多尺度小波
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交性:用正交小波基对图像做多尺度分解,可得一正 交的镜像滤波器。低通子带数据和高通子带数据分别落在
相互正交的L2(R2)的子空间中,使个子带数据相关性减少;
其他
分解层次
分解层次一般2-5层均可,要视具体应用而定,我们取为3, 即作3层小波分解,共得到10个子图,如图7。
特征抽取
每个子图抽取四个特征: ➢ 最大的小波系数; ➢ 最小的小波系数; ➢ 小波系数均值; ➢ 小波系数均方差。 这样对于一幅图像,可得到一个40(36)维的向量。
基于小波多尺度统计特征的图像分类
报告内容
1. 小波变换 2. 图像分类问题现状 3. 小波多尺度统计特征抽取及图像分类 4. 实验比较 5. 下一步工作 6. 参考文献
1. 小波变换
➢ 小波变换是强有力的时频分析(处理)工具,是在 克服傅立叶变换缺点的基础上发展而来的。已成 功应用于很多领域,如信号处理、图像处理、模 式识别等。
➢ 图像空间的分类方法—利用图像的灰度、颜 色、纹理、形状、位置等底层特征对图像进行 分类;例如:
✓ 文献[1]利用灰度直方图特征对图像进行 分类; ✓ 文献[2]利用纹理特征对图像进行分类; ✓ 文献[3]采用纹理、边缘和颜色直方图混 合特征对图像进行分类 ;
文献[1]、[2]、[3]均采用SVM作为分类器。
文献[5]对常见的纹理分类进行了综述,如下表:
文献 文献[6]
特征 Gabor filters
文献[7] 文献[8]
Gabor filters and Statistical features Gabor filters
文献[9] Gabor filters and wavelet transform
➢ 小波变换的一个重要性质是它在时域和频域均 具有很好的局部化特征,它能够提供目标信号各 个频率子段的频率信息。这种信息对于信号分类 是非常有用的。百度文库
➢ 小波变换一个信号为一个小波级数,这样一个 信号可由小波系数来刻画。
1.1 一维小波变换(一维多尺度分析)
设有L2(R )空间的子空间序列:
V0 V1 V2
I2(x,y) [32 32] I2H(x,y) [32 32] I2V(x,y) [32 32] I2D(x,y) [32 32]
I3(x,y) [16 16] I3H(x,y) [16 16] I3V(x,y) [16 16] I3D(x,y) [16 16]
I4(x,y) [8 8]
I4H(x,y) [8 8]
NEXT
RETURN 图8 COIL-20图像
RETURN 图9 7个位置的图像
RETURN 表1 两种方法的实验结果比较
4. 下一步的工作
从图像小波系数中抽取其它特征,如多尺度熵 特征; 小波函数逼近与径向基函数逼近的联系; 完善实验设计。
6. 参考文献
[1] Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik. Support Vector Machines for Histogram-Based Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999. [2] Kwang In Kim, Keechul Jung, Se Hyun, and Hang Joon Kim, Support Vector Machine for Texture classification, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 11 NOVEMBER 2002, pp. 1542-1550. [3] 万华林,M. U. Chowdhury. 基于支持向量机的图像语义 分类. 软机学报,2003,VOL.14 NO.11,PP. 1892-1899.
