四川省成都七中2014届高三考前热身考试文科数学试题(含答案解析)(2014.06)

合集下载

高考专题成都七中级考试数学试卷(文科).docx

高考专题成都七中级考试数学试卷(文科).docx

成都七中2014级考试数学试卷(文科)命题:方廷刚 审题:巢中俊 一、选择题(共50分,每题5分)1.设22{|10},{|log 0}A x x B x x =->=<,则A B ⋂=A.{|1}x x >B.{|0}x x >C.{|1}x x <-D.Φ2.设i 是虚数单位,若()(1)2(1)a bi i i ++=-,其中,a b R ∈,则a b +的值是A.12-B.2-C.2D.323.有一正方体,六个面上分别写有数字 1、2、3、4、5、6,有3个人从不同的角度 观察,结果如图所示.若记3的对面的数字为 m ,4的对面的数字为n ,则m n +=A.3B.7C.8D.114.设554log 4,log ((23),log 17a b c ==-=,则A.a c b <<B.b c a <<C.a b c <<D.b a c <<5.设,A B 是锐角ABC ∆的两内角,(sin ,1),(1,cos )p A q B =-=u r r ,则p u r 与q r的夹角是A.锐角B.钝角C.直角D.不确定 6.下列判断错误..的是 A.“22am bm <”是“a b <”的充分不必要条件B.“3210x x --≤对x R ∈恒成立”的否定是“存在0x R ∈使得320010x x -->”C.若“p q Λ”为假命题,则,p q 均为假命题D.若随机变量ξ服从二项分布:ξ~1(4,)4B ,则1E ξ= 7.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是A.32 B.43 C.3 D.238.已知双曲线22221(0,0)x y a b a b -=>>的离心率2e =,则2a eb+的最小值为A.23B.26C.23D.269.在ABC ∆内部随机取一点P ,则事件“PBC ∆的面积不大于ABC ∆面积的13”的概率是A.13 B.49 C.59 D.2310.已知函数2()22ln (,0)f x x ax a x a R a =--∈≠,则下列说法错误..的是 A.若0a <,则()f x 有零点 B.若()f x 有零点,则12a ≤且0a ≠ C.0a ∃>使得()f x 有唯一零点 D.若()f x 有唯一零点,则12a ≤且0a ≠二、填空题(共25分,每题5分)11.已知函数2()2x x f x =在区间(0,)a 内单调,则a 的最大值为__________.12.若方程3log (3)20xa x -+-=有实根,则实数a 的取值范围是___________.13.已知直线l :330x y --=与抛物线Γ:24y x =交于,A B 两点,与x 轴交于F ,若()OF OA OB λμλμ=+≤u u u r u u r u u u r, 则λμ=_______. 14.正方体1111ABCD A B C D -中,E 是棱1CC 的中点, F 是侧面11BCC B 内的动点,且1//A F 平面1D AE ,若正方 体1111ABCD A B C D -的棱长是2,则F 的轨迹被正方形 11BCC B 截得的线段长是________.15.已知函数()122014122014f x x x x x x x =+++++++-+-++-L L 的定义域为R ,给定两集合4222{((12101)(2))(2)}A a R f a a a f a =∈-++=+及B ={()(),}a R f x f a x R ∈≥∈,则集合A B ⋂的元素个数是_________.三、解答题(共75分) 16.(12分)设()f x p q=⋅u u r u r,而2(24sin ,1),(cos ,3sin 2)()2xp q x x x R ωωω=-=∈u u ru r.(1)若()3f π最大,求ω能取到的最小正数值.(2)对(1)中的ω,若()23sin 1f x x =+且(0,)2x π∈,求tan x .17.(12分)小区统计部门随机抽查了区内60名网友4月1日这天的网购情况,得到如下数据统计表(图(1)).网购金额超过2千元的顾客被定义为“网购红人”,网购金额不超过2千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为3:2.(1)确定,,,x y p q 的值,并补全频率分布直方图(图(2)).(2)为进一步了解这60名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查,设ξ为选取的3人中“网购红人”的人数,求ξ的分布列和数学期望.18.(12分)执行如图所描述的算法程序,记输出的一列a 的值依次为12,,,n a a a L ,其中*n N ∈且n ≤.(1)若输入2λ=,写出全部输出结果.(2)若输入2λ=,记*1()1n n b n N a =∈-,求1n b +与n b 的关系(*n N ∈). 19.(12分)如图,已知平面ABCD ⊥平面BCEF , 且四边形ABCD 为矩形,四边形BCEF 为直角梯形,090CBF ∠=,//BF CE ,BC CE ⊥,4DC CE ==, 2BC BF ==.(1)作出这个几何体的三视图(不要求写作法). (2)设,P DF AG Q =⋂是直线DC 上的动点, 判断并证明直线PQ 与直线EF 的位置关系.(3)求三棱锥F ADE -的体积.20.(13分)椭圆Γ:2221(0)25x y r r +=>的左顶点为A ,直线4x =交椭圆Γ于,B C 两点(C 上B 下),动点P 和定点(4,6)D -都在椭圆Γ上.(1)求椭圆方程及四边形ABCD 的面积. (2)若四边形ABCP 为梯形,求点P 的坐标.(3)若,m n 为实数,BP mBA nBC =+uu r uu r uu u r,求m n +的最大值.21.(14分)已知函数()2sin f x x x =-,()()(2)2g x f x π=--.(1)讨论()g x 在(0,)6π内和在(,)62ππ内的零点情况. (2)设0x 是()g x 在(0,)6π内的一个零点,求()f x 在0[,]2x π上的最值. (3)证明对*n N ∈恒有11()12212n k n n π=<<+∑.成都七中2014级考试数学试卷(文科)参考答案一、DBCD BCAB CB 二、11.2ln 2 12.6a ≥ 13.1314.2 15.7 三、16.(1)12. (2)33.17.解.(1)96x y =⎧⎨=⎩,0.150.10p q =⎧⎨=⎩,补全频率分布直方图如图所示.(2)选出的10人中,“网购达人”有 4人,“非网购达人”有6人,故ξ的可能 取值为0,1,2,3,且易得ξ的分布列为65E ξ=.18.解.(1)输出结果共2个,依次是:20,2.(2)*11()n n b b n N +=-∈. 19.(1)如右图. (2)垂直. (3)83. 20.(1)22125100x y +=; 78ABCD S =. (2)748(,)55-. (3)13510+.21.解.(1)()2cos 1g x x '=-在(0,)2π有唯一零点3x π=,易知()g x 在(0,)3π单增而在(,)32ππ内单减,且()(3)(2)0332g πππ=--->,故()g x 在(0,)3π和[,)32ππ内都至多有一个零点.又(0)0,()(1)(2)106623g g ππππ<=---=->,故()g x 在(0,)6π内有唯一零点;再由()02g π=知()g x 在(,)62ππ内无零点. 4242俯视图侧视图正视图(2)由(1)知()g x 在[0,]2π有最大值())(2)332g πππ=--,故()f x 在0[,]2x π有最大值()33f ππ=;再由(1)的结论知()f x 在0[,]2x π的最小值应为0min{(),()}2f x f π.由0()0g x =知0()2()22f x f ππ=-=,于是()f x 在0[,]2x π的最小值0()()222f x f ππ==-.(3)由(2)知0[,]2x x π∈时,有2()23f x ππ-≤≤,即111sin 2426x x x ππ+-≤≤+- ①取*)2k x k N π=∈,则2k x π<且0126k x x ππ≥->>,将k x 的值代入①中,可得112π≤≤+111)2122n nn k k k n n π===⇒-≤≤-∑②再由1111221)nn n nk k k k =====>==∑,得1)1)12nk n π=<+-∑ ③相仿地,2n ≥时,1221121n n nk k k ====+<+=∑,故1111)22nk n n =>-=∑ ④ 而1n =时④即01cos1cos 602>=,显然也成立.故原不等式成立.。

2014年四川省成都七中高考数学零诊试卷(文科)

2014年四川省成都七中高考数学零诊试卷(文科)

