h ααϕαϕϕ)()(21)())(()())((211100 即为所求之解.2.Poisson 公式及应用:(1).若),,,(t z y x u u =是初值问题 ⎪⎩⎪⎨⎧+=+=>++===)()( , )()(),0( )(002z y uy g x f u t u u u a u t t t zz yy xx tt ψϕ的解,试求解的表达式.解:IIIIIIu u u u ++=(线性叠加原理),其中IIIIII,,u u u 分别满足如下的初值问题:.0 ),(),0( )(:002I ⎪⎩⎪⎨⎧==>++===t t t zz yy xx tt ux f u t u u u a u u).( ),(),0( )(:002II ⎪⎩⎪⎨⎧==>++===y uy g u t u u u a u u t t t zz yy xx tt ϕ).( ,0),0( )(:002III ⎪⎩⎪⎨⎧==>++===z uu t u u u a u u t t t zz yy xx tt ψ由Poisson 公式,可得⎰⎰∂∂=MatS dS f t a t u ])( 41[2I ξπ)].()([21])(21[at x f at x f d f a t atx atx -++=∂∂=⎰+-ξξ.)(21)( 41.)(21)]()([21 ])( 41[)( 412III22II ⎰⎰⎰⎰⎰⎰⎰⎰+-+-==+-++=∂∂+=Mat M atMat S atz at z aty aty S S d a d t a ud aat y g at y g dS g t a t dS t a u ζζψζζψπηηϕηπηϕπ故IIIII I ),,,(u u u t z y x u ++=.)(21)(2a1)]()([21)]()([21 ⎰⎰+-+-++-+++-++=atz at z aty aty d a d at y g at y g at x f at x f ζζψηηϕ(2).求解初值问题 ⎪⎩⎪⎨⎧+==>-+++=== . ,00),(t )(2)(2002yz x u u z y u u u a u t t t zz yy xx tt解: IIIu u u +=,其中I u : ⎪⎩⎪⎨⎧+==>++=== . ,00),(t )(2002yz x u u u u u a u t t t zz yy xx ttII u : ⎪⎩⎪⎨⎧==>-+++===.0 ,00),(t )(2)(002t t t zz yy xx tt uu z y u u u a u由poisson 公式,得32222I 31)()( 41t a t yz x dS t a u Mat S ++=+=⎰⎰ηζξπ. 由Duhamel 原理,得.)( ])(2)( 41[);,,,(2020II)(t z y d dS t a d t z y x w u M t a S tt-=--==⎰⎰⎰⎰-τζητπτττ故 2322)(31)(),,,(t z y t a t yz x t z y x u -+++= 即为所求. 3.降维法:⎪⎩⎪⎨⎧==>++===.0 ,00),(t ),,()(002t t t yy xx tt uu t y x f u u a u 解:把所给初值问题的解),,(t y x u 看作),,,(t z y x 空间中的函数,即与y x ,平面垂直的直线上的函数值都相等:),,(),,,(*t y x u t z y x u =,则 ),,,(*t z y x u 应形式的满足⎪⎩⎪⎨⎧==>+++=== .0 ,00),(t ),,()(0*0****2*t t t zz yy xx tt u u t y x f u u u a u 由推迟势可得dV ra rt f a t z y x u atr ⎰⎰⎰≤-=),,( 41),,,(2*ηξπττηξτπτττηξπττd dS f t a d dS t f a tS tS M t a M t a ]),,([141]),,([ 410202)()(⎰⎰⎰⎰⎰⎰---=-=τηξτηξττηξτπτd y x t a d d t a f t a ty x M t a ])()()( )(),,(2[141222202),()9------∑-=⎰⎰⎰-τηξτηξτηξπτd y x t a d d f a tx M t a ])()()( ),,([ 212222),()(⎰⎰⎰∑-----=-.此即所求初值问题解的积分表达式.习题三1.求解特征值问题 ⎩⎨⎧=+=<<=+ . 0)()( ,0)0(),(0 0)()("''l X l X X l x x X x X λ 解:该特征值问题要有解0≥⇔λ.0>λ时,记2ωλ=,则 x B x A x X ωωsin cos )(+=.x B x A x X ωωωωcos sin )('+-=. 1(*) 由 0)0('=X ,有 0=B .从而 x A x X A ωcos )(,0=≠. 由 0sin cos ,0)()('=-=+l A l A l X l X ωωω有. ωω=l cot . 此即确定 ω(从而确定λ)的超越方程.由图解法,曲线 ωω==y l y cot 和 有无穷个交点,其横坐标<<<<<n ωωω210,从而 ),2,1( 2==n nn ωλ 便是非0特征值,相应的特征函数为2(*) ,2,1 , cos )( ==n x A x X n n n ω.)( , )( 0'A x XB Ax x X =+==时,λ由0)0('=X ,有0=A .由0)()('=+l X l X , 有 0=B .此时只有平凡解 0)(≡x X . 综上,所求特征值问题的解),2,1( , cos )( ==n x A x X n n n ω.其中n ω为超越方程 ωω=l cot 的正根.附注:下证特征函数系{}∞=1cos n n x ω是],0[l 上的正交系:事实上,设x x X n n ωcos )(=和x x X m m ωcos )(=分别是相应于不同特征值2n n ωλ=和2m m ωλ=的特征函数,即)(x X n 和)(x X m 分别满足).()(,0)0(,0)()(:)(''"⎩⎨⎧+==+l X l X X x X x X x X n n nn n n n λ (1) ⎩⎨⎧=+==+.0)()(,0)0(,0)()(:)(''"l X l X X x X x X x X m m m m m m m λ (2) 则[]0 )()2()()1(0=⋅-⋅⎰dx x X x Xln m,即 []⎰-+-=lm n m n n m m n dx x X x X x X x X x X x X"" )()()())()()()((0λλdx x X x X lm n m n ⎰-=0)()()(λλ若,m n λλ≠则 ),2,1,( 0)()(0==⎰m n dx x X x X lm n .即在],0[l 上,不同特征值所对应的特征函数彼此正交. 2.用分离变量法求波动方程混合问题⎪⎩⎪⎨⎧≤≤==>==><<+=== ),0( , ),0( ),( ,),0(),0 ,0( 20022l x x ux u t t t l u t t u t l x g u a u t t t x xx tt的形式解,其中g 为常数.解:(1).边界条件齐次化:令 ),,(),(),(t x Q t x v t x u +=使⎪⎩⎪⎨⎧====,,20t Q t Q l x x x (这不是定解问题),则取 2)(),(t t l x t x Q +-=即可. 这时),(t x v 满足 ⎪⎩⎪⎨⎧≤≤--==>==><<-+===).0( )( , 0),( 0),( ,0),0(),0 ,0( 2200t 2l x l x x vx v t t l v t v t l x g v a v t t x xx tt(2).“拆”——由线性叠加原理:IIIv v v +=,其中⎪⎩⎪⎨⎧+-====><<=== ., ,0),(),0(),0,0( :2002I l x x vx v t l v t v t l x v a v v t t t x xx tt ⎪⎩⎪⎨⎧====><<-+=== .0,0 ,0),(),0(),0,0( 2:002IIt t t x xx tt vv t l v t v t l x g v a v v (3).