每次实验从中选取视觉相似度较高的两类图像,在每一 类中随机选取40幅作为训练集,另32幅作为测试集,所以训 练集包含80幅图像,测试集包含64幅图像。
采用Db4小波对实验图像做三层小波分解,共有10个不同 频率字段的子图,每个子图抽取出4个特征,这样共有40个 特征.SVM分类器,高斯核函数。实验结果列于表1。
cn0
x
n
ckJ
kJ
x
d
kj
J k
x
nZ
k
j1 k
ckj
称为尺度系
数,d
j k
称为
小波系数,它们的计算:
ckj
d
j k
nZ nZ
ckj
1l
n
2k
d
j k
1hn
2k
一维MALLAT算法
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来的,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:
✓ 文献[4]用矩阵表示图像,矩阵元素是 相应象素的灰度值,然后用SVD和PCA方法 抽取图像特征,BP网络作为分类器。
图像空间的分类方法的共同缺点是数据量大、计 算复杂性高,但分类精度一般比较理想。
➢特征空间的分类方法—首先将原图像经过某 种变换如K-L变换、小波变换等变换到特征空 间,然后在特征空间提取图像的高层特征以实 现图像的分类。这类分类方法的文献尤以纹理 图像分类和遥感图像分类最多。
i0
IHH x,
y
1 Nh
Nh 1
h jIH
j0
x, 2 x
jmod N
x 0,1, , M 1; y 0,1, , N 1
2
2
对逼近子图重复此过程,直到确定的分解水平,下 图是二层小波分解的示意图。
图6 图像多尺度分解,(a)一层分解,(b)二层分解
2. 图像分类问题现状
目前常用的分类器如支持向量机,神经网络分 类器等大多以结构化数据作为输入;
Vj 的正交基函数是由一个称为尺度函数的函数(x)经伸缩
平移得到的
kj x 2 j x k
设Wj 是Vj 相对于Vj+1的正交补空间, Wj 的正交基函数是 由一个称为小波函数的函数(x)经伸缩平移得到的
j k
x
2jxk
小波函数必须满足以下两个条件的函数:
(1) 小波必须是振荡的; (2) 小波的振幅只能在一个很短的一段区间上非零,即是局
部化的。如:
图1 小波例1
图2 小波例2
不是小波的例 图3 图4
kj
x
,
j k
x
构成Vj+1的正交基。
x和 x 满足下列关系式(二尺度方程):
x 2ln2x n nZ
x 2 hn2x n nZ
其中ln称为低通滤波器,hn称为高通滤波器。
且hn=1nl1 n
信号的多尺度分解:
J
f
x
图像数据是非结构化数据,不能直接用于分类;
图像特征提取在图像分类中扮演着非常重要的 角色,特征提取的好坏直接影响着分类精度和分 类器的性能;
图像的小波变换可用于图像特征提取,实际上, 可将小波变换看作一种特征映射;
图像分类就是利用计算机对图像进行定量分析, 把图像或图像中的每个像元或区域划归为若干个类 别中的某一种,以代替人的视觉判读。 图像分类方法可分为:
j0
jmodM ,
y
x 0,1, , M 1; y 0,1, , N 1 2
ILL x,
y
1 Nl
Nl 1
liIL x,2x imod N
i0
I LH
x,
y
1 Nh
Nh 1
h
j0
jIL x, 2x
jmod N
I HL x,
y
1 Nl
Nl 1
liIH x,2x imod N
ILL (x,y)—I(x,y)的(粗)逼近子图 IHL(x,y) — I(x,y)的水平方向细节子图 ILH (x,y) — I(x,y)的垂直方向细节子图 IHH (x,y) — I(x,y)的对角线方向细节子图
二维金字塔分解算法
令I(x,y)表示大小为M N的原始图像,l(i)表示相对于分析
小波的低通滤波器系数,i=0,1,2,…,Nl-1, Nl表示滤波器L的 支撑长度; h(i)表示相对于分析小波的高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表示滤波器H的支撑长度,则
IL x,
y
1 Nl
Nl 1
l i I 2x
i0
imodM ,
y
I H
x,
y
1 Nh
Nh 1
l jI 2x
[4] R. Swiniarski, L. Hargis, Rough set as a front end of neuralnetworks texture classifiers, Neurocomputing 36 (1-4) (2001) 85– 102. [5] Chih-Fong Tsai, Image mining by spectral features: A case study of scenery image classification, Expert Systems with Application 32(2007) 135-142. [6] Autio, I., & Elomaa, T. (2003). Flexible view recognition for indoor navigation based on Gabor filters and support vector machines. Pattern Recognition, 36(12), 2769–2779. [7] Huang, Y., Chan, K. L., & Zhang, Z. (2003). Texture classification by multi-model feature integration using Bayesian networks. Pattern Recognition Letters, 24, 393–401.
