工业机器人姿态规划及轨迹优化研究
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Candidate: Supervisor: Academic Degree Applied for: Speciality: Affiliation: Date of Defence: Degree-Conferring-Institution:
Ji Chen Associate Prof. Kong Minxiu Master of Engineering Mechanical Engineering School of Mechatronics Engineering June, 2013 Harbin Institute of Technology
- II -
哈尔滨工业大学工程硕士论文
equivalent equation constrains. Then the optimal problem was rewritten as SOCP problem and solved with SOCP solver SeDuMi. The comparsion with optimal problem without smooth constrains shows that the optimal result are smooth enough for motion. Keywords: Low-payload industrial robot,motion planning , orientation planning, unit quaternion, time optimal smooth trajectory planning
- III -
哈尔滨工业大学工程硕士论文
目 录
摘 要 ....................................................................................................................... I ABSTRACT ............................................................................................................. II 第 1 章 绪论 ............................................................................................................. 1 1.1 课题研究背景以及意义 ............................................................................ 1 1.2 国内外研究现状及分析 ............................................................................ 2 1.2.1 机器人运动规划综述 ............................................................................... 2 1.2.2 机器人轨迹优化综述 ............................................................................... 5 1.3 本文主要研究内容 ................................................................................... 8 第 2 章 6 自由度弧焊机器人系统建模 ................................................................. 10 2.1 机器人运动学模型 ................................................................................. 10 2.2 机器人姿态表达 ..................................................................................... 13 2.2.1 余弦矩阵 ................................................................................................ 13 2.2.2 欧拉角 .................................................................................................... 13 2.2.3 单位四元数 ............................................................................................ 15 2.3 机器人动力学模型分析 .......................................................................... 18 2.4 模型验证 ................................................................................................ 20 2.5 本章小结 ................................................................................................ 22 第 3 章 基于单位四元数的姿态插补算法 ............................................................ 23 3.1 单位四元数空间与欧式空间的转化 ........................................................ 23 3.2 两个姿态间的插补算法 .......................................................................... 25 3.2.1 正弦加加速度规划算法 ........................................................................ 27 3.2.2 两个姿态插值算法应用实例 ................................................................ 30 3.3 多姿态间 C2 连续插补算法 .................................................................... 37 3.3.1 球面插补曲线的构造 ............................................................................ 37 3.3.2 多姿态间插补算法应用实例 ................................................................ 39 3.4 本章小结 ................................................................................................ 41 第 4 章 基于时间近似最优的光滑轨迹优化研究 ................................................ 42 4.1 优化模型的建立 ..................................................................................... 42 4.1.1 优化模型的约束条件和目标函数 .......................................................... 42 4.1.2 参数空间下的时间最优模型 ................................................................. 43 4.2 时间近似最优光滑轨迹优化方法 ............................................................ 45 4.2.1 基于三次 B 样条的光滑性约束 ............................................................. 46
-I-
哈尔滨工业大学工程硕士论文
Abstract
