数字信号处理基本概念

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京交通大学
信息科学研究所
引论
(7)时频联合分析、多分辨率分析:即基于线性时 频分析的STFT、Gabor和小波变换与分析、基于非 线性时频分析的Winger_Ville分布。 (8)非高斯信号处理:与以二阶统计量作为分析项 的传统信号处理不同(因为一般传统随机信号处 理基本上将实际过程看成高斯或正态分析处理), 是以非高斯信号的高阶量作为分析工具。
从回波检测目标、去噪中利用多普勒信号将运动 物体与固定体区分、不同运动速度物体在频域上 区分。这一区分又是通过回波信号和发射信号间 的相位差实现的。即运动体的相位差是随机的, 固定体的相位差是固定的,因此通过相位检测实 现。 相参积累——包络检波前,将多个回波脉冲叠加, 需要严格的相位关系。 在包络检波后的累积,由于只有幅度累积,无相 位信息,故又称非相参积累。
北京交通大学
信息科学研究所
引论
(3)现代谱估计理论:基于FFT的周期图法和BT (Blackman-Tukey)法的经典谱估计法存在分辨率 低的问题。1967年伯格(Burg)提出最大熵谱分析, 帕曾(Parzen) 1968年提出的自回归(AR)模型谱估 计,以及后来发展的谐波分析法、最大似然法、 AMAR和空间谱估计(Music, Esprit)等,随机信号 谱估计进入现代谱估计发展阶段。 (4)非线性检测与估计,大多数火箭制导和控制问 题的模型是非线性的。频率调制和相位调制,相 位检测和相参积累,实际上都是非线性检测与估 计问题。
非高斯性分为两类: 一类是所有时间内均为同一种非高斯概率分布; 另一类是多数时间为一种高斯分布,少数时间为另一种 高斯分布或非高斯分布,后者用另种分布的数据作为 异常值处理——鲁棒参数估计,前者用高阶谱估计。
北京交通大学
信息科学研究所
引论
20世纪80年代后,光纤通信和激光技术的发展、 基于量子信息、量子检测、量子估计理论的研究 和发展,又是一个新的领域。 因此,现代信号处理包括信号检测、波形估计、 最优滤波、现代谱分析、时频分析、自适应理论、 非高斯信号的高阶谱估计等广泛内容,是现代信 息论、控制论、系统论的重要分支。
北京交通大学 匹配滤波-最大输出信噪比
信号瞬时功率 最大 噪声平均功率
信息科学研究所
相关接收机-最小均方误差准则下,互相关函数最 大 后验概率接收机-后验概率择大准则,即条件概率
p(s / x)最大,x(t ) 接收信号,s(t ) 理想信号
北京交通大学
信息科学研究所
引论
北京交通大学
信息科学研究所
引论
自20世纪60年代后,随着八个方面的发展,形成了 现代数字信号处理的技术起步和大发展,这八个 方面是: (1)20世纪60年代的卡尔曼滤波理论。这一理论引 进状态空间法,突破了噪声必须是平稳过程的限 制。 (2)非参量检测与估计。发展了噪声特性基本未知 情况下的随机信号处理。卡蓬(J. Gapon)于1959年 提出非参量检测与估计问题,汉森(V.G.Hassan)在 70年代提出“广义符号检测法”。
取样-时间离散,幅度连续 离散信号-序列 数字-时间离散,幅度离散
北京交通大学
信息科学研究所
1.1 概述
信号的分类 除连续、离散两大类区分信号外,常见的分类 还有: 1)周期信号和非周期信号 若 x(n)=x(n±kN), k,N 均为正整数 x(n)为周期函数,否则为非周期函数 2)因果信号与非因果信号 当n<0时,h(n)=0, 则称h(n)为因果的,否则为非因果的。
1 2 3 4 5
概述 离散时间信号
信号的Fourier变换
离散时间系统 Z变换
Biblioteka Baidu
6
系统函数
北京交通大学
信息科学研究所
信号与信息处理——信息获取、处理(加 工)、存储、传输、显示的学科。 一级学科 二级学科
通信系统工程 信息通信工程 信号与信息处理
模式识别与智能系统 人机交互工程
现代数字信号处理
引论
北京交通大学
信息科学研究所
引论
现代数字信号处理是基于统计判决理论的 随机信号处理的进一步发展。 随机信号用统计方法来研究,是从20世纪 40年代军事科学的需要而迅速发展起来的。
北京交通大学
信息科学研究所
引论
40年代,由维纳和科尔莫哥罗夫将随机过程和数 理统计的观点引入通信、雷达和控制中,建立了 维纳滤波理论。通过解Wiener-Hopf方程,在最小 均方误差准则下,求线性滤波器的最优传递函数。 1943年,诺斯提出了最大输出信噪比的匹配滤波 器理论,1946年,科捷利尼科夫提出相关接收机 理论。50年代香农信息论问世不久,伍德沃德 (Woodward)提出后验概率接收机概念。后来密德 尔顿(Middleton)提出风险理论准则。这一阶段主 要是应用于通信技术的统计理论和估计理论的发 展和成熟。奠定了随机信号处理的主要理论基础。
北京交通大学
信息科学研究所
1.1 概述
信号——信息的载体。可表现为时间或空间的函 数,例如语音信号表示成一维时间函数s(t),图 像为一个二维空间的灰度(亮度)函数g(x,y), 视频为二维空间加时间维的三维函数f(x,y,t)。 信号形式
模拟-时间幅度均为连续 连续信号 量化-时间连续,幅度离散
北京交通大学
信息科学研究所
引论 本课分八章 第一章 数字信号处理基本概念 第二章 随机信号分析基础 第三章 平稳随机信号的随机模型 第四章 波形估计 第五章 功率谱估计 第六章 自适应滤波 第七章 小波分析和小波变换
第一章 数字信号处理基本概念
北京交通大学
信息科学研究所
Contents
北京交通大学
信息科学研究所
引论
(5)自适应理论:1967年由B.Widrow提出,发展 迅速。它可以在缺乏信号和噪声先验统计知识的 情况下,实现均方意义下最佳滤波和预测。广泛 应用于通信中的自适应均衡、雷达和声纳的波束 形成、自适应噪声对消和自适应控制等方面。 (6)多维信号处理与分析:涉及多维变换、多维数 字滤波、多维谱估计,以及为实现多维信号处理 的器件结构及算法,如并行算法、流水线信号处 理以及人工神经网络等。
相关文档
最新文档