两个方向的低频成分;
➢ HL1—细节子图,它代表输入图像水平方向的
高频成分和垂直方向的低频成分;
➢ LH1—细节子图,它代表输入图像水平方向的
低频成分和垂直方向的高频成分;
➢ HH1—细节子图,它代表输入图像水平和垂直
方向高频成分。
在逼近子图LL1上重复二维小波分解过程,进行 二层小波分解,如此继续分解,得到子图序列{LLJ, [HLk,LHk,HHk](k=1,2,…,J)}。
LL x xy; LH x x y; HLx x y; HH x x y
图像的二维小波变换包括沿行向(水平方向)和列向(垂直 方向)滤波和2-下采样,如图所示:
图5 图像滤波采样
说明:如图所示,首先对原图像I(x,y)沿行向(水平 方向)进行滤波和2-下采样,得到系数矩阵IL(x,y)和 IH(x,y),然后再对IL(x,y)和IH(x,y)分别沿列向(垂直方 向)滤波和2-下采样,最后得到一层小波分解的4个 子图:
均值和方差的计算公式:
i
1 M N
M x 1
N y 1
Ii (x, y)
i
1 M N
M x1
N y 1
Ii (x, y) i
2
NEXT
I(x,y) [128 128]
RETURN
I1(x,y) [64 64] I1H(x,y) [64 64] I1V(x,y) [64 64] I1D(x,y) [64 64]
I4V(x,y) [8 8]
图7 图像I(x,y)的多尺度分解
I4D(x,y) [8 8]
4. 实验比较
采用了标准的Columbia Object Image Library (COIL-20) 图像数据库,该数据库共有20大类1440幅图像(如图8),每 类72幅图像,每次旋转5得到,如图9所示,PNG文件格式。
小波基与分解层次的选取是非常重要的,目前 还没有一个统一的标准。
小波基的选取一般考虑下列因素:
线性相位:如果小波具有线性相位或至少具有广义线性 相位,则可以避免小波分解和重构时的图像失真,尤其是 图像在边缘处的失真;
紧支性和衰减性:紧支性和衰减性是小波的重要性质, 紧支宽度越窄或衰减越快,小波的局部化特性越好。计算 复杂度越低,便于快速实现;
3. 小波多尺度统计特征抽取及图像分类
图 像 特 征 提 取 及 分 类 方 法
图像的小波特征提取首先对输入图像做J层二维
小波分解;
因为小波变换具有很好的时频局部化特性,所 以可以将图像的不同底层特征变换为不同的小波系 数;
输入图像经过经一层小波分解后,被分成4个子 图:
➢ LL1—逼近子图,它代表输入图像水平和垂直
分类器
Support vector machine classifier Bayesian network classifier
Multiple neural network classifiers Support vector machine classifier
特征空间的分类方法可降低数据维数,降低计算复 杂性,但问题相关性较强,与特征提取的方法和效 果有很大关系。
相互正交的L2(R2)的子空间中,使个子带数据相关性减少;
其他
分解层次
分解层次一般2-5层均可,要视具体应用而定,我们取为3, 即作3层小波分解,共得到10个子图,如图7。
特征抽取
每个子图抽取四个特征: ➢ 最大的小波系数; ➢ 最小的小波系数; ➢ 小波系数均值; ➢ 小波系数均方差。 这样对于一幅图像,可得到一个40(36)维的向量。
基于小波多尺度统计特征的图像分类
报告内容
1. 小波变换 2. 图像分类问题现状 3. 小波多尺度统计特征抽取及图像分类 4. 实验比较 5. 下一步工作 6. 参考文献
1. 小波变换
➢ 小波变换是强有力的时频分析(处理)工具,是在 克服傅立叶变换缺点的基础上发展而来的。已成 功应用于很多领域,如信号处理、图像处理、模 式识别等。
➢ 图像空间的分类方法—利用图像的灰度、颜 色、纹理、形状、位置等底层特征对图像进行 分类;例如:
✓ 文献[1]利用灰度直方图特征对图像进行 分类; ✓ 文献[2]利用纹理特征对图像进行分类; ✓ 文献[3]采用纹理、边缘和颜色直方图混 合特征对图像进行分类 ;
文献[1]、[2]、[3]均采用SVM作为分类器。
文献[5]对常见的纹理分类进行了综述,如下表:
文献 文献[6]
特征 Gabor filters
文献[7] 文献[8]
Gabor filters and Statistical features Gabor filters
文献[9] Gabor filters and wavelet transform
➢ 小波变换的一个重要性质是它在时域和频域均 具有很好的局部化特征,它能够提供目标信号各 个频率子段的频率信息。这种信息对于信号分类 是非常有用的。百度文库
➢ 小波变换一个信号为一个小波级数,这样一个 信号可由小波系数来刻画。
1.1 一维小波变换(一维多尺度分析)
设有L2(R )空间的子空间序列:
V0 V1 V2
I2(x,y) [32 32] I2H(x,y) [32 32] I2V(x,y) [32 32] I2D(x,y) [32 32]
I3(x,y) [16 16] I3H(x,y) [16 16] I3V(x,y) [16 16] I3D(x,y) [16 16]
I4(x,y) [8 8]
I4H(x,y) [8 8]
NEXT
RETURN 图8 COIL-20图像
RETURN 图9 7个位置的图像
RETURN 表1 两种方法的实验结果比较
4. 下一步的工作
从图像小波系数中抽取其它特征,如多尺度熵 特征; 小波函数逼近与径向基函数逼近的联系; 完善实验设计。
6. 参考文献
[1] Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik. Support Vector Machines for Histogram-Based Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999. [2] Kwang In Kim, Keechul Jung, Se Hyun, and Hang Joon Kim, Support Vector Machine for Texture classification, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 11 NOVEMBER 2002, pp. 1542-1550. [3] 万华林,M. U. Chowdhury. 基于支持向量机的图像语义 分类. 软机学报,2003,VOL.14 NO.11,PP. 1892-1899.