用分离变量法求得l x n l at n b l at n a t x v n n n 2 )12(cos 2 )12(sin 2 )12(cos ),(1Iπππ-⎥⎦⎤⎢⎣⎡-+-=∑∞=. 其中⎰⎰--=ll n d ln d ln a 022)12(cos2)12(cos 1ξπξξξπξ,ξπξξξξπξπd ln l d l n l a n b lln 2)12(cos )(2)12(cos 2 )12(122-+---=⎰⎰..,2,1 =n (n n b a ,都可算出来).(4).由Duhamel 原理: ττd t x w t x v t⎰=0II),,(),(,其中),,(τt x w 满足 ⎪⎩⎪⎨⎧-====><<=== . 2 , 0 ,0),( ,0),0( ),,(0 2g ww t l w t w t l x w a w t t t x xx tt τττ用分离变量法求得∑∞=---=12 )12(cos 2)( )12(sin),,(n n l xn l t a n c t x w πτπτ.其中 ξπξξπξπd ln g d l n l a n c lln 2)12(cos)2(2)12(cos 2 )12(12----=⎰⎰. ,3,2,1 =n (n c 可算出).综上: ),(),(),(),(),(),(III t x Q t x v t x v t x Q t x v t x u ++=+=.习题四1.用分离变量法求热方程混合问题⎪⎩⎪⎨⎧===><<-== )( ,0),(),0(),0,0( 022x u t l u t u t l x u b u a u t xx t ϕ 的形式解.解:这是齐次方程、齐次边界条件情形,直接分离变量: 令 )()(),(t T x X t x u =,代入泛定方程,得),( )(22'"λ-=+=a bTa T X X 从而 0)()()( , 0)()(2'"=++=+t T b a t T x X x X λλ. 由边界条件,得 ,0)()0(==l X X 于是,特征值问题为⎩⎨⎧==<<=+0.)((0))(0 , 0)()("l X X l x x X x X λ 特征值 2)(l n n πλ=, 特征函数为 x ln x X n πsin )(=,),2,1( =n . 而 )1,2,(n )(])[(22 ==+-t b lan n n eA t T π.取 11])[((*) . sin),(22x ln eA t x u n t b lan n ππ∑∞=+-=利用 ]0[ sinl x ln ,在⎭⎬⎫⎩⎨⎧π上的正交性,可定出 ⎰==ln n d ln l A 0),2,1( sin)(2 ξπξξϕ. 2(*) 1(*),2(*)给出所求混合问题的形式解.附注:若令 ),( ),,(),(2t x v t x v e t x u t b 则-=满足⎪⎩⎪⎨⎧===><<==== ).( ,0),0,0( 002x v v v t l x v a v t l x x xx t ϕ用分离变量法求得lxn eA t x v t lan n n sin),(2)(1ππ-∞=∑=. 而n A 同2(*),这恰与上面结果一致.习题五用Fourier 变换法求初值问题⎩⎨⎧=>++== .0),0( ),(202t xx t u t t x f tu u a u 的形式解.解:方程和初始条件两端关于x 做Fourier 变换(视t 为参数),并记),(~)],([ , ),(~)],([t f t x f F t u t x u F ξξ==.则原问题化为常微分方程的初值问题:⎪⎩⎪⎨⎧=>++-=)( .0)0,(~),0( ),(~~ 2~~22为参数ξξξξu t t f u t u a dtu d 其解为 ττξξτξτξd e f e e e t u a tt a t 2222220),(~),(~⋅⋅⋅=⎰--. 故 )],(~[),(1t uF t x u ξ-= ττξττξττξτξττξτξτξd e f F ee d ef e F e d e f e e e F ta t t a tt t t a t a t t ⎰⎰⎰-----------⋅⋅⋅=⋅⋅⋅=⎥⎦⎤⎢⎣⎡⋅⋅⋅=01)(0101]),(~[]),(~[),(~)(22222222222222ττπτττd et a F x f F F e e tt a x t]])(21[)],([[0)(412222⎰-----⋅⋅=ττπτττd et a x f F F e e tt a x t]])(21*),([[0)(412222⎰-----⋅=τξττξπτξτd d et f e a ett a x t ]1),([20)(4)(2222⎰⎰---∞∞---=即为所求.习题六1.求边值问题⎪⎪⎩⎪⎪⎨⎧≤≤=≤≤==<≤≤<≤=++=== )(0 )( ),0( 0),20 ,0( 01102αθθρπαθρρρραθθθθρρρf u l u u l u u u l 的形式解.解:用分离变量法:令 )()(θρΘ=R u ,代入泛定方程可得)( "'"2λρρ=ΘΘ-=+RR R ,因而 0)()("=Θ+Θθλθ,0)()()('"2=-+ρλρρρρR R R (Euler 方程).由边界条件 00====αθθu u,得 0)()0(=Θ=Θα.于是特征值问题为,0)()0(),0( 0)()("⎩⎨⎧=Θ=Θ<<=Θ+Θααθθλθ 特征值 2)(απλn n =,特征函数为 )1,2,( sin)( ==Θn n n θαπθ.而 Euler 方程 0'"2=-+R R R λρρ 的解 απαπρρρn n D C R -+=)(.为保证有界性应取 0=D ,从而 ),2,1( )( ==n C R n n n απρρ.取 ∑∑∞=∞==Θ=11sin)()(),(n n n n n n n C R u απθρθρθραπ. 1(*)由边界条件 )(θρf ul ==,应有 ∑∞==1sin )(n n n n lC f απθθαπ.由 ⎭⎬⎫⎩⎨⎧απθn sin在 ],0[α上的正交性,可得),2,1( sin)( 2==⎰n d n f l C n n ϕαπϕϕαααπ. 2(*)1(*) ,2(*)给出所求问题的形式解.2.用Green 函数法求解上半平面Dirichlet 问题⎪⎩⎪⎨⎧∞→+=>=+=. ),( ),0( 0220有界时,u y x x f u y u u y yy xx 解:根据二维Poisson 方程Dirichlet 问题⎩⎨⎧=∈-=+∂ ),(D.),( ),,(2y x f u y x y x u u Dyy xx πρ 解的积分表达式P PDDdl n M P G P f dxdy M M G M y x u M u ∂∂-==⎰⎰⎰∂),()(21),()(),()(00000πρ(其中0M 是D 内任一点,P n是边界D ∂上点P 的外法线方向). 其中 满足而 ),( ),,(1ln),(0000M M g M M g r M M G MM -=⎪⎩⎪⎨⎧∂∈=∈=∆).( 1ln ),g(),( 0),(000D P r M P D M M M g PM M),(0M M G 称为Green 函数,找),(0M M G 的问题归结为“特定装置下”找感应电荷所产生的电势),(0M M g -.对上半平面0>y 而言,若在0M 处放置单位正电荷,它在M 处产生的电势为01lnMM r ,则感应电荷应放在0M 关于0=y 的对称点'0M 处,电量为 -1,它于M 处产生的电势为'1lnMM r -,从而Green 函数为'1ln1ln),(0MM MM r r M M G -=20202020)()(ln )()(ln y y x x y y x x ++-+-+--=.故所求解为⎰⎰⎰⎰∞∞-=∞∞-=∞∞-=∞∞-+-=∂∂=-∂∂-=∂∂-=.)()()(21 )()(21)(21),(22000000dx yx x x f y dx yG x f dxy G x f dx n G x f y x u y y y ππππ。