2014年四川省成都七中高考数学零诊试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.已知命题p:∃x∈R,x>2,命题q:∀x∈R,x2>0,则()A.命题¬p是真命题B.命题q是真命题C.命题p∨q是假命题D.命题p∧¬q是真命题【答案】D【解析】解:由题意,命题p为真命题;∵x=0时,x2=0,∴命题q为假命题,由复合命题真值表知:¬p是假命题,A错误;命题q为假命题,B错误;命题p∨q是真命题,C错误;命题p∧(¬q)是真命题,D正确.故选D.先判断命题p、q的真假,再根据复合命题真值表依次判断个选项命题的真假,可得答案.本题借助考查简单命题的真假判定及复合命题的真假判定规律,解题的关键是熟练掌握复合命题真值表.2.“m=1”是“直线y=mx+m与直线y=mx+2平行”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】解:当m=1时,两直线方程分别为y=x+1和y=x+2,满足直线平行.若直线y=mx+m与直线y=mx+2平行,则m≠2,∴“m=1”是“直线y=mx+m与直线y=mx+2平行”充分不必要条件.故选:A.结合直线平行的等价条件,利用充分条件和必要条件的定义进行判断.本题主要考查充分条件和必要条件的判断,利用直线平行的等价条件是解决本题的关键.3.△ABC中,若(+)•(+)=0,则△ABC为()A.正三角形B.等腰三角形C.直角三角形D.无法确定【答案】B【解析】解:如图,取AB边的中点D,连接CD,则:=0;∴CD⊥AB;∴CA=CB,∴△ABC为等腰三角形.故选B.作△ABC的中线CD,则根据向量加法的平行四边形法则及题中条件得:2,所以CD⊥AB,所以△ABC为等腰三角形.考查中线向量,向量加法的平行四边形法则,向量的加法,两向量的数量积为0的充要条件.4.如图1,一个“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,这个几何体的体积为()A. B. C.2π D.【答案】B【解析】解:由已知中“半圆锥”的主视图是边长为2的正三角形,左视图是直角三角形,俯视图是半圆及其圆心,我们可以判断出底面的半径为1,母线长为2,则半圆锥的高为故V==故选B根据已知中半圆锥”的主视图是边长为2的正三角形,我们易求出底面半径及圆锥的母线长,进而求出半圆底面面积和高,代入锥体体积公式即可得到答案.本题考查的知识点是由三视图求体积,其中由三视图判断出几何体的形状,及相关的几何量是解答本题的关键.5.双曲线mx2-y2=1经过抛物线y2=2x的焦点,则m的值为()A.4B.1C.D.【答案】A【解析】解:抛物线y2=2x的焦点为(,0),则m×-0=1,解得,m=4.故选A.求出抛物线y2=2x的焦点坐标,代入双曲线方程即可求出.本题考查了圆锥曲线的定义与性质,属于基础题.6.执行右边的程序框图.则输出n的值为()A.6B.5C.4D.3【答案】C【解析】解:根据题意,本程序框图为求S的和,循环体为“直到型“循环结构,第1次循环:n=0+1=1S=1×1+2=3第2次循环:n=1+1=2S=2×3+2=8第3次循环:n=2+1=3S=3×8+2=26第4次循环:n=3+1=4S=4×26+2>54此时S>54,满足条件,跳出循环,输出n=4.故选C.首先分析程序框图,循环体为“直到型“循环结构,按照循环结构进行运算,求出满足条件时的n的值.本题为程序框图题,考查对循环结构的理解和认识,按照循环结构运算后得出结果.属于基础题.7.函数y=2sin(2x-)(x∈[0,π])在下列哪个区间上单调递增()A.[,]B.[,]C.[0,]D.[0,π]【答案】C【解析】解:由2x-∈[-+2kπ,+2kπ],k∈Z得:x∈[-+kπ,+2kπ],k∈Z,即函数y=2sin(2x-)的单调递增区间为:[-+kπ,+2kπ],k∈Z,又∵x∈[0,π],故函数y=2sin(2x-)(x∈[0,π])在[0,]和[,π]上单调递增,故选:C根据正弦型函数的单调性,求出函数y=2sin(2x-)(x∈[0,π])的单调递区间,进而可得答案.本题主要考查两角和的余弦公式的应用,正弦函数的单调增区间,属于基础题.8.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N﹡),且{a n}是递增数列,则实数a的取值范围是()A.[,3)B.(,3)C.(2,3)D.(1,3)【答案】C【解析】解:根据题意,a n=f(n)=;要使{a n}是递增数列,必有>><;解可得,2<a<3;故选:C.根据题意,首先可得a n通项公式,这是一个类似与分段函数的通项,结合分段函数的单调性的判断方法,可得>><;解可得答案.本题考查数列与函数的关系,{a n}是递增数列,必须结合f(x)的单调性进行解题,但要注意{a n}是递增数列与f(x)是增函数的区别与联系.9.直线l:x+y-3=0分别与函数y=3x和y=log3x的交点为A(x1,y1)、B(x2,y2),则2(y1+y2)=()A.4B.6C.8D.不确定【答案】B【解析】解:∵函数y=3x,y=log3x互为反函数,∴A(x1,y1),B(x2,y2)关于直线y=x对称,∴y2=x1;又∵A(x1,y1)在直线l上,∴2(y1+y2)=2(y1+x1)=2×3=6.故选:B.由函数y=3x和y=log3x互为反函数,得出y2=x1,再根据A(x1,y1)在直线l上得出2(y1+y2)=2(y1+x1),即得结果.本题考查了互为反函数的两个函数的性质应用问题,由反函数的图象关于直线y=x对称即可解答此题,是基础题.10.设等差数列{a n}的前n项和为S n,已知(1-a2012)3+2014(1-a2012)=2014,(a3-1)3+2014(a3-1)=2014,则下列结论正确的是()A.S2014=2014,a2012<a3B.S2014=2014,a2012>a3C.S2014=2013,a2012<a3D.S2014=2013,a2012>a3【答案】A【解析】解:构造函数f(x)=(x-1)3+2014x,则f′(x)=3(x-1)2+2014>0,∴函数f(x)=(x-1)3+2014x单调递增,∵a33-3a32+2017a3=4029,即(a3-1)3+2014a3=4028,即f(a3)=4028>f(a2012)=0,∴a2012<a3,排除B和D,已知两式相加可得(a2012-1)3+2014a2012+(a3-1)3+2014a3=4028分解因式可得(a3+a2012-2)[(a2012-1)2-(a2012-1)(a3-1)+(a3-1)2]+2014(a3+a2012)=4028,令a3+a2012=t,则有g(t)=[(a2012-1)2-(a2012-1)(a3-1)+(a3-1)2](t-2)+2014t,∵[(a2012-1)2-(a2012-1)(a3-1)+(a3-1)2]>0,∴g(t)为增函数,又∵g(2)=4028,∴必有t=2,即a3+a2012=2,∴S2014=×2014(a1+a2014)=×2014(a3+a2012)=2014故选:A构造函数f(x)=(x-1)3+2014x,由函数的单调性可判a2012<a3,已知两式相加分解因式,由g(t)为增函数,且g(2)=4028,可得t=2,进而由等差数列的性质和求和公式可得.本题考查等差数列的求和公式,涉及函数的单调性的应用和构造函数的技巧,属中档题.二、填空题(本大题共5小题,共25.0分)11.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17岁~18岁的男生体重(kg),得到频率分布直方图如下.根据下图可得这100名学生中体重在[56.5,64.5]的学生人数是______ .【答案】40【解析】解:体重在[56.5,64.5]范围的个小矩形面积之和为:(0.03+0.05+0.05+0.07)×2=0.4,即体重在[56.5,64.5]的学生的频率为0.4,所以体重在[56.5,64.5]的学生人数是100×0.4=40故答案为:40首先计算出体重在[56.5,64.5]的学生的频率,即体重在[56.5,64.5]范围的个小矩形面积之和,再乘以抽查的学生总数即得体重在[56.5,64.5]的学生人数本题考查频率分布直方图,属基本知识、基本运算的考查.12.在平面直角坐标系x O y中,设D是由不等式组表示的区域,E是到原点的距离不大于1的点构成的区域,向E中随机投一点,则所投点落在D中的概率是______ .【答案】【解析】解析:根据题意可得点M(x,y)满足,其构成的区域D如图所示的三角形,面积为S1=1,E所表示的平面区域是以原点为圆心,以1为半径的圆及其内部,面积为S2=π,故向E中投一点,落入D中的概率为P==.故答案为.本题属于几何概型,利用“测度”求概率,本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域和到原点的距离不大于1的点构成的区域的面积后再求它们的比值即可.本题主要考查几何概型.几何概型的特点是:实验结果的无限性和每一个实验结果出现的等可能性.在具体问题的研究中,要善于将基本事件“几何化”,构造出随机事件对应的几何图形,抓住其直观性,把握好几何区域的“测度”,利用“测度”的比来计算几何概型的概率.13.正方体ABCD-A1B1C1D1的棱长为4,点P,Q在棱CC1上,且PQ=1,则三棱锥P-QBD 的体积是______ .【答案】【解析】解:如图,∵正方体ABCD-A1B1C1D1的棱长为4,点P,Q在棱CC1上,且PQ=1,∴=,∴三棱锥P-QBD的体积:V P-QBD=V D-PQB===.故答案为:.由V P-QBD=V D-PQB,利用等积法能求出三棱锥P-QBD的体积.本题考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意等积法的合理运用.14.若f(x)=(0<x<1),则f(x)的最小值为______ .【答案】3+2【解析】解:∵f(x)=(0<x<1),∴f′(x)=-+令f′(x)=0,解得x=2-,当f′(x)>0时,即0<x<2-时,函数递增,当f′(x)<0时,即2-<x<1时,函数递减,故当x=2-时函数有最小值,最小值为f(2-)=+=3+2,故答案为:3+2根据导数求出函数的最值,问题得以解决.本题主要考查了导数和最值得关系,属于基础题.15.设f(x)为定义在区间I上的函数.若对I上任意两点x1,x2(x1≠x2),总有f()<[f(x1)+f(x2)],则称f(x)为I上的严格下凸函数.若f(x)为I上的严格下凸函数,其充要条件为:对任意x∈I有f″(x)>0成立(f″(x)是函数f(x)导函数的导函数),则以下结论正确的有______ .①f(x)=,x∈[0,2014]是严格下凸函数.②设x1,x2∈(0,)且x1≠x2,则有tan()>(tanx1+tanx2)③f(x)=-x3+3x2在区间[1,2014]上是严格下凸函数.④f(x)=x3+sinx,(x∈(,))是严格下凸函数.【答案】①④【解析】解:①因为f(x)===+,所以f'(x)=-=-,所以f″(x)=,当x∈[0,2014]时,f″(x)>0恒成立,所以①正确.②若x1=,x2=,则(tanx1+tanx2)=(tan+tan)=(+)=,而tan()=tan=tan=1,所以有tan()>(tanx1+tanx2)不成立,所以②错误.③因为f(x)=-x3+3x2,则f'(x)=-3x2+6x,f∥(x)=-6(x-1<0在[1,2014]上恒成立,∴f(x)=-x3+3x2在区间[1,2014]上不是严格下凸函数,所以③错误.④若f(x)=x3+sinx,则f'(x)=x2+cosx,f∥(x)=x-sinx,当x∈[,],设y=x-sinx,则y'=1-cosx≥0,所以函数f∥(x)=x-sinx单调递增,所以f∥()=-sin=->0,所以f(x)=x3+sinx,(x∈(,)是严格下凸函数,所以④正确.故答案为:①④.根据严格下凸函数的充要条件,求f∥(x)>0恒成立即可.本题主要考查新定义的应用,考查学生的运算能力,综合性较强.正确理解新定义是解决本题的关键.三、解答题(本大题共6小题,共75.0分)16.已知函数f(x)=sinxcosx-cos2x-,x∈R.(Ⅰ)求函数f(x)的解析式,最小值和最小正周期;(Ⅱ)已知△ABC内角A、B、C的对边分别为a、b、c,且c=3,f(C)=0,若向量=(1,sin A)与=(2,sin B)共线,求a、b的值.【答案】解:(Ⅰ)函数f(x)==--1=sin(2x-)-1,∴f(x)的最小值为-2,最小正周期为π.…(5分)(Ⅱ)∵f(C)=sin(2C-)-1=0,即sin(2C-)=1,又∵0<C<π,-<2C-<,∴2C-=,∴C=.…(7分)∵向量,与,共线,∴sin B-2sin A=0.由正弦定理,得b=2a,①…(9分)∵c=3,由余弦定理得9=,②…(11分)解方程组①②,得a=b=2.…(13分)【解析】(Ⅰ)利用三角函数的恒等变换化简函数f(x)的解析式为sin(2x-)-1,由此求出最小值和周期.(Ⅱ)由f(C)=0可得sin(2C-)=1,再根据C的范围求出角C的值,根据两个向量共线的性质可得sin B-2sin A=0,再由正弦定理可得b=2a.再由余弦定理得9=,求出a,b的值.本题主要考查三角函数的恒等变换,正弦函数的周期性、定义域和值域,两个向量共线的性质,正弦定理、余弦定理的应用,属于中档题.17.成都七中学生会经过综合考评,新招了14名男生和6名女生到学生会工作,茎叶图表示这20名同学的测试成绩(单位:分),规定:成绩在180分以上者到“M部门”工作;成绩在180分以下者到“N部门”工作.(1)求男生成绩的中位数及女生成绩的平均值;(2)如果用分层抽样的方法从“M部门”和“N部门”共选取5人,再从这5人中选2人,求至少有一人是“M部门”的概率.【答案】解:(Ⅰ)男生共14人,中间两个成绩是175和176,它们的平均数为175.5,即男生成绩的中位数是175.5;…(2分)女生的平均成绩是;…(4分)(2)用分层抽样的方法从“M部门”和“N部门”抽取5人,每个人被抽中的概率是;…(6分)根据茎叶图,“M部门”有人,“N部门”有人;…(8分)记选中的“M部门”的人员为A1,A2,选中的“N部门”人员为B1,B2,B3,从这5人中选2人的所有可能的结果为:(A1A2),(A1B1),(A1B2),(A1B3),(A2B1),(A2B2),(A2B3),(B1B2),(B1B3),(B2B3)共10种;…(10分)其中至少有一人是“M部门”的结果有7种,因此,至少有一人是“M部门”的概率是.…(12分)【解析】(Ⅰ)根据茎叶图以及中位数、平均数的概念,进行计算即可;(2)用分层抽样方法求出从“M部门”和“N部门”各抽取的人数,再用列举法求出从这5人中选2人的所有可能结果,求出对应的概率即可.本题通过茎叶图的应用,考查了求数据的中位数和平均数的大小,也考查了分层抽样原理和古典概型的计算问题,是综合题目.18.如图,四棱锥E-ABCD中,ABCD是矩形,平面EAB⊥平面ABCD,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)求直线DE与AC所成的角.【答案】证明:(1)∵ABCD是矩形,∴BC⊥AB,∵平面EAB⊥平面ABCD,平面EAB∩平面ABCD=AB,BC⊂平面ABCD,∴BC⊥平面EAB,∵EA⊂平面EAB,∴BC⊥EA,∵BF⊥平面ACE,EA⊂平面ACE,∴BF⊥EA,∵BC∩BF=B,BC⊂平面EBC,BF⊂平面EBC,∴EA⊥平面EBC,∵BE⊂平面EBC,∴EA⊥BE.解:(2)∵EA⊥BE,∴AB==2,S△ADC=×AD×DC=×BC×AB=2,设O为AB的中点,连接EO,∵AE=EB=2,∴EO⊥AB,∵平面EAB⊥平面ABCD,∴EO⊥平面ABCD,即EO为三棱锥E-ADC的高,且EO=AB=,∴V D-ABC=V E-ADC=•S△ADC×EO=.(3)以O为原点,分别以OE、OB所在直线为x轴,y轴,建立空间直角坐标系,则E(,0,0),C(0,,2),A(0,-,0),D(0,-,2),∴,,;,,设直线DE与AC所成的角的大小为θ,∴=0所以直线DE与AC所成的角为900…(12分)【解析】(1)由已知中ABCD是矩形,平面EAB⊥平面ABCD,根据面面垂直的性质可得BC⊥平面EAB,进而根据线面垂直的性质得到BC⊥EA,同理BF⊥EA,由线面垂直判定定理可得EA⊥平面EBC,再由线面垂直的性质即可得到AE⊥BE;(2)设O为AB的中点,连接EO,可证得EO为三棱锥E-ADC的高,求出三棱锥的底面面积和高的长度,代入棱锥体积公式,即可求出答案.(3)以O为原点,分别以OE、OB所在直线为x轴,y轴,建立空间直角坐标系,分别求出直线DE与AC的方向向量,代入向量夹角公式,可得答案.本题考查的知识点是异面直线的夹角,棱锥的体积,平面与平面垂直的性质,熟练掌握空间线线垂直、线面垂直及面面垂直之间的相互转化及辩证关系是解答本题的关键.19.设数列{b n}的前n项和为S n,且b n=2-2S n;数列{a n}为等差数列,且a5=14,a7=20.(1)求数列{b n}的通项公式;(2)若c n=a n•b n(n=1,2,3…),T n为数列{c n}的前n项和.求T n.【答案】解:(1)由b n=2-2S n,令n=1,则b1=2-2S1,又S1=b1所以…(2分)当n≥2时,由b n=2-2S n,可得b n-b n-1=-2(S n-S n-1)=-2b n即…(4分)所以{b n}是以为首项,为公比的等比数列,于是…(6分)(2)数列{a n}为等差数列,公差,可得a n=3n-1…(7分)从而∴,∴…(11分).…(12分)【解析】(1)由已知条件b n=2-2S n;当n=1时先求出,再利用b n-b n-1=-2(S n-S n-1)=-2bn得到{b n}是以为首项,为公比的等比数列,利用等比数列的通项公式求出通项.(2)求出,是一个等差数列与一个等比数列的乘积,所以利用错位相减的方法求出和.求一个数列的前n项和,应该先求出数列的通项,根据通项的特点选择合适的求和方法.20.已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,过点A的直线L与抛物线C2:x2=4y交于不同两点B,C,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.(1)求椭圆C1的方程;(2)是否存在满足(||-||)+(||-||)=0的点P?若存在,指出这样的点P有几个,并求出点P的坐标;若不存在,说明理由.【答案】解:(1)设椭圆C1的方程为(a>b>0),依题意:解得:∴椭圆C1的方程为.…(5分)(2)显然直线L的斜率存在,设直线L的方程为y=k(x-2)+3,由消去y,得x2-4kx+8k-12=0.设B(x1,y1),C(x2,y2),则x1+x2=4k,x1x2=8k-12.由x2=4y,即,得y′=.∴抛物线C2在点B处的切线l1的方程为,即.…(7分)∵,∴.同理,得抛物线C2在点C处的切线l2的方程为.由解得∴P(2k,2k-3).…8分∵,∴点P在椭圆:上.∴.化简得7k2-12k-3=0.…(10分)由△=122-4×7×(-3)=228>0,,∴,或,∴满足条件的点P有两个,坐标,或,…(13分)【解析】(1)设椭圆C1的方程为(a>b>0),依题意:,由此能求出椭圆C1的方程.(2)设直线L的方程为y=k(x-2)+3,由,得由此能求出满足条件的点P的个数及其坐标.本题考查椭圆方程的求法,考查满足条件的点的坐标的个数的判断与坐标的求法,解题时要注意函数与方程思想的合理运用.21.已知函数h(x)=lnx+(1)若g(x)=h(x+m),求g(x)的极小值;(提示:(y=ln(x+m)的导数y′=))(2)若φ(x)=h(x)--2x有两个不同的极值点,其极小值为M,试比较2M 与-3的大小关系,并说明理由.【答案】解:(1)∵g(x)=h(x+m)∴>,,则()的极小值=(1-)=1;(2)φ(x)=h(x)--2x=ax2-2x+lnx(x>0)φ′(x)=2ax-2+=(x>0)∵φ(x)有两个不同的极值点,∴2ax2-2x+1=0在(0,+∞)有两个不同的实根.设p(x)=2ax2-2x+1=0,则>>>即>>,即有0<a<.设p(x)在(0,+∞)的两根x1,x2且x1<x222222又p(x)=0在(0,+∞)的两根为x1,x2,∴∴极小值=∴2M=-1+2lnx2-2x2,∵(<<)∴x2>1令v(x)=-1+2lnx-2x,∴x>1时,v′(x)<0,v(x)在(1,+∞)递减,∴x>1时,v(x)=-1+2lnx-2x<v(1)=-3,∴2M<-3.【解析】(1)求出g(x)=h(x+m)的导数,列表得到g(x)的单调区间和极值的关系,即可得到极小值;(2)对φ(x)求导数,φ(x)有两个不同的极值点,即为2ax2-2x+1=0在(0,+∞)有两个不同的实根.设p(x)=2ax2-2x+1=0,运用韦达定理和判别式,即可得到0<a<.列表得到φ(x)的单调区间和极值的关系,即可得到极小值M,令v(x)=-1+2lnx-2x,运用导数,得到v(x)在(1,+∞)递减,运用单调性即可得到2M<-3.本题考查导数的综合应用:求单调性和求极值,考查函数的单调性及运用,极值点的个数与方程根的关系,属于中档题.。

四川成都七中高2014届高三(上)入学考试 数学文

四川成都七中高2014届高三(上)入学考试 数学文

图 2俯视图侧视图正视图四川成都七中高2014届高三(上)入学考试数学(文)试题第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合2{|450}A x x x =--=,集合2{|10}B x x =-=,则A B =( )(A ){1} (B ){1}- (C ){1,1,5}- (D )∅2、设复数z 满足 (1-i )z=2 i ,则z = ( ) (A )-1+i (B )-1-i(C )1+i (D )1-i3、某三棱锥的三视图如图所示,则该三棱锥的体积是 ( ) (A )16 (B )13 (C )23(D )14、设x Z ∈,集合A 是奇数集,集合B 是偶数集。

若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∈ (B ):,2p x A x B ⌝∃∉∈ (C ):,2p x A x B ⌝∀∉∉ (D ):,2p x A x B ⌝∃∈∉5、函数sin()(0,0,)22y A x A ππωϕωϕ=+>>-<<的部分图象如图所示,则此函数的解析式可为( ) (A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(4)6y x π=-(D )2sin(4)3y x π=+6、若双曲线22221x y a b-=,则其渐近线方程为( )(A )y = 错误!未找到引用源。

(B )y = 错误!未找到引用源。

(C )12y x =±错误!未找到引用源。

(D )2y x =± 7、设函数f (x )在R 上可导,其导函数为f'(x ),且函数f (x )在x =-2处取得极小值,则函数y=xf'(x )的图象可能是( )8、阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n 后,输出的)20,10(∈S ,那么n 的值为( )(A )3 (B )4 (C )5 (D )69、已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )(A) [1,2] (B) 10,2⎛⎤ ⎥⎝⎦(C) 1,22⎡⎤⎢⎥⎣⎦(D) (0,2]10、若存在正数x 使2()1xx a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞第二部分 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2014年高考四川文科数学试题及答案(word解析版)

2014年高考四川文科数学试题及答案(word解析版)