每次实验从中选取视觉相似度较高的两类图像,在每一 类中随机选取40幅作为训练集,另32幅作为测试集,所以训 练集包含80幅图像,测试集包含64幅图像。
采用Db4小波对实验图像做三层小波分解,共有10个不同 频率字段的子图,每个子图抽取出4个特征,这样共有40个 特征.SVM分类器,高斯核函数。实验结果列于表1。
cn0
x
n
ckJ
kJ
x
d
kj
J k
x
nZ
k
j1 k
ckj
称为尺度系
数,d
j k
称为
小波系数,它们的计算:
ckj
d
j k
nZ nZ
ckj
1l
n
2k
d
j k
1hn
2k
一维MALLAT算法
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来的,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:
✓ 文献[4]用矩阵表示图像,矩阵元素是 相应象素的灰度值,然后用SVD和PCA方法 抽取图像特征,BP网络作为分类器。
图像空间的分类方法的共同缺点是数据量大、计 算复杂性高,但分类精度一般比较理想。
➢特征空间的分类方法—首先将原图像经过某 种变换如K-L变换、小波变换等变换到特征空 间,然后在特征空间提取图像的高层特征以实 现图像的分类。这类分类方法的文献尤以纹理 图像分类和遥感图像分类最多。
i0
IHH x,
y
1 Nh
Nh 1
h jIH
j0
x, 2 x
jmod N
x 0,1, , M 1; y 0,1, , N 1
2
2
对逼近子图重复此过程,直到确定的分解水平,下 图是二层小波分解的示意图。
图6 图像多尺度分解,(a)一层分解,(b)二层分解
2. 图像分类问题现状
目前常用的分类器如支持向量机,神经网络分 类器等大多以结构化数据作为输入;
Vj 的正交基函数是由一个称为尺度函数的函数(x)经伸缩
平移得到的
kj x 2 j x k
设Wj 是Vj 相对于Vj+1的正交补空间, Wj 的正交基函数是 由一个称为小波函数的函数(x)经伸缩平移得到的
j k
x
2jxk
小波函数必须满足以下两个条件的函数:
(1) 小波必须是振荡的; (2) 小波的振幅只能在一个很短的一段区间上非零,即是局
部化的。如:
图1 小波例1
图2 小波例2
不是小波的例 图3 图4
kj
x
,
j k
x
构成Vj+1的正交基。
x和 x 满足下列关系式(二尺度方程):
x 2ln2x n nZ
x 2 hn2x n nZ
其中ln称为低通滤波器,hn称为高通滤波器。
且hn=1nl1 n
信号的多尺度分解:
J
f
x
图像数据是非结构化数据,不能直接用于分类;
图像特征提取在图像分类中扮演着非常重要的 角色,特征提取的好坏直接影响着分类精度和分 类器的性能;
图像的小波变换可用于图像特征提取,实际上, 可将小波变换看作一种特征映射;
图像分类就是利用计算机对图像进行定量分析, 把图像或图像中的每个像元或区域划归为若干个类 别中的某一种,以代替人的视觉判读。 图像分类方法可分为:
j0
jmodM ,
y
x 0,1, , M 1; y 0,1, , N 1 2
ILL x,
y
1 Nl
Nl 1
liIL x,2x imod N
i0
I LH
x,
y
1 Nh
Nh 1
h
j0
jIL x, 2x
jmod N
I HL x,
y
1 Nl
Nl 1
liIH x,2x imod N
ILL (x,y)—I(x,y)的(粗)逼近子图 IHL(x,y) — I(x,y)的水平方向细节子图 ILH (x,y) — I(x,y)的垂直方向细节子图 IHH (x,y) — I(x,y)的对角线方向细节子图
二维金字塔分解算法
令I(x,y)表示大小为M N的原始图像,l(i)表示相对于分析
小波的低通滤波器系数,i=0,1,2,…,Nl-1, Nl表示滤波器L的 支撑长度; h(i)表示相对于分析小波的高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表示滤波器H的支撑长度,则
IL x,
y
1 Nl
Nl 1
l i I 2x
i0
imodM ,
y
I H
x,
y
1 Nh
Nh 1
l jI 2x