数学物理方程习题

数学物理方程习题
1 定理的叙述: 若u(Q)在A点附近调和, u(Q) = o(1) r(A,Q , 则可补充u(Q)在A之 )
值使得u(Q)在A点得邻域中调和. 16.设P 为常系数线性偏微分算子,且有基本解E (x), 满足singsuppE = {0}则P 为亚椭圆的。 (Thm6.3.2) 第七章热传导方程 1.求解热传导算子的基本解 2.求解热传导方程的Cauchy问题 { ∂u − a2 ∆u = f (x, t) t > 0 ∂t u(x, t)|t=0 = φ(x) 3.求解热传导方程的初边值问题. {
∑ 1 ξ α ∂ α uP α (x, η ) α ! α
是一个重要的公式,称为推广的莱布尼茨公式.又以后对任一函数F (x, ξ )恒
β α 记F(β ) (x, ξ ) = ∂x ∂ξ F (x, ξ ),即下标表示对x求导,上标表示对ξ 求导. (α)
8.设有C ∞ (R)函数列{fn (x)}满足 1
d2 dx2 d + dx
α, α ∈ R .
2 + ∂r , 其中r =
第六章Laplace方程
n −1 ∂r r 3
√ 2 x2 1 + ... + xn
2.设开集Ω ⊂ R 有界,边界∂ Ω光滑,u(x) ∈ C 2 (Ω) ∩ C 1 (Ω), Q ∈ Ω 证明 ∫ 1 ∂u ∫ ∫ ∆u u ∂ ( 1 )ds − 41 u(Q) = 41 ds − 41 dx π ∂ Ω r ∂n π ∂ Ω ∂n r π Ω r 3.证明球面平均值公式,球体平均值公式 4.证明调和函数的极值原理 5.利用极值原理证明以下Dirichlet问题的唯一性和稳定性 ∆u = 0 u|∂ Ω = f 6.利用Green函数求解上半平面的Dirichlet问题 ∆u(x, y ) = 0 y > 0 u|y=0 = f (x) 7.利用Green函数求解圆Ω上的Dirichlet问题 ∆u = 0 u|∂ Ω = f (x) ¯ ∩ C 2 (Ω), 证明: 8.设Ω = BR (Q)(以Q为心、 R为半径的开圆域), u ∈ C (Ω) ∫∫ ∫∫∫ 1 (1).u(Q) = 4πR )∆udx. u(P )dSp + 41 (1 − 1 2 π r ∂BR (Q) BR (Q) R ∫ ∫ 1 (2).若∆u ≥ 0, 则u(Ω) ≤ 4πR2 u(P )dSp . ∂BR (Q) 9.证明第一格林公式 ∫ ∫ u

数学物理方程练习题

数学物理方程练习题

σf 4dSdt.
根据热量平衡有 故所求边界条件为
−k
∂u ∂n
dSdt
=
σu4dSdt

σf
4dSdt.
−k
∂u ∂n
=
σ(u4
− f 4).
齐海涛 (SDU)
数学物理方程
2012-10-3 12 / 49
1. 热传导方程及其定解问题的导出 2. 初边值问题的分离变量法 3. 柯西问题 4. 极值原理、定解问题解的唯一性和稳定性 5. 解的渐近性态
dQ = −βQ, dt Q(0) = Q0,
⇒ Q(t) = Q0e−βt.
易知 t1 到 t2 时刻, 砼内任一区域 Ω 中的热量的增加等于从 Ω 外部流入 Ω 的热量及砼中的水化热之和, 即
齐海涛 (SDU)
数学物理方程
2012-10-3 7 / 49
热传导方程及其定解问题的导出
∫ t2 cρ ∂u dtdxdydz =
.
热传导方程
.
Heat Equations
齐海涛
山东大学(威海)数学与统计学院
htqisdu@
齐海涛 (SDU)
数学物理方程
2012-10-3 1 / 49
目录
1. 热传导方程及其定解问题的导出 2. 初边值问题的分离变量法 3. 柯西问题 4. 极值原理、定解问题解的唯一性和稳定性 5. 解的渐近性态
热传导方程及其定解问题的导出
.E.xample 1.2
.试直接推导扩散过程所满足的微分方程.
解: 设 N(x, y, z, t) 表示在时刻 t, (x, y, z) 点处扩散物质的浓度, D(x, y, z) 为 扩散系数, 在无穷小时间段 dt 内, 通过无穷小曲面块 dS 的质量为

数学物理方程作业

数学物理方程作业

习题2.12. 长为L ,均匀细杆,x=0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆做自由振动。

试写出方程的定解条件。

解:边界条件:u(x,t)|0=x =0自由端x=L ,u x |L x ==0初始条件:u(x,t)|0=t =x Lbu t |0=t =0 习题2.21. 一根半径为r ,密度为ρ,比热为c ,热传导系数为k 的匀质圆杆,如同截面上的温度相同,其侧面与温度为1u 的介质发生热交换,且热交换的系数为1k 。