2014年高考四川文科数学试题及答案(word解析版)D于( )(A )240(31)m (B )180(21)m (C )120(31)m(D )30(31)m 【答案】C【解析】如图,30ACD ∠=,75ABD ∠=,60AD =m ,在Rt ACD △中,60603tan tan30AD CD=ACD ==∠m , 在Rt ABD △中,()606023tan tan 7523AD BD =ABD ===∠+m,所以()603602312031BC CD BD =-==m,故选C . (9)【2014年四川卷,文9,5分】设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+= 交于点(,)P x y ,则||||PA PB +的取值范围是( )(A )[5,25] (B )[10,25] (C )[10,45] (D )[25,45] 【答案】B【解析】直线0x my +=过定点()0,0A ,直线30mx y m --+=过定点()1,3B .①当0m =时,过定点A 的直线方程为0x =,过定点B 的直线方程为3y =,两条直线互相垂直,此时()0,3P ,所以4PA PB +=.②当0m ≠时,直线0x my +=的斜率为1m -,直线30mx y m --+=的斜率为m ,因为11m m -⨯=-,所以两条直线互相垂直,即点P 可视为以AB 为直径的圆上的点.当点P 与点A 或点B 重合时,PA PB +有最小10P 不与点A ,点B 重合时,PAB △为直角CA 75°30°60 mmx-y-m+3=0x+my=0yx 213-1-2-1321PBA三角形,且22210PA PB AB +==.由不等式性质知222252PA PBPA PB++=,所以10,25PA PB ⎡⎤+∈⎣⎦.综合①②得10,25PA PB ⎡⎤+∈⎣⎦,故选B .(10)【2014年四川卷,文10,5分】已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )(A )2 (B )3 (C )1728(D )10 【答案】B【解析】如图所示,设()11,A x y ,()22,B x y ,则12122x x y y +=(*).不妨设A 点在第一象限,则10y >,20y <.设直线AB :x my n =+,代入2y x =中,得20y my n --=,则12y y n =-,代入(*)式,有220n n --=,解得2n =或1n =-(舍),故直线AB 过定点()2,0,所以ABO AFO S S +=△△1211112224y y y ⨯⨯-+⨯⨯1298y y =-()12923382ny y -==≥,故选B .第II 卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2014年四川卷,文11,5分】双曲线2214x y-=的离心率等于 . 【答案】5【解析】由双曲线方程2214x y -=知24a=,21b=,2225ca b =+=,所以5c e a ==.(12)【2014年四川卷,文12,5分】复数22i1i-=+ . 【答案】2i -【解析】()()()()()2222i 1i 22i 1i 12i i 2i1i 1i 1i ---==-=-+=-++-.(13)【2014年四川卷,文13,5分】设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f =________.【答案】1【解析】()f x 是定义域在R 上的圆周期为2的函数,且()2421001x x f x x x ⎧-+-<=⎨<⎩, 所以231142121222f f ⎛⎫⎛⎫⎛⎫=-=-⨯-+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(14)【2014年四川卷,文14,5分】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =_______. 【答案】2【解析】()1,2=a ,()4,2=b ,则()4,22m m m +=++c =a b ,5a =,25b =58m ⋅=+a c ,820m ⋅=+b c .因为c 与a 的夹角等于c 与b 的夹角,所以⋅⋅=⋅⋅a c b c a c b c 525,解得2m =. (15)【2014年四川卷,文15,5分】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,x R ∃∈,()f a b =”;②若函数()f x B ∈,则()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉;④若函数2()ln(2)1x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈. 其中的真命题有____________.(写出所有真命题的序号). 【答案】①③④【解析】对于①,()f x A ∈⇔()f x 的值域为R ⇔b ∀∈R ,a D ∃∈,()f a b =,故①正确;对于②,当()1f x x =,1x >时,()1f x <,即()()[]1,00,11,1-⊆-,但()f x 无最值,故②不正确;对于③,因为x D ∀∈,()g x M ≤,所以总存在0x D ∈,使得()()0f xg x +趋近于无穷大,即()()f x g x B +∉,故③正确;对于④,令2()1x g x x =+,则()()()2222222121'11x x x g x xx+--==++()()()22111x x x+-=+,令()'0g x >,解得11x -<<,故()g x 在()1,1-上单调递增,且()112g =,()112g -=-,又()g x 在()1,+∞上单调递减,1x >时,()0g x >, 又()g x 为奇函数,故()12g x ≤.而()ln(2)h x a x =+,当2x >-时,若0a ≠,则()h x A ∈由③知,()()h x g x B +∉,即()f x 无最大值,所以0a =时,()f x 有最大值,此时()2()1x f x g x B x ==∈+,故④正确.综上:真命题的有①③④.三、解答题:本大题共6题,共75分. (16)【2014年四川卷,文16,12分】一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c . (1)求“抽取的卡片上的数字满足a b c +=”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 解:(1)由题意知,(),,a b c 所有可能的结果为()1,1,1,()1,1,2,()1,1,3,()1,2,1,()1,2,2,()1,2,3,()1,3,1,()1,3,2,()1,3,3,()2,1,1,()2,1,2,()2,1,3,()2,2,1,()2,2,2,()2,2,3,()2,3,1,()2,3,2,()2,3,3,()3,1,1,()3,1,2,()3,1,3,()3,2,1,()3,2,2,()3,2,3,()3,3,1,()3,3,2,()3,3,3,共27种.设“抽取的卡片上的数字满足a b c +=”为事件A ,则事件A 包括()1,1,2,()1,2,3,()2,1,3,共3种.所以()31279P A ==.因此,“抽取的卡片上的数字满足a b c +=”的概率为19. (2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括()1,1,1,()2,2,2,()3,3,3,共3种.所以()()3811279P B P B =-=-=.因此“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89. (17)【2014年四川卷,文17,12分】已知函数()sin(3)4f x x π=+. (1)求()f x 的单调递增区间;(2)若α是第二象限角,4()cos()cos2354f απαα=+,求cos sin αα-的值.解:(1)因为函数sin y x =的单调递增区间为ππ2π,2π22k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .由πππ2π32π242k x k -+++,k ∈Z ,得π2ππ2π43123k k x -++,k ∈Z .所以函数()f x 的单调递增区间为π2ππ2π,43123k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(2)由已知,有()22π4πsin cos cos sin 454αααα⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭, 所以()22ππ4ππsin cos cos sin cos cos sin sin cos sin 44544αααααα⎛⎫+=-- ⎪⎝⎭, 即()()2ππ4sin cos cos sin cos sin sin cos 445αααααα+=-+.当sin cos 0αα+=时,由α是第二象限角,知3π2π4k α=+,k ∈Z .此时cos sin 2αα-=-当sin cos 0αα+≠时,有()25cos sin 4αα-=.由α是第二象限角,知cos sin 0αα-<,此时5cos sin αα-=.综上所述,cos sin 2αα-=-5. (18)【2014年四川卷,文18,12分】在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形.(1)若AC BC ⊥,证明:直线BC ⊥平面11ACC A ;(2)设D ,E 分别是线段BC ,1CC 的中点,在线段AB 上是否存在一点M ,使直线//DE平面1A MC ?请证明你的结论.解:(1)因为四边形11ABB A 和11ACC A 都是矩形,所以1AA AB ⊥,1AA AC ⊥.因为AB ,AC 为平面ABC 内两条相交直线,所以1AA ⊥平面ABC .因为直线BC ⊂平面ABC ,所以1AA BC ⊥.又AC BC ⊥,1AA , AC 为平面11ACC A 内两条相交直线,所以BC ⊥平面11ACC A .(2)取线段AB 的中点M ,连接1A M ,MC ,1A C ,1AC ,设O 为1A C ,1AC 的交点.由已知可知O 为1AC 的中点.连接MD ,OE ,则MD ,OE 分别为ABC ∆,1ACC ∆的中位线,所以=1//2MD AC ,=1//2OE AC ,因此=//MD OE .连接OM ,从而四边形MDEO 为平行四边形,则//DE MO .因为直线DE ⊄平面1A MC ,所以直线//DE 平面1A MC ,即线段AB 上存在一点M (线段AB 的中点),使直线//DE DB11AB A M E OC 1A 1B 1DC BA平面1A MC . (19)【2014年四川卷,文19,12分】设等差数列{}na 的公差为d ,点(,)n na b 在函数()2x f x =的图象上(n N *∈). (1)证明:数列{}nb 为等差数列;(2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列2{}n na b 的前n 项和nS .解:(1)证明:由已知可知,20na nb=>,当1n 时,1122n naa dn nb b+-+==,所以数列{}nb 是首项为12a ,公比为2d等比数列.(2)函数()2xf x =在()22,a b 处的切线方程为()()22222ln 2a a y x a -=-,它在x 轴上的截距为21ln 2a -.由题意知,2112ln 2ln 2a -=-,解得22a=.所以211d aa =-=,na n=,2nn b =,24nn na bn =⋅. 于是,()231142434144n nn T n n -=⨯+⨯+⨯++-⨯+⨯,()23141424144nn n T n n +=⨯+⨯++-⨯+⨯,因此()1121113444444444439n n n n n nnn T T n n ++++-+--=+++-⨯=-⨯=.所以()113449n n n T +-+=.(20)【2014年四川卷,文20,13分】已知椭圆C :22221x y a b +=(0a b >>)的左焦点为(2,0)F -6.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线3x =-上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平 行四边形时,求四边形OPTQ 的面积.解:(1)因为(2,0)F -,所以2c =,又6e =,所以6a =,2222b a c =-=,即椭圆C 的方程为22162x y +=.(2)如图所示,由题意可设直线PQ 的方程为2x my =-.当0m =时,2x =-,此时()3,0T -,P ,Q 关于点F 对称,但DF TF ≠,故四边形OPTQ 不是平行四边 形,与题意不符,故0m ≠.直线TF :()2y m x =-+,令3x =-,得y m =,即()3,T m -,连接OT ,设OT PQ E =,则3,22m E ⎛⎫-⎪⎝⎭,联立方程222162x my x y =-⎧⎪⎨+=⎪⎩,消去x 整理得()22236my y -+=,即()223420m y my +--=,显然()2216830m m ∆=++>,令()11,P x y ,()22,Q x y .则12243m y y m +=+,12223y y m -=+,则1222232E y y m my m +===+,解得21m=.此时()()221212PQ x x y y =-+-()22121214m y y y y=++-2126=+=,112TF =+=.所以四边形OPTQ 的面积1262232S PQ TF =⨯⨯⨯=⨯=.(21)【2014年四川卷,文21,14分】已知函数2()1xf x e ax bx =---,其中,a b R ∈, 2.71828e =⋅⋅⋅ 为自然对数的底数.(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值;(2)若(1)0f =,函数()f x 在区间(0,1)内有零点,证明:21e a -<<. 解:(1)()2e 1xf x ax bx =---,()()e 2xg x f x ax b '==--. ()e 2xg x a '=-.当[]0,1x ∈时,()[]12,e 2g x a a '∈--.当12a 时,()0g x ',所以()g x 在[]0,1上单调递增.因此()g x 在[]0,1上的最小值是()01gb =-;当e2a 时,()0g x ',所以()g x 在[]0,1上单调递减.因此()g x 在[]0,1上的最小值是()1e 2g a b =--;当1e22a <<时,令()0g x '=,得()()ln 20,1x a =∈.所以函数()g x 在区间()0,ln 2a ⎡⎤⎣⎦上单调递减,在区间()(ln 2,1a ⎤⎦上单调递增.于是,()g x 在[]0,1上的最小值是()()()ln 222ln 2g a a a a b =--.综上所述,当12a 时,()g x 在[]0,1上的最小值是()01gb =-;当1e22a <<时,()g x 在[]0,1上的最小 值是()()()ln 222ln 2g a a a ab =--;当e2a 时,()g x 在[]0,1上的最小值是()1e 2g a b =--.(2)设0x 为()f x 在区间()0,1内的一个零点,则由()()000f f x ==可知,()f x 在区间()00,x 上不可能单调递增,也不可能单调递减.则()g x 不可能恒为正,也不可能恒为负.故()g x 在区间()00,x 内存在零点 1x .同理()g x 在()0,1x 区间内存在零点2x .所以()g x 在区间()0,1内至少有两个零点. 由(1)知,当12a 时,()g x 在[]0,1上单调递增,故()g x 在()0,1内至多有一个零点.当e 2a 时,()g x 在[]0,1上单调递减,故()g x 在()0,1内至多有一个零点.所以1e22a <<. 此时()g x 在区间()0,ln 2a ⎡⎤⎣⎦上单调递减,在区间()(ln 2,1a ⎤⎦上单调递增.因此()(10,ln 2x a ∈⎤⎦,()()2ln 2,1x a ∈,必有()010g b =->,()1e 20g a b =-->. 由()10f =,有e 12a b +=-<,有()01e 20g b a =-=-+>,()1e 210g a b a =--=->,得e 21a -<<.所以函数()f x在区间()0,1内有零点时,e21-<<.a。

四川省成都七中高2014届高考数学三轮冲刺综合训练(七)文

四川省成都七中高2014届高考数学三轮冲刺综合训练(七)文

成都七中高2014届三轮复习综合训练(七)文科本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷1至2页,第Ⅱ卷3至6页.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.1.在复平面内,复数z 和22ii-表示的点关于虚轴对称,则复数z =A. 2455i +B.2455i -C. 2455i -+D. 2455i --2.若集合{}(){}2,,lg 1xM y y x R S x y x ==∈==-,则下列各式中正确的是A. MS M = B. M S S = C. M S = D. M S =∅ 3.已知命题000:,2lg ,p x R x x ∃∈->命题2:,0,q x R x ∀∈>则A. p q ∨命题是假命题B. p q ∧命题是真命题C. ()p q ⌝∨命题是假命题 D. ()p q ⌝∧命题是真命题4.若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 A. 2- B. 2 C. 4- D. 45.程序框图如图所示,该程序运行后输出的S 的值是 ( ) A .12-B .13C .3-D . 26.某几何体的三视图如图所示,则它的表面积为( )A .B .C .2+π(D . 7.已知直线a 和平面α,则能推出//a α的是A. ,//,//b a b a α存在一条直线且B. ,,b a b b α⊥⊥存在一条直线且C. ,,//a ββαβ⊂存在一个平面且D. ,//,//a ββαβ存在一个平面且 8.已知数列{}n a 的前n 项和()10nn S a a =-≠,则数列{}n aA. 一定是等差数列B. 一定是等比数列C.或者是等差数列,或者是等比数列D. 既不可能是等差数列,也不可能是等比数列9. 用分期付款方式(贷款的月利率为1%)购买总价为25万元的汽车,购买当天首付15万元,此后可采用以下方式支付贷款:以后每月的这一天都支付相同数目的还款,20个月还完,则每月应还款约( A )元(201.01 1.22≈)A .5545B .5546C .5547D .554810.已知函数()()2ln 1f x a x x =+-,在区间()0,1内任取两个实数,p q ,且p q ≠,若不等式()()111f p f q p q+-+>-恒成立,则实数a 的取值范围为A. [)11,+∞B. [)13,+∞C. [)15,+∞D. [)17,+∞二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上. 11. 将函数)(x f y =的图像向左平移4π个单位,再向上平移1个单位后得到的函数对应的表达式为22cos y x =,则函数)(x f 的表达式是 (写出最简结果).12.设变量,x y 满足约束条件140340x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩,则目标函数3z x y =-的最大值为13.已知在边长为1的正方形ABCD ,M 为BC 的中点,E 在线段AB 上运动,则EM EC 的取值范围是 14.设ABC ∆的内角A B C 、、所对应的边分别为a b c 、、,()3cos cos 2A CB -+=,2b ac =,则B = 15.如图,从一点O 引出三条射线,,OA OB OC 与直线l 分别交于,,A C B 三个不同的点,则下列命题正确的是 .○1若(),OC OA OB R λμλμ=+∈,则1λμ+=; ○2若先引射线,OA OB 与l 交于,A B 两点,且,OA OB 恰好是夹角为90的单位向量,再引射线OC 与直线l 交于点C (C 在,A B 之间),则OAC ∆的面积18OAC S ∆≤的概率是14; ○3若2,1OA OB ==,OA 和OC 的夹角为30,OB 和OC 夹角为45,则6OC =○4若C 为AB 中点,P 为线段OC 上一点(不含端点),且OP kOC =,过P 作直线m 分别交射线,OA OB 于,A B '',若,OA aOA OB bOB ''==,则ab 的最大值是2k成都七中高2014届三轮复习综合训练(七)第Ⅱ卷三、解答题:本大题共6小题,满分75分.其中16-19每题12分,20题13分,21题14分.16.某绿化队甲组有6名工人,其中有2名女工人;乙组有3名工人,其中有1名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技能考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中至少1名女工人的概率;17.已知数列{}n a 的各项均为正数, n S 为其前n 项的和,且对于任意的n N *∈,都有()241n n S a =+(1)求证:数列{}n a 为等差数列;(2)若2n n tS ≥对于任意的n N *∈恒成立,求实数t 的最大值.BP18.已知函数()1sin 3f x x ωπ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的部分图象如图所示,其中P 为函数图象的最高点,,A B 是函数图象与x 轴的相邻两个交点,若y 轴不是函数()f x 图象的对称轴,且1tan 2APB ∠=. (1)求函数()f x 的解析式;(2)若[]1,2x ∈,求函数()f x 的取值范围.19文.如图,多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,,EF 分别为,AD BP 的中点,3,5,AD AP PC ===(1)求证: //EF 平面PDC ;(2)若90CDP ∠=,求证:BE DP ⊥; (3)若120CDP ∠=,求该多面体的体积.20.已知向量()()(),ln ,1,,//,m x x k n f x m n k =+=为常数,曲线()y f x =在点()()1,1f 处的切线与y轴垂直.(1)若函数()f x 在区间()1,02s s s ⎛⎫+> ⎪⎝⎭上存在极值,求实数s 的取值范围; (2)对[)1,x ∀∈+∞,不等式()1tf x x >+恒成立,求实数t 的取值范围21.已知椭圆()2222:10x y C a b a b +=>>的离心率e =:l y x =半轴为半径的圆O 相切(1)求椭圆C 的标准方程;(2)设直线1x my =+与椭圆C 交于,P Q 两点,直线1A R 与2A Q 交于点S ,其中12,A A 为椭圆C 的左、右顶点.问当m 变化时,点S 是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.一、选择题 1.解析: A2.解析: D 因为()()0,1M S =+∞=+∞,,3.4. D5.A6.A .【解析】易知该三视图的直观图是倒立的半个三棱锥,其表面积由底面半圆2111122S ππ=⋅=,侧面三角形212222S =⋅⋅=和侧面扇形312S π=⋅=,1222S π∴=++=,故选A .7.解析: C 因为,,A B D a α⊂中,均有可能 8.9. 解析:2019220(1.01 1.01 1.01 1.01)10 1.01x x +++=⨯设每月还款元,则,10.二、填空题 11. ()sin 2f x x =12.13.1415.三、解答题 16. 解:(I )从甲组抽取2人, 从乙组抽取1人. (II )从甲组抽取的工人中至少1名女工人的概率 521561=-=P 17.18.FE BDP。

四川省成都七中2014届高三考前热身考试文科数学试题(含答案解析)(2014.06)

四川省成都七中2014届高三考前热身考试文科数学试题(含答案解析)(2014.06)

y2 x2 — 1 的离心率的值为 4 5
B.
A.
1 2
2 3
C.
3 2
D.
5 3
3.已知 x, y 的取值如下表所示
x
y
0 2.2
1 4.3
3 4.8
4 6.7
ห้องสมุดไป่ตู้
ˆ 0.95 x a ,则 a 从散点图分析 y 与 x 的线性关系,且 y
A. 2.2 B. 2.6 C.3.36
2
D.1.95
A. p 真 q 假 B. p 假 q 真 C. p 真 q 真 D. p 假 q 假
10 . 设 函 数 f x 是 定 义 在 区 间 D 上 的 函 数 , 任 给 x1 , x2 D , 且 x1 x2 , 都 有
x x f 1 2 2
f x1 f x2 ,则称函数 f x 为区间 D 上的严格凸函数.现给出下列命题: 2
4. 在等差数列 {a n } 中, 已知 a2 与 a4 是方程 x 6 x 8 0 的两个根,若 a 4 a 2 ,则 a2014 = (A)2012 (C)2014 (B)2013 (D)2015
5.执行如图所示的程序框图,则输出的结果为 (A)2 (B)1 (C)
1 2
(D) 1
ON OQ MO OQ
x 交于 M , N 点,则 x 1

15、 如图, A 是两条平行直线 l1 , l2 之间的一个定点, 且 A 到 l1 , l2 的距离分别为 AM 1, AN 2 , 设 ABC 的另两个顶点 B,C 分别在 l1 , l2 上运动,且 AB AC , 以下结论正确的序号是____________. ① ABC 是直角三角形; ②