[4] R. Swiniarski, L. Hargis, Rough set as a front end of neuralnetworks texture classifiers, Neurocomputing 36 (1-4) (2001) 85– 102. [5] Chih-Fong Tsai, Image mining by spectral features: A case study of scenery image classification, Expert Systems with Application 32(2007) 135-142. [6] Autio, I., & Elomaa, T. (2003). Flexible view recognition for indoor navigation based on Gabor filters and support vector machines. Pattern Recognition, 36(12), 2769–2779. [7] Huang, Y., Chan, K. L., & Zhang, Z. (2003). Texture classification by multi-model feature integration using Bayesian networks. Pattern Recognition Letters, 24, 393–401.
两个方向的低频成分;
➢ HL1—细节子图,它代表输入图像水平方向的
高频成分和垂直方向的低频成分;
➢ LH1—细节子图,它代表输入图像水平方向的
低频成分和垂直方向的高频成分;
➢ HH1—细节子图,它代表输入图像水平和垂直
方向高频成分。
在逼近子图LL1上重复二维小波分解过程,进行 二层小波分解,如此继续分解,得到子图序列{LLJ, [HLk,LHk,HHk](k=1,2,…,J)}。
LL x xy; LH x x y; HLx x y; HH x x y
图像的二维小波变换包括沿行向(水平方向)和列向(垂直 方向)滤波和2-下采样,如图所示:
图5 图像滤波采样
说明:如图所示,首先对原图像I(x,y)沿行向(水平 方向)进行滤波和2-下采样,得到系数矩阵IL(x,y)和 IH(x,y),然后再对IL(x,y)和IH(x,y)分别沿列向(垂直方 向)滤波和2-下采样,最后得到一层小波分解的4个 子图:
均值和方差的计算公式:
i
1 M N
M x 1
N y 1
Ii (x, y)
i
1 M N
M x1
N y 1
Ii (x, y) i
2
NEXT
I(x,y) [128 128]
RETURN
I1(x,y) [64 64] I1H(x,y) [64 64] I1V(x,y) [64 64] I1D(x,y) [64 64]
I4V(x,y) [8 8]
图7 图像I(x,y)的多尺度分解
I4D(x,y) [8 8]
4. 实验比较
采用了标准的Columbia Object Image Library (COIL-20) 图像数据库,该数据库共有20大类1440幅图像(如图8),每 类72幅图像,每次旋转5得到,如图9所示,PNG文件格式。
小波基与分解层次的选取是非常重要的,目前 还没有一个统一的标准。
小波基的选取一般考虑下列因素:
线性相位:如果小波具有线性相位或至少具有广义线性 相位,则可以避免小波分解和重构时的图像失真,尤其是 图像在边缘处的失真;
紧支性和衰减性:紧支性和衰减性是小波的重要性质, 紧支宽度越窄或衰减越快,小波的局部化特性越好。计算 复杂度越低,便于快速实现;
3. 小波多尺度统计特征抽取及图像分类
图 像 特 征 提 取 及 分 类 方 法
图像的小波特征提取首先对输入图像做J层二维
小波分解;
因为小波变换具有很好的时频局部化特性,所 以可以将图像的不同底层特征变换为不同的小波系 数;
输入图像经过经一层小波分解后,被分成4个子 图:
➢ LL1—逼近子图,它代表输入图像水平和垂直
分类器
Support vector machine classifier Bayesian network classifier
Multiple neural network classifiers Support vector machine classifier
特征空间的分类方法可降低数据维数,降低计算复 杂性,但问题相关性较强,与特征提取的方法和效 果有很大关系。