试导出杆上温度u 满足的方程。

解:热传导的热量=温度升高吸收的热量+侧面热交换的热量rdxdtu u k t x u dt t x u dx r c dt t x u t dx x u r k x x πρππ2)()],(),([)],(),([1122-+-+=-+即为:rdxdt u u k dt dxu r c dxdt u r k t xx πρππ2)(1122-+=)(211u u k ru c kru t xx -+=ρ所以温度u 满足的方程为r c u u k u c ku xx t ρρ)(211--=-习题2.34. 由静电场Gauss 定理⎰⎰⎰⎰⎰=∙VdV dS E ρε1,求证:ερ=∙∇E ,并由此导出静电势u 所满足的Poisson 方程。

证明:⎰⎰∙S dS E =⎰⎰⎰⎰⎰⎰=∙∇VVdV EdV ρε 1所以ερ=∙∇E 又因为ερϕϕϕ=-∇=-∇∙∇=∙∇⇒∙-∇=2)(E E 习题2.4 2.(2)032=-+yy xy xx u u u 解: 特征方程:032)(2=--dx dy dx dy ,则有1-3或=dxdy即为 13c x y += 2c x y +-= 令x y +=η x y 3-=ξ 则由:ηηξηξξu u u u xx +-=69 ηηξηξξu u u u xy +--=23 ηηξηξξu u u u yy ++=2 推得 0=ξηu则解得 )()3()()(x y g x y f g f u ++-=+=ηξ (5)031616=++yy xy xx u u u 解:由特征方程:0316)(162=+-dxdydxdy解得4143或=dx dy 则可令 x y -=4ξ x y 34-=η所以⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=4431y x y x Q ηηξξ 因此=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T Q a a a a Q a a a a 2212121122121211⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡03232022121211a a a a 即032=-ξηu所以)34()4(x y g x y f u -+-= 习题2.6 1.(3).证明)0(||)()(≠=a a x ax δδ证明:当0>a 时a dx x a ax d ax a dx ax 1)(1)()(1)(===⎰⎰⎰+∞∞-+∞∞-+∞∞-δδδ所以)0()()(≠=a ax ax δδ 当0<a 时adx x a ax d ax adx ax dx ax 1)(1)()(1)()(-=-=---=-=⎰⎰⎰⎰∞+∞-+∞∞-+∞∞-+∞∞-δδδδ所以)0()()(≠-=a ax ax δδ 综上:)0(||)()(≠=a a x ax δδ习题3.13.(4)求解边值问题的固有值和固有函数⎩⎨⎧=+'==+''==0][,0|002L x x hX X X X X β解:当0=β时,B Ax x X +=)(代入边值条件得:B X x ===0|00100)(][=+=⇒=+=+'=hL A AL h A hX X L x 或 所以当010=+≠hL A 且时Ax x X =)(当010≠+=hL A 且时0)(=x X 当0>β时,)sin()cos()(x B x A x X ββ+= 代入边值条件得:A X x ===0|00)sin()cos(][=+=+'=L hB L B hX X L x βββ 解得:L hn βββtan -=为的正根所以)sin()(x x X n n β= 当0<β时,无解。

数学物理方程_ 复习

数学物理方程_ 复习

复 习题型一、根据物理过程写出相应的定解问题。

习题一、1,2, 例1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ϕ初始速度为().x ψ试写出相应的定解问题。

解 这是弦的自由振动,其位移函数(,)u x t 满足2,tt xx u a u = 其中2Ta ρ=.由于左端开始时自由,以后受到强度为sin A t ω的力的作用,所以(0,0)0,(0,)sin 0,0,x x u Tu t A t t ω=+=>因此 sin (0,),0.x A tu t t Tω=-≥ 又右端系在弹性系数为k 的弹性支承上面,所以 (,)(,)0,x Tu l t ku l t --= 即 (,)(,)0.x Tu l t ku l t +=而初始条件为 0(),().t tt ux u x ϕψ====因此,相应的定解问题为200,0,0,sin (0,),(,)(,)0,0.(),().tt xx xx t t t u a u x l t A t u t Tu l t ku l t t T u x u x ωϕψ==⎧=<<>⎪⎪=-+=≥⎨⎪==⎪⎩例2、一长为 l 的均匀细杆,侧面绝热,一端放入0o C 水中,另一端裹以石棉,杆的初始温度为(),x ϕ 试写出杆的温度分布函数所满足的定解问题。

题型二、求特征值问题。

例3、求下列特征值问题的特征值和特征函数.(1)''()()0,(0)()0X x X x X X l λ⎧+=⎨==⎩(2)''()()0,'(0)()0X x X x X X l λ⎧+=⎨==⎩(3)''()()0,(0)'()0X x X x X X l λ⎧+=⎨==⎩(4)''()()0,'(0)'()0X x X x X X l λ⎧+=⎨==⎩(4)''()()0,()(2)θλθθθπΦ+Φ=⎧⎨Φ=Φ+⎩题型三、用分离变量法求齐次方程齐次边界条件的定解问题。

数学物理方程练习题第九版(学生用)

数学物理方程练习题第九版(学生用)

u(r, π=) 2
0,
0 < r < 1,
u(1,θ )=
θ (π −θ ), 2
0<θ < π . 2
练习六
3
1.求解如下定解问题:
ut = uxx + cosπ x, (0 < x < 1, t > 0), u= x (0,t) u= x (1,t) 0, u(x,0) = 0.
2.求解如下定解问题:
《数学物理方程与特殊函数》习题
练习一
1.写出长为 L 的弦振动的边界条件和初始条件:
(1)端点 x = 0, x = L 是固定的;
(2)初始状态为 f (x) ;
(3)初始速度为 g(x) ; (4)在任何一点上,在时刻 t 时位移是有界的. 2.写出弦振动的边界条件:(1)在端点 x = 0 处,弦是移动的,由 g(t) 给出;(2) 在端点 x = L 处,弦不固定地自由移动. 3. 验证函数 u = f (xy) 是方程 xux − yu y = 0 的解,其中 f 是任意连续可微函数.
保持零度,而外圆温度保持 u0 (u0 > 0) 度,试求稳恒状态下该导热版的温度分布
规律 u(r,θ ) . 问题归结为在稳恒状态下,求解拉普拉斯方程 ∆u= uxx + uy问题:
u1r (∂r∂1r,θ= )r
∂u ∂r
0,
+ 1 ∂2=u r 2 ∂θ 2 u(r2 ,θ=)
= u(0, t) s= in t, ux (π ,t) 0,
u(x,0) = 0.
4
3. 求解以下定解问题:
= uu= (t0,tu) xx
+2ux , u= (1, t )