四川省成都七中2014届高三三诊模拟数学(文)试题

四川省成都七中2014届高三三诊模拟数学(文)试题

四川省成都七中2014届高三三诊模拟数学(文)试题一选择题(本大题共10小题,每小题5分,共50分.在每个小题给出的四个选项中,有且只有一项是符合题目要求的) 1.在三角形ABC 中,“6π=∠A ”是“21sin =A ”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 2.已知集合{}{}2log ,32<=<=x x B x x A ,则B A ⋂=( ) A ()3,1- B ()4,0 C ()3,0 D ()4,1- 3.已知是两条不同直线,是两个不同的平面,给出下列命题:①若m n n m ⊥⊂=⋂,,αβα,则βα⊥;②若,,βα⊥⊥m m 则βα//;③若m n n m ⊥⊥⊥,,βα,则βα⊥;④若n m n m //,//,//βα,则βα//,其中正确的命题是( )A ①②B ②③C ③④D ①③4.已知不等式组⎪⎩⎪⎨⎧≥+-≥-+≤≤020220y x y x x ,则其表示的平面区域的面积是( )A 1B 3C 3D 4 5.已知复数()是虚数单位i ii--132,它的实部与虚部的和是( ) A 4 B 6 C 2 D 36.在平面直角坐标中,ABC ∆的三个顶点A 、B 、C ,下列命题正确的个数是( ) (1)平面内点G 满足0=++GC GB GA ,则G 是ABC ∆的重心;(2)平面内点M 满足MC MB MA ==,点M 是ABC ∆的内心;(3)平面内点P 满足ACAB=,则点P 在边BC 的垂线上;A 0B 1C 2D 37 .设曲线x y sin =上任一点()y x ,处的切线斜率为)(x g ,则函数)(2x g x y =的部分图象可以是( )12++=n S S1+=n ni n <0,0==n Si 输入 开始结束S 输出是否8.某程序框图如图所示,若使输出的结果不大于20,则输入的整数i 的最大值为( )A 3B 4C 5D 69. 已知椭圆123:221=+y x C 的左右焦点为21,F F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于直线1l 于点P ,线段2PF 的垂直平分线与2l 的交点的轨迹为曲线2C ,若()),(),,(,2,12211y x C y x B A 是2C 上不同的点,且BC AB ⊥,则2y 的取值范围是( ) A ()[)∞+⋃-∞-.106, B (][)∞+⋃∞-.106, C ()()+∞⋃-∞-,106, D 以上都不正确10.定义域为D 的单调函数()x f y =,如果存在区间[]D b a ⊆,,满足当定义域为是[]b a ,时,()x f 的值域也是[]b a ,,则称[]b a ,是该函数的“可协调区间”;如果函数()()0122≠-+=a xa x a ay 的一个可协调区间是[]n m ,,则m n -的最大值是( ) A 2 B 3 C332 D 4 二 填空题(本大题共5小题,每小题5分,共25分)11. 设{}n a 是公差不为零的等差数列,21=a 且631,,a a a 成等比数列,则=2014a 12. 若函数⎪⎭⎫⎝⎛+=6cos πωx y ()*N ∈ω的一个对称中心是⎪⎭⎫⎝⎛0,6π,则ω的最小值是13.一个几何体的主视图和俯视图如图所示,主视图是边长为a 2的正三角形,俯视图是边长为a 的正六边形,则该几何体左视图的面积是 14.私家车具有申请报废制度,一车主购买车辆时花费15万,每年的保险费、路桥费、汽油费等约1.5万元,每年的维修费是一个公差为3000元的等差数列,第一年维修费为3000元,则车主申请车辆报废的最佳年限(使用多少年的年平均费用最少)是15 .已知()()()22)(,32-=--+=-xx g a x a x a x f 同时满足下列条件:①;0)(0)(,<<∈∀x g x f R x 或②()0)()(,,1<+∞∈∃x g x f x 则实数a 的取值范围三 解答题(本大题共6小题,共75分)16 .(本小题12分)已知函数()R x x x x f ∈--=21cos 2sin 23)(2 (1)当⎥⎦⎤⎢⎣⎡-∈125,12ππx 时,求函数()x f 的最大值和最小值; (2)设锐角ABC ∆的内角A 、B 、C 的对应边分别是c b a ,,,且*,1N c a ∈=,若向量()A m sin ,1=与向量()B n sin ,2=平行,求c 的值。

四川省成都七中2014届高三4月适应性训练(一)文科数学试卷(带解析)

四川省成都七中2014届高三4月适应性训练(一)文科数学试卷(带解析)

四川省成都七中2014届高三4月适应性训练(一)文科数学试卷(带解析)1.数列{}n a 满足:*112,2()n n a a a n N +==+∈,则其前10项的和10S =( ) A.100 B.101 C.110 D.111 【答案】C 【解析】试题分析:由已知,这是一个等差数列,101109101102S a d ⨯=+=. 考点:等差数列及其前项n 和.2.命题甲:2≠x 或3≠y ;命题乙:5≠+y x ,则甲是乙的( ) A.充分非必要条件 B.必要非充分条件C.充分必要条件D.既不充分条件也不必要条件 【答案】B 【解析】试题分析:该命题的逆否命题为:5x y +=,则2x =且3y =,这显然不成立,从而原命题也不成立,所以不是充分条件;该命题的否命题为:2x =且3y =,则5x y +=,这显然成立,从而逆命题也成立,所以是必要条件. 考点:逻辑与命题.3.程序框图如图所示,则该程序运行后输出k 的值是( )A.3B.4C.5D.6 【答案】A试题分析:这是一个含有条件结构的循环结构,循环的结果依次为:16,1;8,2;4,3n k n k n k ======.最后输出3. 考点:程序框图.4.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线与x 轴的夹角为060,则此双曲线的离心率为( )A.2B.3C.2D.3 【答案】C 【解析】试题分析:由题设得:2222342bk b a c a e a===⇒=⇒=. 考点:双曲线.5.设0a >且1a ≠.若log sin 2a x x >对(0,)4x π∈恒成立,则a 的取值范围是( )A.(0,)4πB.(0,]4πC.(,1)(1,)42ππ⋃D.[,1)4π【答案】D【解析】试题分析:1a >时显然不成立.当01a <<时,结合图象可知:log sin(2)1log ,444aa a a πππ≥⨯==∴≥. 考点:对数函数与三角函数.6.在用土计算机进行的数学模拟实验中,一个应用微生物跑步参加化学反应,其物理速度与时间的关系是2()ln (02)6x f x x x =-<<,则( ) A.()f x 有最小值11ln 322- B.()f x 有最大值11ln 322- C.()f x 有最小值3ln 32- D.()f x 有最大值3ln 32-【答案】B【解析】试题分析:求导得213()33x x f x x x-'=-=,所以x =11ln 322f =-.考点:导数及其应用.7.定义集合A 与B 的运算“*”为:{A B x x A *=∈或x B ∈,但}x A B ∉I .设X 是偶数集,{1,2,3,4,5}Y =,则()X Y Y **=( )A.XB.YC.X Y ID.X Y U【解析】试题分析:首先求出{2,4}XY =,,X Y 的并集再去掉交集即得*{1,3,5,6,8,10,}X Y =.同理可得(*)*{2,4,6,8,10,}X Y Y X ==.考点:新定义及集合基本运算.8.已知三棱柱111ABC A B C -的侧棱1BB 在下底面的射影BD 与AC 平行,若1BB 与底面所成角为30,且160B BC ∠=o ,则ACB ∠的余弦值为( )【答案】C 【解析】试题分析:由三余弦公式得cos60cos30cos cosDBC DBC =∠⇒∠=.又BD AC ,所以cos cosACB DBC ∠=∠==. 考点:空间几何体及空间的角.9.正项等比数列{}n a 满足:1232a a a +=,若存在n m a a ,,使得2116m n a a a =,则nm 41+的最小值为( ) A.625 B.134 C.73 D.23【答案】D 【解析】试题分析:由1232a a a +=得:22,2,1q q q =+∴=-(舍去),由2116m n a a a =得112216,24,6m n m n m n --=+-=+=,所以n m 41+1441()14666m nmmnn+=+=++. 考点:1、等比数列;2、重要不等式.10.已知,x y R ∈且4300x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则存在R θ∈,使得(4)cos sin 0x y θθ-+=的概率为( ) A.4π B.8π C.24π- D.18π-【答案】D【解析】试题分析:可行域是一个三角形,面积为2;又直线系(4)cos sin 0x y θθ-+=与圆22(4)2x y -+=相切,故该三角形不被该直线系扫到的部分是一个半径为4π的扇形,面积为4π,从而被直线系扫到部分的面积为24π-,故所求概率为18π-.考点:1、不等式组表示的平面区域;2、几何概型.11.将容量为50的样本数据,按从小到大的顺序分成4组如右表,则第3组的频率为____.(要求将结果化为最简分数)【答案】625【解析】试题分析:第3组的频数为5011141312---=,故频率为1265025=. 考点:统计.12.若22i x yi i -=++,其中,,x y R i ∈为虚数单位,则=xy_________. 【答案】34-【解析】 试题分析:2(2)(2)342555i i i i i ---==-+,所以=x y 43-. 考点:复数基本运算.13.若1(1)(1)2n nM n+--<+对*n N ∈恒成立,则实数M 的取值范围是___________.【答案】3[2,)2- 【解析】试题分析:当n 为偶数时,12M n <-,而113322,222M n -≥-=∴<;当n 为奇数时,12M n -<+,而122,2,2M M n +>∴-<>-.所以M 的取值范围是3[2,)2-.考点:不等式.14.已知()20OB =,,()22OC =,,(2)CA αα= ,则OA 与OB 的夹角的取值范围是______________. 【答案】]125,12[ππ【解析】试题分析:法一、(2,2)OA OC CA αα=+=,设(,)A x y ,则222(2)(2)22x x y y αα⎧=⎪⇒-+-=⎨=⎪⎩,所以点A 在以C .作出图形如下图所示,从图可知OA 与OB 的夹角的取值范围是]125,12[ππ. 因为(2)CA =,所以(2CA ==,所以为圆心. 作出图形如下图所示,从图可知OA 与OB 的夹角的考点:向量.15.设,A B 分别为椭圆Γ:22221(0)x y a b a b+=>>的左右顶点,F 为右焦点,l 为Γ在点B处的切线,P 为Γ上异于,A B 的一点,直线AP 交l 于D ,M 为BD 中点,有如下结论:①FM 平分PFB ∠;②PM 与椭圆Γ相切;③PM 平分FPD ∠;④使得PM =BM 的点P 不存在.其中正确结论的序号是_____________.【答案】①② 【解析】试题分析:设00(,)P x y ,则PA 的方程为:00()y y x a x a=++,令x a =得00002(,),(,)ay ay D a M a x a x a++. 对①,PF 的方程为:00()y y x c x c=--即000()0y x x c y y c ---=,所以点M 到直线PF 的距离为000200()|()|||ay c x a y a x c y c a c ay ay d x a x a +---+-===++220020)2a x x a =+++-即点M 到PF 到距离等于M 到FB 的距离,所以FM 平分PFB ∠,成立;对②,直线PM 的斜率为0022000000222220000PM ay y x a x y x y b x b k x a x a a y a y -+====----,将22221(0)x y a b a b +=>>求导得2222220,x yy b xy a b a y ''+==-,所以过点P 的切线的斜率为2020PM b x k k a y =-=(也可用0∆=求得切线的斜率),所以椭圆Γ在点P 处的切线即为PM ,②成立;对③,延长1F P 与直线l 交于点F ',由椭圆的光学性质知,1MPF F PQ F PM '∠=∠=∠,于是PM 平分F PF '∠,而不平分FPD ∠,故③不成立;相等),将1618全部取出称为试验成功. (1)求一次试验成功的概率.(2)求恰好在第3次试验成功的概率(要求将结果化为最简分数). 【答案】(1)试验一次就成功的概率为120; (2)3618000p =. 【解析】试题分析:(1)将6杯驱虫药逐一编号,再将从中任选3杯的所有结果共一一列举出来,得不同选法共有20种,而选到的3杯都是1618的选法只有1种,由古典概型概率的求法可得试验一次就成功的概率为120. (2) 恰好在第3次试验成功相当于前两次试验都没成功,第3次才成功.由于成功的概率为120,所以一次试验没有成功的概率为1920,三次相乘即得所求概率. 试题解析:(1)从6杯中任选3杯,将不同选法一一列举,共有20种选法,而选到的3杯都是1618的选法只有1种,从而试验一次就成功的概率为120. (2)相当于前两次试验都没成功,第3次才成功,故概率为2191361()20208000P =⋅=. 考点:古典概型. 17.已知1)4(cos 2)sin (cos 3)(222++--=πx x x x f 的定义域为[2,0π]. (1)求)(x f 的最小值.(2)ABC ∆中,45=A ,23=b ,边a 的长为6,求角B 大小及ABC ∆的面积. 【答案】(1)函数)(x f 的最小值(2) ABC ∆的面积1)S =. 【解析】试题分析:(1)先化简()f x 的解析式可得: ()2sin(2)3f x x π=+.将23x π+看作一个整体,根据x 的范围求出23x π+的范围,再利用正弦函数的性质便可得函数)(x f 的最小值.(2)在ABC ∆中,已知两边及一边的对角,故首先用正弦定理求出另两个角,再用三角形面积公式可得其面积.试题解析:(1)先化简()f x 的解析式:()2[1cos(2)]12f x x x π=-+++sin 2x x =+2sin(2)3x π=+由3432320ππππ≤+≤⇒≤≤x x ,得1)22sin(23≤+≤-πx , 所以函数)(x f 的最小值3)23(2-=-=,此时2π=x .(2)ABC ∆中,45=A ,23=b ,6=a ,故21645sin 23sin sin === a A b B (正弦定理),再由a b <知 45=<A B ,故 30=B ,于是105180=--=B A C ,从而ABC ∆的面积1sin 1)2S ab C ==. 考点:1、三角恒等变形;2、解三角形.18.如图,正方体1111ABCD A BC D -中,已知E 为棱1CC 上的动点.(1)求证:1A E BD ⊥;(2)当E 为棱1CC 的中点时,求直线1A E 与平面1A BD 所成角的正弦值. 【答案】(1)详见解析;(2)直线1A E 与平面1A BD 所成角的正弦是【解析】 试题分析:(1) 空间中证线线垂直,一般先证线面垂直.那么在本题中证哪条线垂直哪个面?从图形可看出,可证BD ⊥面1ACEA . (2)思路一、为了求直线1A E 与平面1A BD 所成角的正弦值,首先作出直线1A E 在平面1A BD 内的射影. 连AC 设AC DB O =I ,连1,AO OE ,可证得EO ⊥面1A BD ,这样1EA O ∠便是直线1A E 与平面1A BD 所成角.思路二、由于两两垂直,故可分别以为z y x ,,轴正向,建立空间直角坐标系,然后利用空间向量求解.试题解析:连AC 设AC DB O =I ,连1,AO OE . (1)由1A A ⊥面ABCD ,知1BD A A ⊥, 又AC BD ⊥, 故BD ⊥面1ACEA . 再由1A E ⊂面1ACEA 便得E A 1⊥BD .(2)在正1A BD ∆中,1BD AO ⊥,而E ABD 1⊥, 又1AO ⊂面OE A 1,⊂E A 1平面OE A 1,且111AO A E A =I , 故BD ⊥面OE A 1,于是OE BD ⊥,OE A 1∠为二面角E BD A --1的平面角.正方体ABCD —1111D C B A 中,设棱长为a 2,且E 为棱1CC 的中点,由平面几何知识易得满足22211A E AO EO =+,故1EO AO ⊥. 再由EO BD ⊥知EO ⊥面1A BD ,故1EAO 是直线1A E 与平面1A BD 所成角.故直线1A E 与平面1A BD 所成角的正弦是 解二.分别以为z y x ,,轴正向,建立空间直角坐标系.设正方体棱长为a .(1)易得11(,0,0),(,,0),(0,,0),(,0,),(0,,)A a B a a C a A a a C a a . 设(0,,)E a z ,则,,从而,于是.1BD E A ⊥(2)由题设则,.设是平面1A BD 的一个法向量,则,即0ax az ax ay y z x +=+=⇒==-于是可取,.易得,故若记与的夹角为θ,则有,故直线1A E 与平面1A BD 所成角的正弦是考点:1、空间的直线与直线垂直;2、空间的直线与平面所成的角.19.设抛物线1C :24y x =的准线与x 轴交于点1F ,焦点为2F ;椭圆2C 以1F 和2F 为焦点,离心率12e =.设P 是1C 与2C 的一个交点.(1)求椭圆2C 的方程.(2)直线l 过2C 的右焦点2F ,交1C 于12,A A 两点,且12A A 等于12PFF ∆的周长,求l 的方程.【答案】(1)2C 的方程为22143x y +=.(2)l 的方程为1)y x =-或1)y x =-. 【解析】试题分析:(1)已知焦点12(1,0),(1,0)F F -,即可得椭圆2C 的故半焦距为1,又已知离心率为12,故可求得半长轴长为2,从而知椭圆2C 的方程为22143x y +=.(2)由(1)可知12PF F ∆的周长12126PF PF F F ++=,即12A A 等于6. 设l 的方程为(1)y k x =-代入24y x =,然后利用弦长公式得一含k 的方程,解这个方程即得k 的值,从而求得直线l 的方程. 试题解析:(1)由条件,12(1,0),(1,0)F F -是椭圆2C 的两焦点,故半焦距为1,再由离心率为12知半长轴长为2,从而2C 的方程为22143x y +=,其右准线方程为4x =. (2)由(1)可知12PF F ∆的周长12126PF PF F F ++=.又1C :24y x =而2(1,0)F. 若l 垂直于x 轴,易得124A A =,矛盾,故l 不垂直于x 轴,可设其方程为(1)y k x =-,与1C 方程联立可得2222(24)0k x k x k -++=,从而2121224(1)k A A x x k +=-==,令126A A =可解出22k =,故l 的方程为1)y x =-或1)y x =-.考点:1、椭圆与抛物线的方程;2、直线与圆锥曲线的关系.20.设2()f x x x =+,用)(n g 表示()f x 当[,1](*)x n n n N ∈+∈时的函数值中整数值的个数.(1)求)(n g 的表达式.(2)设32*23()()n n n a n N g n +=∈,求2121(1)n k n k k S a -==-∑. (3)设12(),2n n n ng n b T b b b ==+++L ,若)(Z l l T n ∈<,求l 的最小值. 【答案】(1)*()23()g n n n N =+∈;(2)2(1)n S n n =-+;(3)l 的最小值是7.【解析】试题分析:(1)求出函数x x x f +=2)(在[,1]n n +上的值域,根据值域即可确定其中的整数值的个数,从而得函数)(n g 的表达式.(2)由(1)可得322*23()()n n n a n n N g n +==∈.为了求2n S ,可将相邻两项结合,看作一项,这样便可转化为一个等差数列的求和问题,从而用等差数列的求和公式解决. (3) 易得232n nn b +=.由等差数列与等比数列的积或商构成的新数列,求和时用错位相消法. )(Z l l T n ∈<,则l 大于等于n T 的上限值.试题解析:对*n N ∈,函数x x x f +=2)(在[,1]n n +单增,值域为22[,32]n n n n +++,故*()23()g n n n N =+∈. (2)322*23()()n n n a n n N g n +==∈,故 21234212()()()n n n S a a a a a a -=-+-++-L222222(12)(34)((21)(2))n n =-+-++--L[37(41)]n =-+++-L 3(21)(1)2n n n n +-=-⋅=-+. (3)由()2n n g n b =得231579212322222n n nn n T -++=+++++L ,且 231157212322222n n n n n T +++=++++L 两式相减,得1231523222()()222222n n n n T ++=-++++L 11111(1)52372722()1222212n n n n n -++-++=-+=-- 于是.2727n n n T +-=故若2772n n n T l +=-<且l Z ∈,则l 的最小值是7. 考点:1、函数与数列;2、等差数列的求和;3、错位相消法求和.21.设函数()(1)f x x α=+的定义域是[1,)-+∞,其中常数0α>.(注: '1()(1)f x x αα-=+(1)若1α>,求()y f x =的过原点的切线方程.(2)证明当1α>时,对(1,0)x ∈-,恒有1()(1)x f x x αα+<<+.(3)当4α=时,求最大实数A ,使不等式2()1f x x Ax α>++对0x >恒成立.【答案】(1)切线方程为1y x α=+和1()(1)1y x ααααααα-=+--.(2)详见解析.(3)A 的最大值是6.【解析】 试题分析:(1) 一般地,曲线()y f x =在点00(,)P x y 处的切线方程为:000()()y y f x x x '-=-.注意,此题是求过原点的切线,而不是求()y f x =在原点处切线方程,而该曲线又过原点,故有原点为切点和原点不为切点两种情况.当原点不为切点时需把切点的坐标设出来.(2)不等式1()(1)x f x x αα+<<+可化为1()f x x αα<-<,要证明这个不等式,只需利用导数求出()()h x f x x α=-在[1,0]-上的值域即可.(3)令2()()1g x f x x Ax α=---,则问题转化为()0g x >对0x >恒成立.注意到(0)0g =,所以如果()g x 在[0,)+∞单调增,则必有()0g x >对0x >恒成立.下面就通过导数研究()g x 的单调性.试题解析:(1)1()(1)f x x αα-'=+.若切点为原点,由(0)f α'=知切线方程为1y x α=+; 若切点不是原点,设切点为000(,(1))(0)P x x x α+≠,由于100()(1)f x x αα-'=+,故由切线过原点知1000(1)(1)x x x ααα-+=+,在(1,)-+∞内有唯一的根011x α=-. 又11()1(1)f ααααα-'=--,故切线方程为1()(1)1y x ααααααα-=+--. 综上所述,所求切线有两条,方程分别为1y x α=+和1()(1)1y x ααααααα-=+--. (2)当1α>时,令()()h x f x x α=-,则1()[(1)1]h x x αα-'=+-,故当(1,0)x ∈-时恒有()0h x '<,即()h x 在[1,0]-单调递减,故(0)()(1)h h x h <<-对(1,0)x ∈-恒成立. 又(1),(0)1h h α-==,故1()h x α<<,即1(1)x x ααα<+-<,此即 1()(1)x f x x αα+<<+(3)令2()()1g x f x x Ax α=---,则(0)0g =,且3()4(1)42g x x Ax '=+--,显然有(0)0g '=,且()g x ' 的导函数为22()12(1)212[(1)]6A g x x A x ''=+-=+-若6A ≤,则16A ≤,易知2(1)1x +>对0x >恒成立,从而对0x >恒有()0g x ''>,即()g x '在[0,)+∞单调增,从而()(0)0g x g ''>=对0x >恒成立,从而()g x 在[0,)+∞单调增,()(0)0g x g >=对0x >恒成立.若6A >,则16A >,存在00x >,使得2(1)6A x +<对0(0,)x x ∈恒成立,即()0g x ''<对0(0,)x x ∈恒成立,再由(0)0g '=知存在10x >,使得()0g x '<对1(0,)x x ∈恒成立,再由(0)0g =便知()0g x >不能对0x >恒成立. 综上所述,所求A 的最大值是6. 考点:导数及其应用.。