While the applications of industrial robot increase greatly, the motion planning is required more and more strictly. The smooth trajectory of robot can improve the precision and performance of industrial robot. For this consideration, the smooth orientation interpolation algorithm and smooth minimum time trajectory optimization are studied in this paper. Firstly, the kinematic and dynamic model of 6-DOF arc welding robot were build up. Based on DH coordinate system, the forward kinematic and the inverse kinematics were derived, the inverse kinematic was modified with a method that is just three times of inversion to simplify the analytic deduction process and improve the efficiency of deduction. Also, three forms of orientation expression of the robot , matrix, Euler angle system, unit quaternion, were analyzed to find out the merits and drawbacks of them. Lagrange dynamic method was employed to derive the dynamic model of 6-DOF arc welding robot. The motion simulation platform of 6-DOF arc welding robot which included the modules of the kinematic, dynamic and motion planning was build up in MATLAB/SIMULINK. Then, the interpolation algorithm based on unit quaternion was studied. Derived from the physical significance and the multiplication of unit quaternion, the unit quaternion orientation curve in S3 was transformed to the curve on unit sphere in Euclidean space and the orientation interpolation expression on sphere was build up. Based on that transformation, interpolation between two orientations expressed by unit quaternion was formed. The sine-jerk motion planning was designed to interpolate the angle of two orientations .The comparison between Euler angle system and SLERP in simulation platform of 6-DOF arc welding robot shows that the interpolation using unit quaternion shows a better performance of motion control and smoothness. At last, the multi-orientations interpolation algorithm based on unit quaternion was studied because of the requirement of complex curve and plane in manufacture. The interpolation curve on unit sphere of three orientations was constructed with the help of mapping between S3 and Euclidean space. Compared with SQUAD, the orientation interpolation was more smooth at the interpolation points of orientations. At last, minimum time optimization with smooth trajectory was studied. The time optimization model of industrial robot was built up and transformed to coordinate space. To get smooth optimal trajectory, the smooth constraints of control variables were added to the optimal model. Cubic B-spline was employed to construct the smooth constraints of optimal variables and was transformed to
学校代码: 10213 密级:公开
工程硕士学位论文
工业机器人姿态规划及轨迹优化研究
硕 士 研 究 生: 季 晨 导 师 : 孔民秀 副教授
申 请 学 位 : 工学硕士 学 科 : 机械工程
所 在 单 位 : 机电工程学院 答 辩 日 期 : 2013 年 7 月 授 予 学 位 单 位 : 哈尔滨工业大学
硕士学位ቤተ መጻሕፍቲ ባይዱ文
工业机器人姿态规划及轨迹优化研究
(工程型)
RESEARCH ON ORIENTATION INTERPOLATION AND OPTIMAL TRAJECTORY OF INDUSTRIAL ROBOT
季 晨
哈尔滨工业大学 2013 年 7 月
国内图书分类号: TP241.2 国际图书分类号: 621
哈尔滨工业大学工程硕士学位论文
摘 要
随着工业机器人的应用场合越来越多,对机器人运动规划的要求也越来越严 格。尤其是姿态规划和轨迹优化在工业机器人的应用中具有很重要的作用,如弧 焊,喷涂,装配以及打磨等领域中。同时为了保证跟踪精度,对姿态的轨迹和关 节的运动轨迹有着较高光滑性的要求。由此,本文针对机器人的光滑姿态插补算 法以及时间近似最优光滑轨迹优化算法进行研究。 首先, 对 6 自由度弧焊机器人进行了运动学建模。 建立基于 DH 坐标系的连杆 变换矩阵,推导了正运动学和逆运动学表达式。针对逆运动学,提出了只需求解 3 次逆矩阵的解析式推导过程,使逆解推导过程得到极大的简化。分析余弦矩阵, 欧拉角以及单位四元数三种姿态表达方式的优缺点。 在 MATLAB/SIMULINK 中搭 建了 6 自由度弧焊机器人的运动仿真平台,其中包括正逆运动学模块以及拉格朗 日动力学模块。 然后,对基于单位四元数的姿态插补算法进行了深入研究。根据单位四元数 的物理意义以及运算法则,将在 S3 空间单位四元数姿态曲线构造问题转换为在欧 氏空间中单位球面光滑球面曲线的构造问题,建立了姿态插补球面曲线表达形式。 应用该转换关系,构造了在两个单位四元数姿态间的单参数插补算法。推导了正 弦加加速度规划算法并将其应用与两姿态插补运算中。在 6 自由度弧焊机器人运 动仿真平台中,对比欧拉法以及 SLERP 插补算法的姿态规划结果,表明采用本文 提出的单位四元数插补算法具有较好的速度控制能力和光滑性。最后针对复杂曲 线和曲面的加工场合,研究了基于单位四元数多姿态 C2 连续的姿态插补算法。应 用单位四元数到欧氏空间的映射关系,推导三个姿态间的姿态插补曲线,对比 SQUAD 多姿态插补算法, 结果表明本文提出的多姿态插补算法在插补点具有较好 的光滑性。 最后,对时间近似最优的光滑轨迹优化进行了研究。首先建立了机器人动力 学约束下的时间优化模型。将模型中目标函数和约束表达式转换到参数空间中, 能够使得 2n 维的优化问题转换为 2 维优化问题。为了保证运动轨迹的光滑性,在 时间优化模型中加入了基于三次 B 样条的优化变量曲线约束。构造二阶锥规划 (SOCP)求解表达式,采用 SeDuMi 求解器对优化问题求解。分别对两种不同的 三自由度机器人模型进行光滑约束下的时间优化问题求解,并将该计算结果与未 加入光滑约束的情况进行对比,结果表明了光滑性约束起到了光滑轨迹的作用。 关键词:轻载工业机器人;运动规划;姿态规划;单位四元数;时间最优光滑轨 迹优化;