数学物理方程 习题 答案

数学物理方程 习题 答案

数学物理方程习题答案数学物理方程是科学领域中的重要组成部分,通过解答习题可以加深对这些方程的理解。

本文将探讨一些常见的数学物理方程习题,并给出相应的答案。

第一节:一元二次方程一元二次方程是数学中经常遇到的一类方程。

考虑以下习题:1. 解方程:x^2 - 5x + 6 = 0解答:可以通过因式分解或者求根公式来解这个方程。

因式分解得到:(x - 2)(x - 3) = 0,因此x的解为x = 2或x = 3。

2. 解方程:2x^2 + 3x - 2 = 0解答:可以使用求根公式来解这个方程。

根据求根公式,x的解为x = (-3 ±√(3^2 - 4*2*(-2))) / (2*2) = (-3 ± √(9 + 16)) / 4 = (-3 ± √25) / 4 = (-3 ± 5) / 4。

因此x的解为x = -2或x = 1/2。

第二节:牛顿第二定律牛顿第二定律描述了物体受力情况下的加速度。

考虑以下习题:1. 一个物体质量为2kg,受到一个力F = 10N,求物体的加速度。

解答:根据牛顿第二定律,力等于质量乘以加速度,即F = ma。

代入已知值,可得10 = 2a,解得加速度a = 5m/s^2。

2. 一个物体质量为3kg,受到一个力F = 15N,已知物体的加速度为2m/s^2,求摩擦力的大小。

解答:根据牛顿第二定律,力等于质量乘以加速度,即F = ma。

已知F = 15N,m = 3kg,a = 2m/s^2,代入公式可得15 = 3 * 2 + Ff,解得Ff = 9N,其中Ff为摩擦力。

第三节:电路中的欧姆定律欧姆定律描述了电流、电压和电阻之间的关系。

考虑以下习题:1. 一个电阻为10Ω的电路中,通过的电流为5A,求电压。

解答:根据欧姆定律,电压等于电流乘以电阻,即V = IR。

代入已知值,可得V = 5 * 10 = 50V。

2. 一个电路中,通过的电流为2A,电压为6V,求电阻的大小。

成都理工大学数学物理方程题库

成都理工大学数学物理方程题库

《数学物理方程》模拟试题一、填空题(3分10=30分)1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ).2.三维热传导齐次方程的一般形式是:( ) .3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) .4.边界条件 是第 ( )类边界条件,其中为边界.5.设函数的傅立叶变换式为,则方程的傅立叶变换 为 ( ) .6.由贝塞尔函数的递推公式有 ( ) .7.根据勒让德多项式的表达式有= ( ).8.计算积分 ( ).9.勒让德多项式的微分表达式为( ) .10.二维拉普拉斯方程的基本解是( ) .⨯f u nuS=+∂∂)(σS ),(t x u ),(t U ω22222x u a t u ∂∂=∂∂=)(0x J dxd)(31)(3202x P x P +=⎰-dx x P 2112)]([)(1x P二、试用分离变量法求以下定解问题(30分):1.2.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂== =><<∂∂=∂∂====30,0,3,0 0,30,2322222,0xtuxxtxxututtxuuu⎪⎪⎪⎩⎪⎪⎪⎨⎧===><<∂∂=∂∂===xtxxutuuuutxx2,0,0,40,4223.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂===><<+∂∂=∂∂====20,0,8,00,20,162002022222x t u t x x ut u t t x x u u u三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)四、用积分变换法求解下列定解问题(10分):⎪⎩⎪⎨⎧=∂∂=>+∞<<-∞+∂∂=∂∂==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u ⎪⎪⎩⎪⎪⎨⎧=+=>>=∂∂∂==,1,10,0,1002y x u y u y x y x u五、利用贝赛尔函数的递推公式证明下式(10分):)(1)()('0''02x J xx J x J -=六、在半径为1的球内求调和函数,使它在球面上满足,即所提问题归结为以下定解问题(10分):(本题的只与有关,与无关)u θ21cos ==r u .0,12cos 3,0,10,0)(sin sin 1)(11222πθθπθθθθθ≤≤+=≤≤<<=∂∂∂∂+∂∂∂∂=r u r ur r u r r r u θ,r ϕ《数学物理方程》模拟试题参考答案一、 填空题:1.初始条件,边值条件,定解条件.2. 3.. 4. 三.5..6..7..8..9.. 10..二、试用分离变量法求以下定解问题1.解 令,代入原方程中得到两个常微分方程:,,由边界条件得到,对的情况讨论,只有当时才有非零解,令,得到为特征值,特征函数,再解,得到,于是再由初始条件得到,所以原定解问题的解为2. 解 令,代入原方程中得到两个常微分方程:,,由边界条件得到,对的情况讨论,只有当时才有非零解,令,得到)(2222222zu y u x u a t u ∂∂+∂∂+∂∂=∂∂01)(1222=∂∂+∂∂∂∂θρρρρρu u U a dt U d 2222ω-=)(1x J -2x 52)1(212-x dxd 2020)()(1lny y x x u -+-=)()(),(t T x X t x u =0)()(2''=+t T a t T λ0)()(''=+x X x X λ0)3()0(==X X λ0>λ2βλ=22223πβλn ==3s i n )(πn B x X n n =)(t T 32s i n32c o s )(;;t n D t n C t T n n n ππ+=,3s i n )32s i n 32c o s (),(1xn t n D t n C t x u n n n πππ+=∑∞=0,)1(183sin 332130=-==+⎰n n n D n xdx n x C ππ,3s i n )32c o s )1(18(),(11xn t n n t x u n n πππ+∞=-=∑)()(),(t T x X t x u =0)()('=+t T t T λ0)()(''=+x X x X λ0)4()0(==X X λ0>λ2βλ=为特征值,特征函数,再解,得到,于是再由初始条件得到,所以原定解问题的解为 3.解 由于边界条件和自由项均与t 无关,令,代入原方程中,将方程与边界条件同时齐次化。

数学物理方程习题解答案

数学物理方程习题解答案

数学物理方程习题解习题一1, 验证下面两个函数:(,)(,)sin x u x y u x y e y ==都是方程0xx yy u u +=的解。

证明:(1)(,)u x y =因为32222222222222223222222222222222222222222211()22()2()()11()22()2()()0()()x xx y yy xx yy x u x x y x y x y x x x y u x y x y yu y x y x y x y y y y x u x y x y x y y x u u x y x y =-⋅⋅=-+++-⋅-=-=++=-⋅⋅=-+++-⋅-=-=++--+=+=++所以(,)lnu x y =是方程0xx yy u u +=的解。