成都七中高2014届数学三轮复习文科综合训练(08)

成都七中高2014届数学三轮复习文科综合训练(08)

成都七中高2014届三轮复习综合训练文科(八)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至6页。

第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分. 1. 已知集合2{|250,}M x x x x Z =+<∈,集合{0,}N a =,若MN ≠∅,则a 等于( )A . 1- B. 2 C 12-或 D -21-或 2.设i 为虚数单位,则复数20141i z i=-在复平面内对应的点在( )A 、第一象限B 、第二象限C 、第三象限D 、 第四象限3.已知一个简单几何体的正视图,侧视图如图所示,则其俯视图不可能为○1长、宽不相的长方形,○2正方形,○3圆,○4椭圆,其中正确的是( )A .①② B. ②③ C. ③④ D. ①④4.下图所示是根据输入的x 计算y 值的程序框图,若x 依次取数列2*4{}()n n N n+∈中的项,则所得y 值得最小值为 ( )A 、 4B 、8C 、 16D 、 325.如图所示,一游泳者自游泳池边上的D 点沿DC 方向游了10米,60CDB ∠=,然后选择任意方向继续游,则他再游不超过10米就能够回到池边AB 的概率是 ( ) A 、 16 B 、14 C 、 13 D 、 126.若110,""2sin sin x x x xπ<<<<则是“的( )A 、必要不充分条件B 、充分不必要条件C 、充要条件D 、既不充分也不必要条件7.若P 、Q 分别是直线1y x =-和曲线xy e =-上的点,则|PQ|的最小值是( )A 、B 、2C 、D 、{}a s 2(a n ⎧⎪为奇数)( )A 、8B 、9C 、 10D 、 119.抛物线)0(21:21>=p x p y C 的焦点与双曲线222:13x C y -=的右焦点的连线交1C 于第一象限的点M,若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( ) A .163 B .83 C .332 D .334 10.如图,已知正方形ABCD 是圆22:(4)(4)4M x y -+-=的内接正方形 ,AB ,AD 的中点分别是,E F ,当正方形ABCD 绕圆心M 转动,同时点F 在边AD 上运动时则ME OF 的取值范围是( )A.[- B .[8,8]- C.[- D .[4,4]- 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在线上.11.曲线04)x y e =+在(,y 处的切线与直线垂直,则 ;12.已知变量4130,21040x y x y x y kx y +-=⎧⎪--=⎨⎪+-=⎩满足约束条件,且有无穷多个点(,)x y 使得目标函数z=x+y 取得最小值,则k = ;13.在ABC 中,角 A ,B ,C 所对应的边分别为,,a b c ,若s i n c o ,2,2B B b +=, 则三角形ABC 的面积= ;14.已知正数,,a b c 满足,,a b ab a b c abc +=++=则c 的取值范围是[0,1]()f x [0,1],x ∈有()0f x ≥;○2○3若121212110,0,1,()(+(x x x x f x x f x f x ≥≥+≤+≥都有))成立,则称为函数,下面四个命题:○1若函数()f x 为W 函数,则(0)0f =;○2函数()21xf x =-,[0,1],x ∈是W 函数;○3W 函数()f x 一定不是单调函数 ○4若函数()f x 是W 函数,假设存在0[0,1],x ∈使得0()[0,1]f x ∈,且00[()]f f x x =则00()f x x =其中真命题是: 。

成都七中2014届毕业班高三三诊数学模拟试题文科含答案

成都七中2014届毕业班高三三诊数学模拟试题文科含答案

成都七中2011级三模数学试卷(文科)命题人:周莉莉 审题人:方廷刚一 选择题(本大题共10小题,每小题5分,共50分.在每个小题给出的四个选项中,有且只有一项是符合题目要求的) 1.在三角形ABC 中,“6π=∠A ”是“21sin =A ”的( ) A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 2.已知集合{}{}2log ,32<=<=x x B x x A ,则B A ⋂=( ) A ()3,1- B ()4,0 C ()3,0 D ()4,1- 3.已知是两条不同直线,是两个不同的平面,给出下列命题:①若m n n m ⊥⊂=⋂,,αβα,则βα⊥;②若,,βα⊥⊥m m 则βα//;③若m n n m ⊥⊥⊥,,βα,则βα⊥;④若n m n m //,//,//βα,则βα//,其中正确的命题是( )A ①②B ②③C ③④D ①③4.已知不等式组⎪⎩⎪⎨⎧≥+-≥-+≤≤020220y x y x x ,则其表示的平面区域的面积是( )A 1B 3C 3D 4 5.已知复数()是虚数单位i ii--132,它的实部与虚部的和是( ) A 4 B 6 C 2 D 36.在平面直角坐标中,ABC ∆的三个顶点A 、B 、C ,下列命题正确的个数是( ) (1)平面内点G 满足0=++GC GB GA ,则G 是ABC ∆的重心;(2)平面内点M满足==,点M 是ABC ∆的内心;(3)平面内点P=,则点P 在边BC 的垂线上;A 0B 1C 2D 37 .设曲线x y sin =上任一点()y x ,处的切线斜率为)(x g ,则函数)(2x g x y =的部分图象可以是( )8.某程序框图如图所示,若使输出的结果不大于20,则输入的整数i 的最大值为( )A 3B 4C 5D 69. 已知椭圆123:221=+y x C 的左右焦点为21,F F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于直线1l 于点P ,线段2PF 的垂直平分线与2l 的交点的轨迹为曲线2C ,若()),(),,(,2,12211y x C y x B A 是2C 上不同的点,且BC AB ⊥,则2y 的取值范围是( ) A ()[)∞+⋃-∞-.106, B (][)∞+⋃∞-.106, C ()()+∞⋃-∞-,106, D 以上都不正确10.定义域为D 的单调函数()x f y =,如果存在区间[]D b a ⊆,,满足当定义域为是[]b a ,时,()x f 的值域也是[]b a ,,则称[]b a ,是该函数的“可协调区间”;如果函数()()0122≠-+=a xa x a ay 的一个可协调区间是[]n m ,,则m n -的最大值是( ) A 2 B 3 C332 D 4 二 填空题(本大题共5小题,每小题5分,共25分)11. 设{}n a 是公差不为零的等差数列,21=a 且631,,a a a 成等比数列,则=2014a 12. 若函数⎪⎭⎫⎝⎛+=6cos πωx y ()*N ∈ω的一个对称中心是⎪⎭⎫⎝⎛0,6π,则ω的最小值是13.一个几何体的主视图和俯视图如图所示,主视图是边长为a 2的正三角形,俯视图是边长为a 的正六边形,则该几何体左视图的面积是 14.私家车具有申请报废制度,一车主购买车辆时花费15万,每年的保险费、路桥费、汽油费等约1.5万元,每年的维修费是一个公差为3000元的等差数列,第一年维修费为3000元,则车主申请车辆报废的最佳年限(使用多少年的年平均费用最少)是15 .已知()()()22)(,32-=--+=-x x g a x a x a x f 同时满足下列条件: ①;0)(0)(,<<∈∀x g x f R x 或②()0)()(,,1<+∞∈∃x g x f x 则实数a 的取值范围三 解答题(本大题共6小题,共75分) 16 .(本小题12分)已知函数()R x x x x f ∈--=21cos 2sin 23)(2 (1)当⎥⎦⎤⎢⎣⎡-∈125,12ππx 时,求函数()x f 的最大值和最小值; (2)设锐角ABC ∆的内角A 、B 、C 的对应边分别是c b a ,,,且*,1N c a ∈=,若向量()A m sin ,1=与向量()B n sin ,2=平行,求c 的值。

2014年四川省成都七中高考数学二模试卷(文科)(解析版)

2014年四川省成都七中高考数学二模试卷(文科)(解析版)

2014年四川省成都七中高考数学二模试卷(文科)一、选择题:本题共10小题,每小题5分,共50分.1.(5分)已知复数z=,则z的共轭复数是()A.1﹣i B.1+i C.i D.﹣i2.(5分)全集为实数集R,M={x|﹣2≤x≤2},N={x|x<1},则(∁R M)∩N=()A.{x|x<﹣2}B.{x|﹣2<x<1}C.{x|x<1}D.{x|﹣2≤x<1} 3.(5分)正项等比数列{a n}中,若log2(a2a98)=4,则a40a60等于()A.﹣16B.10C.16D.2564.(5分)某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=C.f(x)=e x D.f(x)=sin x 5.(5分)已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF2是正三角形,则这个椭圆的离心率是()A.B.C.D.6.(5分)实数x,y满足不等式组,则的取值范围是()A.[﹣1,1)B.(﹣∞,0)C.[﹣1,+∞)D.[﹣1,0]7.(5分)已知m、n是不重合的直线,α、β是不重合的平面,有下列命题:①若m⊂α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;③若α∩β=n,m∥n,则m∥α且m∥β;④若m⊥α,m⊥β,则α∥β.其中真命题的个数是()A.0B.1C.2D.38.(5分)设a>0,b>0,则以下不等式中不恒成立的是()A.≥4B.a3+b3≥2ab2C.a2+b2+2≥2a+2b D.≥9.(5分)已知定义在R上的函数f(x)满足f(2﹣x)为奇函数,函数f(x+3)关于直线x=1对称,则函数f(x)的最小正周期为()A.4B.8C.12D.1610.(5分)在平面直角坐标系中,已知三点A(m,n),B(n,t),C(t,m),直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线x2=2p(y ﹣q),(p>0)的焦点F并且与抛物线交于P、Q两点(P在y轴左侧).则||=()A.9B.4C.D.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置. 11.(5分)把命题“∃x0∈R,x02﹣2x0+1<0”的否定写在横线上.12.(5分)一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是.13.(5分)已知函数f(x)=,g(x)=lnx,则函数y=f(x)﹣g(x)的零点个数为.14.(5分)过抛物线y2=4x的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于.15.(5分)O是面α上一定点,A、B、C是面α上△ABC的三个顶点,∠B,∠C分别是边AC,AB对应的角.以下命题正确的序号是①动点P满足,则△ABC的外心一定在满足条件的P点集合中.②动点P满足,则△ABC的内心一定在满足条件的P点集合中.③动点P满足,则△ABC的重心一定在满足条件的P点集合中.④动点P满足,则△ABC的垂心一定在满足条件的P点集合中.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(12分)等比数列{a n}中,已知a1=2,a4=16(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.17.(12分)已知向量=(1+cosωx,1),=(1,a+sinωx)(ω为常数且ω>0),函数f(x)=在R上的最大值为2.(Ⅰ)求实数a的值;(Ⅱ)把函数y=f(x)的图象向右平移个单位,可得函数y=g(x)的图象,若y=g (x)在[0,]上为增函数,求ω取最大值时的单调增区间.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.19.(12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.20.(13分)已知椭圆C:=1(a>b>0)的短轴长为2,离心率为.(1)求椭圆C的方程;(2)若过点M(2,0)的引斜率为k的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数t的取值范围?21.(14分)已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.2014年四川省成都七中高考数学二模试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分.1.(5分)已知复数z=,则z的共轭复数是()A.1﹣i B.1+i C.i D.﹣i【解答】解:复数z==所以它的共轭复数为:1﹣i故选:A.2.(5分)全集为实数集R,M={x|﹣2≤x≤2},N={x|x<1},则(∁R M)∩N=()A.{x|x<﹣2}B.{x|﹣2<x<1}C.{x|x<1}D.{x|﹣2≤x<1}【解答】解:∵M={x|﹣2≤x≤2},∴∁R M={x|x<﹣2,或x>2},又∵N={x|x<1},∴(∁R M)∩N={x|x<﹣2}故选:A.3.(5分)正项等比数列{a n}中,若log2(a2a98)=4,则a40a60等于()A.﹣16B.10C.16D.256【解答】解:∵log2(a2a98)=4,∴a2a98=16∵数列{a n}为等比数列∴a40a60=a2a98=16故选:C.4.(5分)某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=C.f(x)=e x D.f(x)=sin x 【解答】解:∵A:f(x)=x2、C:f(x)=e x,不是奇函数,故不满足条件①又∵B:f(x)=的函数图象与x轴没有交点,故不满足条件②而D:f(x)=sin x既是奇函数,而且函数图象与x也有交点,故D:f(x)=sin x符合输出的条件故选:D.5.(5分)已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF2是正三角形,则这个椭圆的离心率是()A.B.C.D.【解答】解:由题,∴即∴,∴,解之得:(负值舍去).故选:C.6.(5分)实数x,y满足不等式组,则的取值范围是()A.[﹣1,1)B.(﹣∞,0)C.[﹣1,+∞)D.[﹣1,0]【解答】解:满足约束条件的平面区域,如下图所示:∵表示区域内点与(0,1)点连线的斜率又∵当x=1,y=0时,W=﹣1,直线与x﹣y=0平行时,W=1∴的取值范围为[﹣1,1)故选:A.7.(5分)已知m、n是不重合的直线,α、β是不重合的平面,有下列命题:①若m⊂α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;③若α∩β=n,m∥n,则m∥α且m∥β;④若m⊥α,m⊥β,则α∥β.其中真命题的个数是()A.0B.1C.2D.3【解答】解:①若m⊂α,n∥α,则m与n平行或异面,故不正确;②若m∥α,m∥β,则α与β可能相交或平行,故不正确;③若α∩β=n,m∥n,则m∥α且m∥β,m也可能在平面内,故不正确;④若m⊥α,m⊥β,则α∥β,垂直与同一直线的两平面平行,故正确故选:B.8.(5分)设a>0,b>0,则以下不等式中不恒成立的是()A.≥4B.a3+b3≥2ab2C.a2+b2+2≥2a+2b D.≥【解答】解:∵a>0,b>0,∴A.≥≥4故A恒成立,B.a3+b3≥2ab2,取,则B不成立C.a2+b2+2﹣(2a+2b)=(a﹣1)2+(b﹣1)2≥0故C恒成立D.若a<b则≥恒成立若a≥b,则=2﹣2b=2(﹣)≥0,∴≥故选:B.9.(5分)已知定义在R上的函数f(x)满足f(2﹣x)为奇函数,函数f(x+3)关于直线x=1对称,则函数f(x)的最小正周期为()A.4B.8C.12D.16【解答】解:∵f(x)满足f(2﹣x)为奇函数,∴f(2+x)=﹣f(2﹣x),即f(4+x)=﹣f(﹣x)①,∵函数f(x+3)关于直线x=1对称,∴将函数f(x+3)的图象向右平移3个单位得到y=f(x)的图象,则函数f(x)的图象关于直线x=4对称,∴f(4+x)=f(4﹣x)②,由①②得:f(4﹣x)=﹣f(﹣x),即f(x+4)=﹣f(x),∴f(x+8)=﹣f(x+4)即f(x+8)=f(x),故函数f(x)的最小正周期为8.故选:B.10.(5分)在平面直角坐标系中,已知三点A(m,n),B(n,t),C(t,m),直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线x2=2p(y﹣q),(p>0)的焦点F并且与抛物线交于P、Q两点(P在y轴左侧).则||=()A.9B.4C.D.【解答】解:设k AB=,k AC=,则+=,∵(n﹣m)•k AB=t﹣n=(t﹣m)+(m﹣n),∴=﹣,∴k AB﹣=,解得k AB=﹣或2(舍去),∵直线AB过抛物线x2=2p(y﹣q)的焦点,和直线AB过抛物线x2=2py的焦点,对||的值没有影响,故可研究AB过抛物线x2=2py的情况,∴直线AB的方程为y=﹣x+,与抛物线联立消去y,整理得x2+x﹣p2=0,求得x=﹣或.∵抛物线x2=2py的焦点为(0,),设P(x1,y1),Q(x2,y2),P在y轴左侧,∴x1=﹣,x2=∴|PF|=(|x1﹣0|)=|x1|,|QF|=(|x1﹣0|)=x2,∴||=||=||=||=9.故选:A.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置. 11.(5分)把命题“∃x0∈R,x02﹣2x0+1<0”的否定写在横线上∀x∈R,x2﹣2x+1≥0.【解答】解:特称命题的否定是全称命题∴命题“∃x0∈R,x02﹣2x0+1<0”的否定是:∀x∈R,x2﹣2x+1≥0.故答案为:∀x∈R,x2﹣2x+1≥0.12.(5分)一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是.【解答】解:由三视图可知:几何体是三棱锥,∵正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,∴三棱锥的高为1,底面是直角边长为1的等腰直角三角形,∴几何体的体积V=××1×1×1=.故答案为:.13.(5分)已知函数f(x)=,g(x)=lnx,则函数y=f(x)﹣g(x)的零点个数为.【解答】解:令g(x)=f(x)﹣lnx=0得f(x)=lnx∴函数g(x)=f(x)﹣lnx的零点个数即为函数f(x)与函数y=lnx的图象的交点个数,在同一坐标系中画出函数f(x)与函数y=lnx的图象,如图所示,有图象知函数y=f(x)﹣lnx上有3个零点.故答案为:3个.14.(5分)过抛物线y2=4x的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于8.【解答】解:∵抛物线方程为y2=4x,∴抛物线的焦点为F(1,0),准线为l:x=﹣1设线段AB的中点为M(3,y0),则M到准线的距离为:|MN|=3﹣(﹣1)=4,过A、B分别作AC、BD与l垂直,垂足分别为C、D根据梯形中位线定理,可得|AC |+|BD |=2|MN |=8 再由抛物线的定义知:|AF |=|AC |,|BF |=|BD | ∴|AB |=|AF |+|BF |=|AC |+|BD |=8. 故答案为:815.(5分)O 是面α上一定点,A 、B 、C 是面α上△ABC 的三个顶点,∠B ,∠C 分别是边AC ,AB 对应的角.以下命题正确的序号是 ②③④ ①动点P 满足,则△ABC 的外心一定在满足条件的P 点集合中.②动点P 满足,则△ABC 的内心一定在满足条件的P 点集合中. ③动点P 满足,则△ABC 的重心一定在满足条件的P 点集合中. ④动点P 满足,则△ABC 的垂心一定在满足条件的P 点集合中. 【解答】解:①∵动点P 满足,∴,则点P 是△ABC 的重心,因此①不正确;②∵动点P 满足,∴(λ>0), ∵向量在∠BAC 的平分线上,∴与∠BAC 的平分线所在向量共线,∴△ABC的内心一定在满足条件的P点集合中.因此正确.③∵动点P满足,∴=.过点A作AD⊥BC,垂足为D,则,∴,而向量与BC边的中线共线,因此△ABC的重心一定在满足条件的P点集合中,故正确.④∵动点P满足,∴=,∴==λ=0,∴,∴△ABC的垂心一定在满足条件的P点集合中.因此正确.综上可知:只有②③④正确.故答案为:②③④.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(12分)等比数列{a n}中,已知a1=2,a4=16(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.【解答】解:(I)设{a n}的公比为q由已知得16=2q3,解得q=2∴=2n(Ⅱ)由(I)得a3=8,a5=32,则b3=8,b5=32设{b n}的公差为d,则有解得.从而b n=﹣16+12(n﹣1)=12n﹣28所以数列{b n}的前n项和.17.(12分)已知向量=(1+cosωx,1),=(1,a+sinωx)(ω为常数且ω>0),函数f(x)=在R上的最大值为2.(Ⅰ)求实数a的值;(Ⅱ)把函数y=f(x)的图象向右平移个单位,可得函数y=g(x)的图象,若y=g (x)在[0,]上为增函数,求ω取最大值时的单调增区间.【解答】解:(Ⅰ)函数f(x)==1+cosωx+a+sin x=2sin(ωx+)+a+1,…(3分)∵函数f(x)在R上的最大值为2,∴3+a=2故a=﹣1…(4分)(Ⅱ)由(Ⅰ)知:f(x)=2sin(ωx+),把函数f(x)=2sin(ωx+)的图象向右平移个单位,可得函数y=g(x)=2sinωx…(7分)又∵y=g(x)在[0,]上为增函数,∴g(x)的周期T=≥π即ω≤2.∴ω的最大值为2…(10分)此时单调增区间为…(12分)18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.【解答】(Ⅰ)证明:如图,取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以.又,则,故OA 1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC﹣A1B1C1的高.又△ABC的面积,故三棱柱ABC﹣A1B1C1的体积.19.(12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.【解答】解:(1)苹果的重量在[90,95)的频率为.(2)重量在[80,85)的有个.(3)设这4个苹果中,重量在[80,85)段的有1个,编号为1.重量在[95,100)段的有3个,编号分别为2、3、4,从中任取两个,可能的情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种.设任取2个,重量在[80,85)和[95,100)中各有1个的事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以.20.(13分)已知椭圆C:=1(a>b>0)的短轴长为2,离心率为.(1)求椭圆C的方程;(2)若过点M(2,0)的引斜率为k的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数t的取值范围?【解答】解:(1)∵椭圆C:=1(a>b>0)的短轴长为2,离心率为,∴b=1,=,∵a2=b2+c2,∴a=,b=1,∴椭圆C的方程为…(3分)(2)设G(x1,y1),H(x2,y2),设直线y=k(x﹣2),联立椭圆,可得(1+2k2)x2﹣8kx+8k2﹣2=0△=(﹣8k)2﹣4(1+2k2)(8k2﹣2)>0,得,…(5分)条件转换一下就是,∵x1+x2=,x1x2=根据弦长公式,•<,得到.…(7分)设P(x,y),则∵,∴(x1+x2,y1+y2)=t(x,y),∴x=(x1+x2),y=(y1+y2)根据x1+x2=,x1x2=,把x1,x2消成k,得(9分)然后代入椭圆,得到关系式,…(11分)∴,∵,∴实数t的取值范围为…(13分)21.(14分)已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.【解答】解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1﹣=0,解得a=e.(Ⅱ)f′(x)=1﹣,①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;②当a>0时,令f′(x)=0,得e x=a,x=lna,x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=﹣1+<0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,所以k的最大值为1.。

四川省成都七中2014届数学(文)三轮复习综合训练(六) Word版含答案

四川省成都七中2014届数学(文)三轮复习综合训练(六) Word版含答案

成都七中高2014届三轮复习综合训练(六)文科命题人:晏婷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷1至2页,第Ⅱ卷3至6页.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分. 1.已知集合{|(3)0},A x x x =->集合{|22}x B y y ==+,则AB = ( )A. {|23}x x <<B. {|02}x x x <>或C. {|3}x x >D. {|02}x x x <≥或 2.“若,x y R ∈且220x y +=,则,x y 全为0”的否命题是 ( )A. 若,x y R ∈且220x y +≠,则,x y 全不为0B. 若,x y R ∈且220x y +≠,则,x y 不全为0C. 若,x y R ∈且,x y 全为0,则220x y += D. 若,x y R ∈且,x y 不全为0,则220x y +≠3.若40,tan(),3αππα<<-=则cos α= ( ) A. 35- B. 45 C. 45- D. 354. 已知a b c R ∈、、,则240b ac -<“”是“函数2()f x ax bx c =++的图象恒在x 轴上方”的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =+的图象可能是( )6. 执行右边的程序框图,输出的结果是18,则①处应填入的条件是 ( ) A. 2?K > B. 3?K > C. 4?K > D. 5?K >7.等比数列{}n a 的前n 项和为n S ,已知123,2,3S S S 成等差数列,则数列{}n a 的公比为 ( )A. 12 B. 13 C. 25D.498.已知满足约束条件30101x y x y x ++≥⎧⎪--≤⎨⎪≤⎩的可行域为Ω,直线10x ky +-=将可行域Ω划分成面积相等的两部分,则k 的值为 ( )A. 13-B. 13C. 0D. 239.已知椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则A .2132a =B .213a =C .2193a = D .27a =10.已知()f x 满足1()1(1)f x f x +=+,当[0,1]x ∈时,()f x x =,若在区间(1,1]-内,函数()()g x f x mx m =--有两个零点,则实数m 的取值范围为 ( )A. 1[0,)2B. 1[,)2+∞C. 1[0,)3D. 1(0,]2二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上. 11. 若函数2()log (41)x f x ax =++是偶函数,则_________.a =12.某三棱锥的三视图如图所示,该三棱锥的各个面的面积中,最小的面积为______.13.在ABC 中,角,,A B C 的对边分别是,,a b c ,若2c o s c o s c o s b B c A a C -=,则B 角的大小为___________.14.若等边三角形ABC 的边长为,平面内一点M 满足12,63CM CB CA =+则__________.MA MB ⋅=15.如图所示,在正方体1111ABCD A BC D -中,M 是正方形ABCD 的中心,N 是棱1CC (包括端点)上的动点,现给出以下命题:①对于任意的点N ,都有11;MN B D ⊥ ②存在点N ,使得MN ⊥平面1;A BD③存在点N ,使得异面直线MN 和11A B④对于任意的点N ,三棱锥1B MND -的体积为定值.其中正确命题的编号是______________.(写出所有正确命题的编号)成都七中高2014届三轮复习综合训练(一)第Ⅱ卷三、解答题:本大题共6小题,满分75分.其中16-19每题12分,20题13分,21题14分. 16.已知函数()4sin cos()(0)3f x wx wx w π=+>的最小正周期是.π(1)求()f x 的解析式;(2)求函数()f x 的对称中心和对称轴.17. 已知等比数列{}n a 满足3312,36.a S == (1)求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和n S .18. 新能源汽车是指利用除汽油、燃油之外的其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低.为了配合我国“节能减排”战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.(1)求y 的值;(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看做一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率; (3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测他们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4,把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.19.如图,在梯形ABCD 中,//,,60AB CD AD DC CB a ABC ===∠=,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE a =,点M 在线段EF 上.(1)求证:BC ⊥平面ACFE ;(2)当EM 为何值时,//AM 平面?BDF 请证明你的结论.20.已知函数21()ln 2f x x ax bx =--. (1)当12a b ==时,求函数()f x 的最大值; (2)令21()()((0,3]),23aF x f x ax bx x =+++∈若其图像上任意一点00(,)P x y 处切线的斜率12k ≤恒成立,求实数a 的取值范围;21. 已知抛物线C 的顶点为原点,其焦点(0,)(0)F c c >到直线:20l x y --=的距离为2. (1)求抛物线C 的方程;(2)已知,A B 是抛物线C 上的两点,过,A B 两点分别作抛物线C 的切线,两条切线的交点为M ,设线段AB 的中点为N ,证明:存在R λ∈,使得;MN OF λ=(3)在(2)的条件下,若抛物线C 的切线BM 与y 轴交于点R ,直线AB 两点的连线过点F ,试求ABR 面积的最小值.成都七中高2014届三轮复习综合训练(六)答案1.【答案】A ,解析:{|(3)0}{|03},A x x x x x =->=<<{|22}{|2}x B y y y y ==+=>,所以A B ={|23}x x <<.2.【答案】B ,解析:1)否命题要对条件和结论都否定;2)一些特殊词的否定:如“都是”的否定为“不都是”;“至少有一个”的否定为“一个也没有”.3.【答案】A ,解析:4tan(),3πα-=所以4tan 0,3α=-<又0,απ<<所以,2παπ<<所以cos α=35-. 4.【答案】D ,解析:对于240b ac -<“”,若0a <,则函数2()f x ax bx c =++为开口向下的二次函数,其图象在x 轴下方;反之,取0,1a b c ===,则函数2()f x ax bx c =++的图象恒在x 轴上方,但240.b ac -=5.【答案】C ,解析:由sin (0)y ax b a =+>的图像可知该函数的周期大于2π,则22aππ>,即01a <<,故log ()a y x b =+为减函数,又知sin y ax =的图象向上平移b 个单位长度,其中b 满足01b <<,故log ()a y x b =+的图象是由log a y x =向左平移b 个单位长度(01b <<)得到的,故选C.6.【答案】A ,解析:第一次执行循环体得2810,2S k =+==,由题意还要继续执行,得10818,3S k =+==,此时输出18S =,故填入的条件为2?k >.8.【答案】B解得1.3k =9.【答案】D ,解析:椭圆与双曲线有公共的焦点,则225a b -=,故225,b a =-椭圆化为22122:15x y C a a +=-,则以其长轴为直径的圆为222x y a +=,又2C 的一条渐近线为2y x =,不妨设该渐近线与圆、椭圆从左往右依次交于,,,A C D B ,由题意AC CD DB ==,13OC OA ∴=,设(,),(,)A A C C A x y C x y ,则11=,=33C A C A x x y y ,联立2222x y a y x ⎧+=⎨=⎩得2222545A A a x ay ⎧=⎪⎪⎨⎪=⎪⎩,(C ∴, 将其带入椭圆方程得:22224151515a a a a +=-,解得227, 2.a b ==11.【答案】1-,解析:()()f x f x -=,即22log (41)log (41)xxax ax -+-=++,即222(41)(14)log 2log 2log 4222, 1.(41)[4(41)]x x xx x xax ax ax x ax a --++=⇒=⇒=⇒-=∴=-++ 12.【答案】:6,解析:由三视图可知,该几何体的四个面都是直角三角形(如图所示),面积分别为所以面积最小为6.13.【答案】3π,解析:因为2cos cos cos b B c A a C -=,由正弦定理得2sin cos sin cos sin cos 2sin cos sin()B B C A A C B B A C -=⇒=+即2sin cos sin ,B B B =故1cos ,.23B B π=∴=14.【答案】2-,解析:可建立直角坐标系,因为三角形ABC 为等边三角形,故设(0,0),CA B ,则(3,3),(23,0)C B C A ==,设(,)M x y ,则由441263CM CB CA =+可得1,)2M ,则3135(,),(,),22M A M B ==-所以2.MA MB ⋅=-16.【解析】:(1)()4sin cos()3f x wx wx π=+14sin (cos )2wx wx wx=22sin cos wx wx wx =-sin 2wx wx =2sin(2)3wxπ=+21T w w ππ==⇒=,所以()2in(2)3f x s x π=+-17.【解析】:(1)设等比数列{}n a 公比为q ,则由3312,36a S ==得:31212,24a a a =+=,即21111148121211242a a a q q q a a q =⎧=⎧=⎧⎪⇒⎨⎨⎨==-+=⎩⎩⎪⎩或,所以111248()2n n na a -==⨯-或 (2)当12n a =时,12,n na n =其前n 项和2(1212)662n n n S n n +==+;当1148()2n n a -=⨯-时,1148(),2n n na n -=-212111148[12()3()()]2221111148[1()2()(1)()()]22222n n n n n S n S n n --=+⨯-+⨯-++--=⨯-+⨯-++--+-两式做差得:213111148[1(()()())()]22222n nn S n -=--+-++---111()(1())12248[1()]121()2n n n ----=-----1116416()48()22n n n -=----.20.本题主要考查了函数的最值、导数的几何意义等基础知识,考查考生的运算能力以及逻辑思维能力.21.【解析】:(1)由题,抛物线C 的方程为24(0)x cy c =>,2=解得1c =,所以抛物线C 的方程为24.x y = (2)设1122(,),(,)A x y B x y ,由214y x =,则12y x '=,得直线1211,22AM BM k x k x ==, 11122211:(),()22AM y y x x x BM y y x x x ∴-=--=-:, 两式做差得:21112211()()22y y x x x x x x -=--- 又因为1122(,),(,)A x y B x y 都在抛物线C 上,故22112211,44y x y x ==,代入上式得: 222111*********()()()44222x x x x x x x x x x x -=---⇒=+, 即M 的横坐标为121()2M x x x =+,又N 的横坐标为121()2N x x x =+,所以//MN y 轴,故MN 与OF 共线.所以存在R λ∈,使得.MN OF λ=(3)设2(,)(0)4t B t t ≠,则切线BM 的方程为21()42t y t x t -=-,可得2(0,)4t R -. 直线24:14t BA y x t -=+,由2224144(,)44t y x A t t t y x ⎧-=+⎪⇒-⎨⎪=⎩23114114|||||1||||2|22424ABR B A t S FR x x t t t t t∴=⋅-=+⋅+=++令314()2(0)4f t t t t t =++>,则2234()24f t t t '=+-,令()0f t '=得3t =,当(0,3t ∈时,()0,f t '<当(,)3t ∈+∞时,()0,f t '>所以当(0,)3t ∈时,()f t 单调递减;当()3t ∈+∞时,()f t 单调递增.故min ()(39f t f == 故ABR 面积的最小值为9。