(2)(,)sin x u x y e y = 因为sin ,sin cos ,sin x x x xx xxy yy u y e u y e u e y u e y=⋅=⋅=⋅=-⋅所以 s i ns i n 0x xxx yy u u e y e y +=-= (,)sin x u x y e y =是方程0xx yy u u +=的解。

2,证明:()()u f x g y =满足方程: 0xy x y uu u u -= ,其中f 和g 都是任意的二次可微函数。

证明:因为()()u f x g y =所以()(),()()()()()()()()()()()()0x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=⋅=⋅''=⋅''''-=⋅-⋅⋅=得证。

3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u -+= 的通解。

数学物理方程第5章习题及答案

数学物理方程第5章习题及答案

11.设 {(x, y) | x2 y2 R2, y 0}, 考虑半圆域狄利克雷问题
u 0, x
u(x, y) (x, y),(x, y)
应用对称法求区域 上的格林函数。
解:该问题所求格林函数应满足
G (P, P0 ), P
G(P, P0 ) 0, P B(圆周) G(P, P0 ) 0, P L(x轴上的边界)
C1
1
4
解为 u 1
4 r
方法二: 本题中u只与r有关,则
所以
uxx
u yy
+uzz
=
1 r
(2ur
rurr )
2ur rurr 0 2rur r 2urr 0 (r 2ur )r 0 r 2ur C
ur
C r2
u
C1
1 r
C2
随后求解过程与方法一相同。
注:在球面坐标系中
uxx
记 G \ B ,则 G B ,在格林第二公式
(uv vu)d
(u
v n
v
u )ds n
中,令 v (P, P0 ),注意到 0 ,则有
ud
G
(u
G
n
u )ds n

ud (u u )ds (u u )ds
G
n n
B n n
在圆周B 上有
( 1
随后求解过程与方法一相同。
(3)uxx uyy +uzz =0,r 0
解:方法一: 三维拉普拉斯方程的基本解表示通解
1 u C1 r C2
lim u(r)=0
r
C2
0
u n |B(0, )
u n
B(0, )

数学物理方程题库

数学物理方程题库
2
1
2) x 2 u xx + 2 xy u xy + y 2 u yy = 0 解 : 方 程 的 判 别 式 ∆ = a12 2 − a11 a 22 = ( xy ) − x 2 y 2 = 0. 所以方程为抛物型。 该方程的一组特征微分方程为 dy a12 y = = ,解 这 个 微 分 方 程 得 到 : dx a11 x
x
' 对上式积分得,a ⎡ f x − f x = − a ϕ ⎤ ( ) ( ) 1 2 ⎣ ⎦ ∫ ( x) dξ + c
x0
⎧ ϕ ( x) 1 x ' c − ∫ ϕ ( x) dξ + ⎪ f1 ( x) = 2 2 x0 2a ⎪ 于是得到, ⎨ x ⎪ f x = ϕ ( x) + 1 ϕ' x dξ − c ( ) ∫ ⎪ 2( ) 2 2 2a x0 ⎩ ⎧ ϕ ( x + at ) 1 x+at ' c f x + at = − ϕ x d ξ + ) ( ) ⎪ 1( ∫ 2 2 2a x0 ⎪ ⇒⎨ x0 c ⎪ f x − at = ϕ ( x − at ) + 1 ' ϕ x d ξ − ( ) ( ) ∫at ⎪ 2 2 2 2a x − ( ) ⎩ ⇒ u ( x,t) = f1 ( x + at ) + f2 ( x − at ) 1 1 = ⎡ ϕ x + at + ϕ x − at ⎤ − ϕ ' (ξ ) dξ ( ) ( ) ⎣ ⎦ ∫ 2 2 x−at = ϕ ( x − at )
2 ⎧ ⎪utt = a uxx ( −∞ < x < ∞) ⎨ ' u x ,0 = ϕ x , u x ,0 = − a ϕ ( ) ( ) ( ) ( x) ⎪ t ⎩ 根据题意,令u( x,t) = f1 ( x + at ) + f2 ( x − at )

数学物理方程期末考试题及答案

数学物理方程期末考试题及答案

数学物理方程期末考试题及答案一、选择题(每题2分,共10分)1. 以下哪一项不是数学物理方程的特点?A. 连续性B. 离散性C. 线性D. 非线性答案:B2. 波方程是描述什么的方程?A. 热传导B. 电磁波C. 机械波D. 流体动力学答案:C3. 拉普拉斯方程通常出现在哪种物理现象中?A. 热传导B. 流体流动C. 电磁场D. 弹性力学答案:C4. 以下哪个不是偏微分方程的解的性质?A. 唯一性B. 线性C. 稳定性D. 离散性答案:D5. 波动方程的解通常表示什么?A. 温度分布B. 电荷分布C. 压力分布D. 位移分布答案:D二、填空题(每空2分,共20分)6. 波动方程的基本形式是 _______。

答案:\( \frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u \)7. 热传导方程,也称为________方程。

答案:傅里叶8. 拉普拉斯方程 \( \nabla^2 \phi = 0 \) 在静电学中描述的是________。

答案:电势9. 边界条件通常分为________和________。

答案:狄利克雷边界条件;诺伊曼边界条件10. 波动方程的一般解可以表示为________和________的叠加。

答案:基频解;高阶谐波三、简答题(每题10分,共30分)11. 解释什么是边界层的概念,并给出一个实际应用的例子。

答案:边界层是流体力学中的一个概念,指的是流体靠近物体表面处的一层非常薄的流体,其中速度梯度很大。

在边界层内,流体的速度从物体表面的零速度逐渐增加到与外部流体速度相匹配。

一个实际应用的例子是飞机的机翼,边界层的厚度和特性对飞机的升力和阻力有重要影响。

12. 描述什么是格林函数,并解释它在解决偏微分方程中的作用。

答案:格林函数是一种数学工具,用于解决线性偏微分方程。

它是一个特定的函数,当它与方程的算子相乘时,结果是一个狄利克雷问题,其解是原始方程的一个解。

数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案一、求解方程(15分)⎧utt -a2uxx=0⎪⎨ux-at=0=ϕ(x)⎪u⎩x+at=0=ψ(x).其中ϕ(0)=ψ(0)。

⎧ξ=x-at解:设⎨则方程变为:η=x+at⎩uξη=0,u=F(x-at)+G(x+at)(8’)由边值条件可得:F(0)+G(2x)=ϕ(x),F(2x)+G(0)=ψ(x)由ϕ(0)=ψ(0)即得:u(x,t)=ϕ(x+at x-at)+ψ()-ϕ(0)。

22二、利用变量分离法求解方程。

(15分)⎧utt -a2uxx=0,(x,t)∈Q,⎪⎨ux=0=ux=l=0,t≥0,⎪u=ϕ(x),ut t=0=ψ(x)⎩t=0其中0≤x≤l。

a>0为常数解:设u=X(x)T(t)代于方程得:X''+λX=0,T''+λa2T=0(8’)X=C1cosλx+C2sinλx,T=C1cosλat+C2sinλat由边值条件得:C 1=0,λ=(∞n π2)ln πx lu =∑(B n cos λat +A n sin λat )sin n =1B n =2l n πx 2l n πx ,ϕ(x )sin dx A =ψ(x )sin dx n ⎰⎰00l l an πl2三.证明方程u t -a u xx -cu =0(c ≥0)具有狄利克雷边界条件的初边值问题解的唯一性与稳定性. (15分)证明:设v =e -ct u 代入方程:⎧v t-a 2v xx =0⎪⎨v t =0=ϕ(x )⎪v (0,t )=g (t ),v (l ,t )=g (t ).12⎩设v 1,v 2都是方程的解设v =v 1-v 2代入方程得:⎧v t-a 2v xx =0⎪⎨v t =0=0⎪v (0,t )=,v (l ,t )=0⎩由极值原理得v =0唯一性得证。

(8’)由v 1-v 2≤v 1-v 2得证。

τ≤ε,稳定性得证由v =e -ct u 知u 的唯一性稳定性四.求解二维调和方程在半平面上的狄利克雷问题(15分).∆u =u xx +u yy +u zz=0,z >0,u z =0=f (x ).解:设p (ξ,η,ζ)是上半平面内一点,在该点放置单位点电荷,其对称点p (ξ,η,-ς)格林函数:G (x ,y ,ξ,η)=-14π14π1(x -ξ)+(y -η)+(z -ς)1(x -ξ)+(y -η)+(z +ς)222222+∂G∂G=-∂n∂z z=0=ς2π[(x-ξ)+(y-η)+ς]2223/2方程的解:u(ξ,η)=ς2πϕ(x,y)⎰[(x-ξ)2+(y-η)2+ς2]3/2dx R2五、证明下列初边值问题解的唯一性.(20分)u utt-a2(uxx+uyy)=f(x,y,t) t=0=ϕ(x,y),=ψ(x,y),ut t=0uΓ=g(x,y,t).其中t>0,(x,y)∈Ω,Γ为Ω的边界.解:设u1,u2都是方程的解设u=u1-u2代入方程得:u tt -a(uxx+uyy)=0u u t t=02 =0=0 t=0uΓ=0.设E(t)=12222[u+a(u+u]dxdy t x y⎰⎰2ΩdE(t)=2⎰⎰[ut utt+a2(uxuxt+uyuyt)]dxdydtΩ=2[ut [utt-a(uxx+uyy)]dxdyΩ⎰⎰2=0(10’)E(t)=E(0)=0,u=C,由边值条件得:u=0。

数学物理方程 练习题

数学物理方程 练习题

数学物理方程
2012-10-3 14 / 39
二阶线性方程的特征理论
(3)
∂u ∂t
=
∂2u ∂x2

∂2u ∂y2
齐海涛 (SDU)
数学物理方程
2012-10-3 15 / 39
二阶线性方程的特征理论
(3)
∂u ∂t
=
∂2u ∂x2

∂2u ∂y2
解: 特征方程:
α21 − α22 = 0.
特征方向 l 满足:
2012-10-3 13 / 39
二阶线性方程的特征理论
∂2u ∂2u ∂2u ∂2u (2) ∂t2 = ∂x21 + ∂x22 + ∂x23
齐海涛 (SDU)
数学物理方程
2012-10-3 14 / 39
二阶线性方程的特征理论
∂2u ∂2u ∂2u ∂2u (2) ∂t2 = ∂x21 + ∂x22 + ∂x23
解: 特征方程:
α20 = α21 + α22 + α23.
特征方向 l 满足:
α20 = α21 + α22 + α23,
α20 + α21 + α22 + α23 = 1.
√√


解得:
l
=

2 2
,
2 2
sin
θ
sin
β,
2 2
sin
θ
cos
β,
2 2
cos
θ),
其中
θ,
β
为任意参数.
齐海涛 (SDU)
(1.2)
ξ = α1x + α2y, η = α3x + α4y,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+
∂ ∂y
( ∂N ) D ∂y
+
∂ ∂z
( D
∂N ∂z
)
.
齐海涛 (SDU)
数学物理方程
2012-10-3 6 / 49
热传导方程及其定解问题的导出
.E.xample 1.3
砼(混泥土)内部储藏着热量, 称为水化热, 在它浇筑后逐渐放出, 放热速度和
它所储藏的水化热成正比. 以 Q(t) 表示它在单位体积中所储的热量, Q0 为
2012-10-3 8 / 49
热传导方程及其定解问题的导出
.E.xample 1.4
设一均匀的导线处在周围为常数温度 u0 的介质中, 试证: 在常电流作用下导 线的温度满足微分方程
∂u ∂t
=
k cρ
∂2u ∂x2

k1P cρω
(u

u0)
+
0.24i2r cρω
,
其中 i 及 r 分别表示导体的电流及电阻, P 表示横截面的周长, ω 表示横截 面. 的面积, 而 k1 表示导线对于介质的热交换系数.
.
齐海涛 (SDU)
数学物理方程
2012-10-3 10 / 49
热传导方程及其定解问题的导出
.E.xample 1.5
设物体表面的绝对温度为 u, 此时它向外界辐射出去的热量依斯特藩-玻耳兹曼 (Stefan-Boltzmann) 定律正比于 u4, 即
dQ = σu4dSdt.
假设物体和周围介质之间只有热辐射而没有热传导, 又假设物体周围介质的绝 .对温度为已知函数 f(x, y, z, t), 求此时该物体热传导问题的边界条件.
解: ∑∞
u(x, t) = Cke−k2π2t sin kπx.
k=1
Ck = 2 ∫
1