四川地区成都七中2014届高三5月第一次周练数学(文)试题整编含答案解析

四川地区成都七中2014届高三5月第一次周练数学(文)试题整编含答案解析

成都七中2014级考试数学试卷(文科)命题人:巢中俊 审题人:刘在廷一、选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的.) 1.若{1,2,3,4,5,6,7}U =,{3,4,6,7},{3,5,6,7},A B ==则()U C AB =( )(A){1,2,4,5} (B){2,6,8} (C){1,3,5,7} (D){1,2} 2.若βα,表示两个不同的平面,b a ,表示两条不同的直线,则α//a 的一个充分条件是( ) (A) ββα⊥⊥a , (B)b a b //,=βα (C)α//,//b b a (D)ββα⊂a ,//3.已知等比数列{}n a 的前n 项和215,,5n n S t n N -*=⋅-∈则实数t =( )(A)4 (B)5 (C)45 (D)154.某几何体的三视图如图所示,则该几何体的体积为( ) (A)6 (B)23 (C)3 (D)335.若1cos23θ=,则44sin cos θθ+的值为( ) (A)59 (B)1118 (C)1318(D)16.已知0,0,228,x y x y xy >>++=则2x y +的最小值是( ) (A)3 (B)4 (C)92 (D)1127.若点(,)P x y 满足线性约束条件20220,0x y x y y -≤⎧⎪-+≥⎨⎪≥⎩则4z x y =+的最大值为( )(A)1 (B)2 (C)3 (D)48.若函数3()3f x x x a =-+有3个不同的零点,则实数a 的取值范围是( )(A)(,1)-∞- (B)[2,2]- (C)(2,2)- (D)(1,)+∞9.如图,四边形ABCD 是边长为1的正方形,延长CD 至E ,使得2DE CD =.动点P 从点A 出发,按逆时针方向运动一周回到A 点,AP AB AE λμ=+.则λμ-的取值范围为( )(A)[1,1]- (B)[1,2]- (C)[2,1]- (D)[0,2]10.从1232,2,2,,2n 这n 个数中取m *(,,2)n m N m n ∈≤≤个数组成递增的等比数列,所有可能的递增等比数列的个数记为(,)n m ϕ,则(100,10)ϕ=( )(A)504 (B)505 (C)506 (D)507二、填空题(每小题5分,共25分.把答案填在题中横线上.) 11.在平面直角坐标系中,点(1,3)A ,(2,)B k -,若0OA AB ⋅=,则实数k =12.已知12z i =+,则3z =13.阅读右面的程序框图,运行相应的程序,输出的结果为14.设A 、B 、P 是椭圆22221(0)x y a b a b+=>>上不同的三个点,且A 、B 连线经过坐标原点,若直线PA 、PB 的斜率之积为14-,则该椭圆的离心率为15.若ABC ∆的三个内角,,A B C 所对的边,,a b c 满足2a c b +=,则称该三角形为“中庸”三角形.已知ABC ∆为“中庸”三角形,给出下列结论: ①1(,2)2a c ∈; ②112a c b+≥; ③3B π≥; ④若2,AB AB AC BA BC CA CB =⋅+⋅+⋅则4sin 5B =. 其中正确结论的序号是 .(写出所有正确结论的序号)三、解答题(本大题共6小题.共75分.1619-题每题12分,20题13分,21题14分,解答应写出文字说明、证明过程或演算步骤.)16.数列{}n a 满足*212(),n n n a a a n N ++=-∈数列{}n b 满足2*12(),n n n b b b n N ++=∈11221, 2.a b a b ====(1)求数列{}n a ,{}n b 的通项公式; (2)设n n n c a b =,求数列{}n c 的前n 项和n T .17.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知222b c a bc +=-. (1)求A 的大小; (2)如果6cos B =,2b =,求ABC ∆的面积.18.在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,AD DP ⊥,CD ⊥平面ADPQ ,12AB AQ DP ==.(1)求证:PQ ⊥平面DCQ ;(2)若2AQ =,求四面体C BDQ -的体积.19.高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型.在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一块玻璃.让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,且等可能向左向右滚下,最后掉入编号为1,2,,7的球槽内.某高三同学试验1000次,掉入各球槽的个数统计如下:球槽 1 2 3 4 5 6 7 频数 15 95 xy 234 92 17 频率0.0150.0950.234z0.2340.0920.017规定小球掉入2,4,6号球槽中的任何一个即为中奖,其余不中奖. (1)分别求,,x y z 的值.(2)假设中奖的概率为12,现有5位同学依次参加这个高尔顿板游戏,每人玩一次,求中奖不连续发生的概率.ABCD P20.已知椭圆2222:1(0)x y C a b a b+=>>的短轴长为6.其离心率为74.若12,l l 是椭圆C 的两条相互垂直的切线,12,l l 的交点为点P .(1)求椭圆C 的方程; (2)求点P 的轨迹方程.21.已知函数2()(),()ln .ln x f x a R g x x x ax x=∈=-+(1)当0a =时,求()f x 在(1,)+∞上的最小值;(2)若()y f x =与()y g x =的图象恰有三个不同的交点112233(,),(,),(,)A x y B x y C x y (123x x x <<). (i)求实数a 的取值范围; (ii)求证:()22123123()()()f x f x f x x x x =.成都七中2014级考试数学试卷(文科)参考答案11. 4 12. 112 i -- 13. 1 - 14. 215. ②④16.解:(1)212n n n a a a ++=-即122n n n a a a ++=+.所以数列{}n a 是首项为1,公差为1的等差数列,n a n =.212n n n b b b ++=,121,2b b ==,所以数列{}n b 是首项为1,公比为2的等比数列,12n n b -=.…………………………………6分(2)12n n n n c a b n -==,则01211222322n n T n -=⋅+⋅+⋅++ 12321222322n n T n =⋅+⋅+⋅++两式相减得: 0121122222n n n T n --=⋅++++-整理得(1)21nn T n =-+.……………………………………………………………………12分17.解(1)因为222b c a bc +=-,所以2221cos 222b c a bc A bc bc +--===-, 又因为(0,)A π∈,所以23A π=.……………………………………………………………6分(2)因为cos B =(0,)B π∈,所以sin B =.由正弦定理sin sin a b A B =,得sin 3sin b Aa B==. 因为222b c a bc +=-,所以2250c c +-=,解得1c =-因为0c >,所以1c -.故ABC∆的面积1sin2S bc A==………………………………………………12分18.解(1)因为CD⊥平面ADPQ,所以CD PQ⊥,作QE DP⊥,E为垂足,则四边形ADEQ是正方形,不妨设1AB=,则1DE=,DQ=又22DP AB==,所以E是DP的中点,1EP=,所以PQ=所以222DQ PQ DP+=,所以DQ PQ⊥.故CD PQ⊥,DQ PQ⊥,又CD DQ D=,所以PQ⊥平面DCQ.………………………6分(2)因为CD⊥平面ADPQ,所以AQ CD⊥又,AQ AD⊥所以AQ⊥平面ABCD,2111422.3323C BDQ Q BCD BCDV V S AQ--∆==⋅=⨯⨯⨯=所以四面体C BDQ-的体积为43.……………………………………………………12分19.解(1)10000.234234,x=⨯=100015952342349217313,y=------=3130.3131000z==.…………………………………………5分(2)中奖的概率为12,中奖与不中奖等可能,中奖用1表示,不中奖用0表示.画树状图.(总的基本事件为5232=,没有画X的表示中奖不连续发生)记中奖不连续发生为事件A ,其基本事件有13个.13()32P A =. 中奖不连续发生的概率为1332. ……………………………………………………………12分20解(1)26,b =所以3,b =又4e =从而2222227.16c a b e a a-===2216,9.a b == 所以椭圆C 的方程为221169x y+=.…………………………………………………………6分(2)①若直线1l 的斜率存在且不为零时,设为k ,设00(,)P x y ,则直线1l 的方程为00()y y k x x -=-.即00y kx y kx =+-,令00m y kx =-.22222(169)321614401169y kx m k x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩. 直线1l 是椭圆的切线,所以222(32)4(169)(16144)0km k m ∆=-+-=,所以22169m k =+,坐标原点O 到直线1l的距离1d 所以22212216911m k d k k +==++. 设坐标原点O 到直线2l 的距离为2d ,同理可得222222116()9916111()k k d k k-++==++-. 所以222221222169916||2511k k OP d d k k ++=+=+=++.②若直线1l 的斜率不存在或为零时,容易验证22212||25.OP d d =+= 所以2||25.OP =点P 的轨迹是圆2225.x y +=……………………………………………13分21.解(1)2()ln x f x x=,2(2ln 1)()0(ln )x x f x x -'==,(1,), x x ∈+∞∴=()f x极小值所以当0a =时,()f x 在(1,)+∞上的最小值为()2.f e e =…………………3分(2) (i)2ln (0,ln 0)ln x x x x ax x ax x=->+≠+,分离参数得ln ln x x a x x x =--,令ln ().ln x xh x x x x =--22221ln 1ln ln (1ln )(2ln )()0(ln )(ln )x x x x x x h x x x x x x x ----'=-==--通过求导分析容易证得2ln (0)x x x x >>>,所以1x =或e .x(0,1) (1,)e (,)e +∞()h x '-+-()h x0,()x h x →→+∞,(1)1h =,()11(1)h e e e e e =-=+--,,()1x h x →+∞→. 画ln ()ln x xh x x x x=--的草图,实数a 的取值范围为1(1,1)(1)e e +-.…………………7分 注意到ln 0ax x +≠,若00ln 0ax x +=,则00ln x ax =-,00000ln 1(ln 1x x a a x x x a=-=+-+矛盾).所以1(1,1)(1)a e e ∈+-时,三个不同的交点,,A B C 均使得ln 0ax x +≠成立. 所以实数a 的取值范围为1(1,1)(1)e e +-.…………………………………………………9分(ii)由(i)知12301x x e x <<<<<,ln 1ln ln ln 1x x x a x x x x x x=-=---,令ln x u x =,则11a u u=--,即2(1)10u a u a +-+-=,121210, 10u u a u u a +=-<=-<,画ln xu x=图象.* *不妨设12u u <,则111ln x u x =,32223ln ln x x u x x ==, ()()22123123233112222123123123()()()()()()ln ln ln ()f x f x f x g x g x g x x x x x x x x x x x x x x x x ---== 22231212312123ln ln ln (1)(1)(1)(1)(1)(1)[(1)(1)]x x x u u u u u x x x =---=---=-- 221212[1()][1(1)(1)]1u u u u a a =-++=--+-=.………………………………………14分注:(i)也可以按(ii)的思维方式解答。

四川省成都七中2014届高三三诊模拟文科数学试卷(带解析)

四川省成都七中2014届高三三诊模拟文科数学试卷(带解析)

四川省成都七中2014届高三三诊模拟文科数学试卷(带解析)1.在三角形ABC 中,“6A π∠=”是“1sin 2A =”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】A 【解析】 试题分析:若6A π∠=,则必有1sin 2A =,故是充分条件;若1sin 2A =,则有可能56A π∠=,故不是必要条件.选A.考点:充要条件及三角函数.2.已知集合{}{}23,log 2A x x B x x =<=<,则A B ⋂=( ) A .()1,3- B.()0,4 C.()0,3 D.()1,4- 【答案】C 【解析】试题分析:{|04},{|03}B x x AB x x =<<=<<,选C.考点:不等式及集合的基本运算.3.已知是两条不同直线,是两个不同的平面,给出下列命题:①若,,m n n m αβα⋂=⊂⊥,则αβ⊥;②若,m m αβ⊥⊥,则//αβ;③若,,m n n m αβ⊥⊥⊥,则αβ⊥;④若//,//,//m n m n αβ,则//αβ,其中正确的命题是( )A .①②B .②③ C.③④ D .①③ 【答案】B 【解析】试题分析:对①,,,m n n m αβα⋂=⊂⊥时,,αβ可成任意的角度,不一定互相垂直,故错;对②,若,m m αβ⊥⊥,则//αβ,成立;③若,,m n n m αβ⊥⊥⊥,则αβ⊥,成立;④//,//,//m n m n αβ时,,αβ可以平行,也可以相交,故错.选B. 考点:空间直线与平面的位置关系.4.已知不等式组⎪⎩⎪⎨⎧≥+-≥-+≤≤020220y x y x x ,则其表示的平面区域的面积是( )A.1B.2C.3D.4【答案】D14242S=⨯⨯=.)试题分析:23(23)(1)511122i i i ii--+==--+,所以实部与虚部之和为51222-=.考点:复数的基本运算及概念.6.在平面直角坐标中,ABC∆的三个顶点A、B、C,下列命题正确的个数是()(1)平面内点G满足0GA GB GC++=,则G是ABC∆的重心;(2)平面内点M满足MA MB MC==,点M是ABC∆的内心;(3)平面内点P满足AB AP AC APAB AC⋅⋅=,则点P在边BC的垂线上;A.0B.1C.2D.3【答案】B【解析】试题分析:对(2),M为ABC∆的外心,故(2)错.对(3),c o s c o s,A B A P P A B A C A P P A CP A B P A CA B A C⨯⨯∠⨯⨯∠=∴∠=∠,所以点P在A∠的平分线上,故(3)错.易得(1)正确,故选B.考点:三角形与向量.7.设曲线x y sin =上任一点()y x ,处的切线斜率为)(x g ,则函数)(2x g x y =的部分图象可以是( )【答案】C 【解析】试题分析:()cos g x x =,所以22()cos y x g x x x ==⨯,这是一个偶函数,且0x =时,0y =.所以选C.考点:函数的图象.8.某程序框图如图所示,若使输出的结果不大于20,则输入的整数i 的最大值为( ) A .3 B.4 C.5 D.6【答案】B 【解析】试题分析:这是一个循环结构,循环的结果依次为:0112,1;2215,2;54110,3;S n S n S n =++===++===++==108119,4S n =++==.再循环一次,S 的值就大于20,故i 的值最大为4.考点:程序框图.9.已知椭圆221:132x y C +=的左右焦点为21,F F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于直线1l 于点P ,线段2PF 的垂直平分线与2l 的交点的轨迹为曲线2C ,若()11221,2,(,),(,)A B x y C x y 是2C 上不同的点,且AB BC ⊥,则2y 的取值范围是( )A.()[),610,-∞-⋃+∞B.(][),610,-∞⋃+∞ C.()(),610,-∞-⋃+∞ D.以上都不正确 【答案】A 【解析】试题分析:12(1,0),(1,0)F F -.设线段2PF 的垂直平分线与2l 的交点为M ,则2M P M F =.根据抛物线的定义知点M 的轨迹是以2F 为焦点1l 为准线的抛物线,其方程为24y x =.点B 、C 在抛物线上,所以2211224,4y x y x ==,二者相减得1212124y y x x y y -=-+,即124BC k y y =+.因为A B⊥,所以1A B BCk k =-,即12112112112416161(2)22214y y y y y y y y y -=-⇒=--=-+-++++-.当120y +<时,11116(2)28210(62y y y -+-+≥+==-+时取"")=; 当120y +>时,11116(2)2826(22y y y -+-+≤-+=-=+时取"")=.但点B 与点A 不重合,故12y ≠,所以26y <-.综上知,选A. 考点:圆锥曲线及重要不等式.10.定义域为D 的单调函数()y f x =,如果存在区间[],a b D ⊆,满足当定义域为是[],a b时,()f x 的值域也是[],a b ,则称[],a b 是该函数的“可协调区间”;如果函数()()2210a a x y a a x+-=≠的一个可协调区间是[],m n ,则n m -的最大值是( )D.4 【答案】C 【解析】试题分析:据题意得22()1a a x x a x +-=的两个根为,m n .由22()1a a x x a x+-=得222()10a x a a x -++=.所以n m -==≤=,当3a =时取等号.考点:1、新定义;2、函数的最值.11.设{}n a 是公差不为零的等差数列,12a =且136,,a a a 成等比数列,则2014a = .【答案】20172【解析】试题分析:由题意得:21(22)2(25),,02d d d +=+=(0舍去),所以2014120172201322a =+⨯=. 考点:等差数列与等比数列. 12.若函数cos 6y x πω⎛⎫=+ ⎪⎝⎭()*N ω∈的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值是 【答案】2【解析】试题分析:由题意得,62()662k k k Z πππωπω⨯+=+=+∈,*N ω∈,所以ω的最小值是2.考点:三角函数及其性质.13.一个几何体的主视图和俯视图如图所示,主视图是边长为2a 的正三角形,俯视图是边长为a 的正六边形,则该几何体左视图的面积是【答案】232a 【解析】试题分析:左视图的面积为21322S a ==. 考点:三视图.14.私家车具有申请报废制度。