2
ξ sin kπξdξ +
1(1 − ξ) sin kπξdξ
=
0
4 kπ k2π2 sin 2
=
1 2
0,
4(−1)n (2n + 1)2π2
,
k = 2n, k = 2n + 1,
n = 0, 1, 2, . . .
热传导方程及其定解问题的导出
.E.xample 1.2
.试直接推导扩散过程所满足的微分方程.
解: 设 N(x, y, z, t) 表示在时刻 t, (x, y, z) 点处扩散物质的浓度, D(x, y, z) 为 扩散系数, 在无穷小时间段 dt 内, 通过无穷小曲面块 dS 的质量为
dm
=
−D(x,
dQ1 = −k1(u − u1)πl∆x;
单位时间从 x 处, x + ∆x 处流入的热量为
dQ2
=
−k(x)
∂u ∂x
(x,
t)
·
πl2 4
,
dQ3
=
k(x
+
∂u ∆x) ∂x (x
+
∆x,
t)
·
πl2 4
,
齐海涛 (SDU)
数学物理方程
2012-10-3 3 / 49
热传导方程及其定解问题的导出
(
)
∂u 1 ∂ ∂t = cρ ∂x
∂u k(x) ∂x

4k1 cρl
(u

u1).
齐海涛 (SDU)
数学物理方程
2012-10-3 4 / 49
热传导方程及其定解问题的导出
.E.xample 1.2
.试直接推导扩散过程所满足的微分方程.
齐海涛 (SDU)
数学物理方程
2012-10-3 5 / 49

u(x,
t)
=
∑∞
4(−1)n (2n + 1)2π2
πl2 4

k1(u

] u1)πl dxdt.
而在这段时间内 [x1, x2] 杆段内各点温度从 u(x, t1) 变到 u(x, t2), 其吸收热量

∫ x2
x1
cρ(u(x, t2)Fra bibliotek−u(x,
t1
))
πl2 4
dx
=
∫ t2
t1
∫ x2
x1
πl2 4

∂u ∂t
dxdt.
根据热量守恒, 并注意到 x1, x2, t1, t2 的任意性, 得所求方程为
解: 设 u(x, t) = X(x)T(t), 则
T ′ + λa2T = 0,
X ′′ + λX = 0, X(0) = X ′(π) = 0.
⇒ λk
=
( k
+
1 )2 2
,
k = 0, 1, 2, . . .
齐海涛 (SDU)
数学物理方程
2012-10-3 13 / 49
初边值问题的分离变量法
另外, 从时刻 t1 到 t2, Ω 中该物质的增加为
[N(x, y, z, t2) − N(x, y, z, t1)]dxdydz =

∫ t2 ∂N dtdxdydz. Ω t1 ∂t
根据质量守恒, 并注意到 Ω, t1, t2 的任意性, 得所求方程为
∂N ∂t
=
∂ ∂x
( ∂N ) D ∂x
解: 考察边界上的面积微元 dS. 在 dt 时间内, 经边界微元流出的热量为 (k
为热传导系数)
−k
∂u ∂n
dSdt.
由该微元辐射到外部介质的热量为
σu4dSdt.
齐海涛 (SDU)
数学物理方程
2012-10-3 11 / 49
热传导方程及其定解问题的导出
外部介质通过该微元辐射到物体表面的热量为
由初始条件知
u(x,
t)
=
∑∞
Ck
e−(k+
1 2
)2
a2
t
sin
( k
+
1) 2
x.
k=0
∑∞
( 1)
f(x) =
Ck sin
k+ 2
x
k=0
⇒ Ck
=
2 π
∫π
(
f(ξ) sin k
0
+
1 ) ξdξ. 2
齐海涛 (SDU)
数学物理方程
2012-10-3 14 / 49
初边值问题的分离变量法
.E.xample 2.2
.E.xample 1.1
一均匀细杆直径为 l, 假设它在同一截面上的温度是相同的, 杆的表面和周围 介质发生热交换, 并服从规律
dQ = k1(u − u1)dSdt.
假设杆的密度为 ρ, 比热为 c, 热传导系数为 k, 试导出此时温度 u 满足的 .方程.
齐海涛 (SDU)
数学物理方程
2012-10-3 3 / 49
齐海涛 (SDU)
数学物理方程
2012-10-3 13 / 49
初边值问题的分离变量法
.E.xample 2.1
用分离变量法求下列定解问题的解:
.
ut = a2uxx (t > 0, 0 < x < π), u(0, t) = ux(π, t) = 0 (t > 0), u(x, 0) = f(x) (0 < x < π).
dQ = −βQ, dt Q(0) = Q0,
⇒ Q(t) = Q0e−βt.
易知 t1 到 t2 时刻, 砼内任一区域 Ω 中的热量的增加等于从 Ω 外部流入 Ω 的热量及砼中的水化热之和, 即
齐海涛 (SDU)
数学物理方程
2012-10-3 7 / 49
热传导方程及其定解问题的导出
∫ t2 cρ ∂u dtdxdydz =
用分离变量法求解热传导方程的初边值问题:
.
ut = uxx u(x, 0) =
({t
> 0, x, 1−
0< x,
x
0
1 2
< 1), <x≤ <x<
1 2
,
1,
u(0, t) = u(1, t) = 0 (t > 0).
齐海涛 (SDU)
数学物理方程
2012-10-3 15 / 49
初边值问题的分离变量法
齐海涛 (SDU)
数学物理方程
2012-10-3 9 / 49
热传导方程及其定解问题的导出
解: 与第1题类似, 取导线轴为 x 轴, 在时刻 t1 到 t2 介于 [x1, x2] 的导线段 的热量增加为: 从导线的其它部分流入的热量, 从侧面流入的热量以及电流通
过 [x1, x2] 这段产生的热量之和, 即
它所储藏的水化热成正比. 以 Q(t) 表示它在单位体积中所储的热量, Q0 为
初始时刻所储的热量, 则 dQ .c, 密度为 ρ, 热传导系数为dt
= −βQ, 其中 β 为正常数. 又假设砼的比热为 k, 求它在浇筑后温度 u 满足的方程.
解: 设砼内点 (x, y, z) 在时刻 t 的温度为 u(x, y, z, t), 显然
∫ t2
t1
∫ x2
x1
∂ ∂x
( k
∂u ∂x
)
ωdxdt

∫ t2
t1
∫ x2
x1
∫ x2 k1P(u − u0)dxdt +
x1
∫ t2
t1
0.24
i2r ω
dxdt.
因此根据热量平衡就可得导线温度满足的方程为
相关文档
最新文档