四川省成都七中2014届高三10月阶段性考试数学(文)试题及答案

四川省成都七中2014届高三10月阶段性考试数学(文)试题及答案

成都七中高2014届高三数学阶段性考试 (文科)第Ⅰ卷 (选择题 共50分)一、选择题: (本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{}12<<-=x x M ,{}2,1,0,1,2,3---=N ,则=N M (▲ )A .{}1,0,1,2--B .{}0,1-C .{}1,0,1-D .{}1,0 2、若命题“p 或q ”是真命题,“p 且q ”是假命题,则( ▲ ) A.命题p 和命题q 都是假命题 B.命题p 和命题q 都是真命题 C.命题p 和命题“q ⌝”的真值不同 D.命题p 和命题q 的真值不同 3、设函数f (x )是连续可导函数,并且='=∆-∆+→∆)(,22)()(lim0000x f xx f x x f x 则( ▲ )A .21 B .2-C .4D .24、对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的( ▲ ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要5、命题“若0>m ,则02=-+m x x 有实数根”与其逆命题、否命题、逆否命题这四个命题中,假命题的个数是( ▲ )A .0B .1C .2D .36、定义在实数集R 上的函数()f x ,对一切实数x 都有)()(x f x f -=+21成立,若()f x =0仅有101个不同的实数根,那么所有实数根的和为( ▲ )A .101B .151C .303D .23037、已知函数⎩⎨⎧≥+-<=)0(4)3(),0()(x a x a x a x f x 满足对任意0)()(,212121<--≠x x x f x f x x 都有成立,则a 的取值范围是( ▲ )A .]41,0(B .)1,0(C .)1,41[D .)3,0(8、方程1log )11(2+=+-x xx的实根0x 在以下那个选项所在的区间范围内( ▲)A.)21,85(--B.)83,21(--C.)41,83(--D.)81,41(--9、设1>a ,若仅有一个常数c 使得对于任意的]2,[a a x ∈,都有],[2a a y ∈满足方程c y x a a =+log log ,这时c a +的取值为( ▲ ) A .3 B .4 C .5D .610、定义][x 表示不超过x 的最大整数,记{}][x x x -=,其中对于3160≤≤x 时,函数1}{sin ][sin )(22-+=x x x f 和函数{}13][)(--⋅=xx x x g 的零点个数分别为.,n m 则(▲) A .313,101==n m B .314,101==n m C .313,100==n m D .314,100==n m第Ⅱ卷 ( 非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在后面的答题卷的相应地方. 11、设集合102M x x ⎧⎫=-<⎨⎬⎩⎭,{}210N x x =+>,则M N =I▲ (用集合表示)12、命题“012,2≥+-∈∀x x R x ”的否定为▲ 13、函数)12(log )(221--=x x x f 单调递减区间为▲14、已知函数0≤x 时,xx f 2)(=,0>x 时,,则函数1)]([-=x f f y 的零点个数有▲ 个.15、下列命题是真命题的序号为:▲①定义域为R 的函数)(x f ,对x ∀都有)1()1(x f x f -=-,则)1(-x f 为偶函数②定义在R 上的函数)(x f y =,若对R x ∈∀,都有2)1()5(=-+-x f x f ,则函数)(x f y =的图像关于)2,4(-中心对称③函数)(x f 的定义域为R ,若)1(+x f 与)1(-x f 都是奇函数,则)1949(+x f 是奇函数④函数)0()(23≠+++=a d cx bx ax x f 的图形一定是对称中心在图像上的中心对称图形。

四川省成都七中2014届高三5月第二次周练数学(文)试题 Word版含答案

四川省成都七中2014届高三5月第二次周练数学(文)试题 Word版含答案

成都七中2014级考试数学试卷(文科)一、选择题(共50分,每题5分)1.设22{|10},{|log 0}A x x B x x =->=<,则A B ⋂=A.{|1}x x >B.{|0}x x >C.{|1}x x <-D.Φ2.设i 是虚数单位,若()(1)2(1)a bi i i ++=-,其中,a b R ∈,则a b +的值是A.12-B.2-C.2D.323.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有3个人从不同的角度 观察,结果如图所示.若记3的对面的数字为 m ,4的对面的数字为n ,则m n += A.3 B.7 C.8 D.114.设554log 4,log ((2log a b ===A.a c b <<B.b c a <<C.a b c <<D.b a c <<5.设,A B 是锐角ABC ∆的两内角,(sin ,1),(1,cos )p A q B =-=u r r ,则p u r 与q r的夹角是A.锐角B.钝角C.直角D.不确定 6.下列判断错误..的是 A.“22am bm <”是“a b <”的充分不必要条件B.“3210x x --≤对x R ∈恒成立”的否定是“存在0x R ∈使得320010x x -->”C.若“p q Λ”为假命题,则,p q 均为假命题D.若随机变量ξ服从二项分布:ξ~1(4,)4B ,则1E ξ= 7.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是A.32 B.43 C.3 D.238.已知双曲线22221(0,0)x y a b a b -=>>的离心率2e =,则2a e b+的最小值为C. D.9.在ABC ∆内部随机取一点P ,则事件“PBC ∆的面积不大于ABC ∆面积的13”的概率是 A.13 B.49 C.59 D.2310.已知函数2()22ln (,0)f x x ax a x a R a =--∈≠,则下列说法错误..的是 A.若0a <,则()f x 有零点 B.若()f x 有零点,则12a ≤且0a ≠ C.0a ∃>使得()f x 有唯一零点 D.若()f x 有唯一零点,则12a ≤且0a ≠二、填空题(共25分,每题5分)11.已知函数2()2x x f x =在区间(0,)a 内单调,则a 的最大值为__________.12.若方程3log (3)20x a x -+-=有实根,则实数a 的取值范围是___________.13.已知直线l 0y -=与抛物线Γ:24y x =交于,A B 两点,与x 轴交于F ,若()OF OA OB λμλμ=+≤uuu r uu r uu u r,则λμ=_______. 14.正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1//A F 平面1D AE ,若正方体1111ABCD A B C D -的棱长是2,则F 的轨迹被正方形11BCC B 截得的线段长是________.15.已知函数()122014122014f x x x x x x x =+++++++-+-++-L L 的定义域为R ,给定两集合4222{((12101)(2))(2)}A a R f a a a f a =∈-++=+及B ={()(),}a R f x f a x R ∈≥∈,则集合A B ⋂的元素个数是_________.三、解答题(共75分)16.(12分)设()f x p q =⋅u u r u r,而2(24sin,1),(cos 2)()2x p q x x x R ωωω=-=∈u u ru r.(1)若()3f π最大,求ω能取到的最小正数值.(2)对(1)中的ω,若()1f x x =+且(0,)2x π∈,求tan x .17.(12分)小区统计部门随机抽查了区内60名网友4月1日这天的网购情况,得到如下数据统计表(图(1)).网购金额超过2千元的顾客被定义为“网购红人”,网购金额不超过2千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为3:2.(1)确定,,,x y p q的值,并补全频率分布直方图(图(2)).(2)为进一步了解这60名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查,设ξ为选取的3人中“网购红人”的人数,求ξ的分布列和数学期望.18.(12分)执行如图所描述的算法程序,记输出的一列a 的值依次为12,,,n a a a L ,其中*n N ∈且2014n ≤.(1)若输入λ=写出全部输出结果.(2)若输入2λ=,记*1()1nn b n N a =∈-,求1n b +与n b 的关系(*n N ∈).19.(12分)如图,已知平面ABCD ⊥平面BCEF , 且四边形ABCD 为矩形,四边形BCEF 为直角梯形,090CBF ∠=,//BF CE ,BC CE ⊥,4DC CE ==,2BC BF ==.(1)作出这个几何体的三视图(不要求写作法). (2)设,P DF AG Q =⋂是直线DC 上的动点, 判断并证明直线PQ 与直线EF 的位置关系.(3)求三棱锥F ADE -的体积.20.(13分)椭圆Γ:2221(0)25x y r r+=>的左顶点为A ,直线4x =交椭圆Γ于,B C 两点(C 上B 下),动点P 和定点(4,6)D -都在椭圆Γ上.(1)求椭圆方程及四边形ABCD 的面积. (2)若四边形ABCP 为梯形,求点P 的坐标.(3)若,m n 为实数,BP mBA nBC =+uu r uu r uu u r,求m n +的最大值.21.(14分)已知函数()2sin f x x x =-,()()(2)2g x f x π=--.(1)讨论()g x 在(0,)6π内和在(,)62ππ内的零点情况. (2)设0x 是()g x 在(0,)6π内的一个零点,求()f x 在0[,]2x π上的最值. (3)证明对*n N ∈恒有11)1212n k n n π=-<<+-+∑.成都七中2014级考试数学试卷(文科)参考答案一、DBCD BCAB CB 二、11.2ln 2 12.6a ≥ 13.1315.7 三、16.(1)12..17.解.(1)96x y =⎧⎨=⎩,0.150.10p q =⎧⎨=⎩,补全频率分布直方图如图所示.(2)选出的10人中,“网购达人”有 4人,“非网购达人”有6人,故ξ的可能 取值为0,1,2,3,且易得ξ的分布列为65E ξ=. 18.解.(1)输出结果共2个,依次是:.(2)*11()n n b b n N +=-∈.19.(1)如右图. (2)垂直. (3)83. 20.(1)22125100x y +=; 78ABCD S =. (2)748(,)55-21.解.(1)()2cos 1g x x '=-在(0,)2π有唯一零点3x π=,易知()g x 在(0,)3π单增而在(,)32ππ内单减,且())(2)0332g πππ=-->,故()g x 在(0,)3π和[,)32ππ内都至多有一个零点.俯视图侧视图正视图又(0)0,()(1)(2)106623g g ππππ<=---=->,故()g x 在(0,)6π内有唯一零点;再由()02g π=知()g x 在(,)62ππ内无零点. (2)由(1)知()g x 在[0,]2π有最大值())(2)332g πππ=--,故()f x 在0[,]2x π有最大值()33f ππ=-;再由(1)的结论知()f x 在0[,]2x π的最小值应为0min{(),()}2f x f π.由0()0g x =知0()2()22f x f ππ=-=,于是()f x 在0[,]2x π的最小值0()()222f x f ππ==-.(3)由(2)知0[,]2x x π∈时,有2()23f x ππ-≤≤-,即111sin 2426x x x ππ+-≤≤+- ①取*)2k x k N π=-∈,则2k x π<且0126k x x ππ≥->>,将k x 的值代入①中,可得112π-≤≤-1111)2122n nn k k k n n π===⇒-≤≤-∑ ②再由1111221)nn n nk k k k =====>==-∑,得1)1)12nk n π=<-∑ ③相仿地,2n ≥时,1221121n n nk k k ====+<+=-∑,故1111)22nk n n =>--=-∑ ④ 而1n =时④即01cos1cos 602>=,显然也成立.故原不等式成立.。

2014年四川省成都七中高考数学二模试卷(文科)

2014年四川省成都七中高考数学二模试卷(文科)

2014年四川省成都七中高考数学二模试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.已知复数z=,则z的共轭复数是()A.1-iB.1+iC.iD.-i【答案】A【解析】解:复数z==所以它的共轭复数为:1-i故选A复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可得到选项.本题是基础题,考查复数代数形式的乘除运算,复数的基本概念,考查计算能力,常考题型.2.全集为实数集R,M={x|-2≤x≤2},N={x|x<1},则(∁R M)∩N=()A.{x|x<-2}B.{x|-2<x<1}C.{x|x<1}D.{x|-2≤x<1}【答案】A【解析】解:∵M={x|-2≤x≤2},∴C R M={x|x<-2,或x>2},又∵N={x|x<1},∴(C R M)∩N={x|x<-2}故选A由已知中全集为实数集R,M={x|-2≤x≤2},我们可以确定C R M,再根据N={x|x<1},结合集合交集的运算法则,可以求出(C R M)∩N的值.本题考查的知识点是集合的交,并,补的混合运算,其中根据已知条件求出C R M是解答本题的关键.3.正项等比数列{a n}中,若log2(a2a98)=4,则a40a60等于()A.-16B.10C.16D.256【答案】C【解析】解:∵log2(a2a98)=4,∴a2a98=16∵数列{a n}为等比数列∴a40a60=a2a98=16故选C先根据对数的性质求得a2a98的值,进而根据等比中项的性质可知a40a60=a2a98,求得a40a60的值.本题主要考查了等比数列的性质.属基础题.4.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是()A.f(x)=x2B.f(x)=C.f(x)=e xD.f(x)=sinx【答案】D【解析】解:∵A:f(x)=x2、C:f(x)=e x,不是奇函数,故不满足条件①又∵B:f(x)=的函数图象与x轴没有交点,故不满足条件②而D:f(x)=sinx既是奇函数,而且函数图象与x也有交点,故D:f(x)=sinx符合输出的条件故选D.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件①f(x)+f(-x)=0,即函数f(x)为奇函数②f(x)存在零点,即函数图象与x轴有交点.逐一分析四个答案中给出的函数的性质,不难得到正确答案.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是()A. B. C. D.【答案】A【解析】解:由题,∴即∴,∴,解之得:(负值舍去).故答案选A.由△ABF2是正三角形可知,即,由此推导出这个椭圆的离心率.本题考查椭圆的基本性质及其应用,解题要注意公式的合理选取.6.实数x,y满足不等式组,则的取值范围是()A.[-1,1)B.(-∞,0)C.[-1,+∞)D.[-1,0]【答案】A【解析】解:满足约束条件的平面区域,如下图所示:∵表示区域内点与(0,1)点连线的斜率又∵当x=1,y=0时,W=-1,直线与x-y=0平行时,W=1∴的取值范围为[-1,1)故选A本题考查的知识点是简单线性规划的应用,我们要先画出满足约束条件的平面区域,然后分析的几何意义,进而给出的取值范围.平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.7.已知m、n是不重合的直线,α、β是不重合的平面,有下列命题:①若m⊂α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;③若α∩β=n,m∥n,则m∥α且m∥β;④若m⊥α,m⊥β,则α∥β.其中真命题的个数是()A.0B.1C.2D.3【答案】B【解析】解:①若m⊂α,n∥α,则m与n平行或异面,故不正确;②若m∥α,m∥β,则α与β可能相交或平行,故不正确;③若α∩β=n,m∥n,则m∥α且m∥β,m也可能在平面内,故不正确;④若m⊥α,m⊥β,则α∥β,垂直与同一直线的两平面平行,故正确故选:B要求解本题,根据平面与平面平行的判定与直线与平面平行的判定进行判定需要寻找特例,进行排除即可.本题主要考查了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考查,属中档题8.设a>0,b>0,则以下不等式中不恒成立的是()A.≥4B.a3+b3≥2ab2C.a2+b2+2≥2a+2bD.≥【答案】B【解析】解:∵a>0,b>0,∴A.≥≥4故A恒成立,B.a3+b3≥2ab2,取,,则B不成立C.a2+b2+2-(2a+2b)=(a-1)2+(b-1)2≥0故C恒成立D.若a<b则≥恒成立若a≥b,则=2-2b=2(-)≥0,∴≥故D恒成立根据基本不等式的性质可知.≥排除A,取,,判断出B不成立.a2+b2+2-(2a+2b)=(a-1)2+(b-1)2≥排除C;看a<b和a≥b,时D项均成立排除D.本题主要考查了基本不等式问题.考查了学生对基础知识的掌握.9.已知定义在R上的函数f(x)满足f(2-x)为奇函数,函数f(x+3)关于直线x=1对称,则函数f(x)的最小正周期为()A.4B.8C.12D.16【答案】B【解析】解:∵f(x)满足f(2-x)为奇函数,∴f(2+x)=-f(2-x),即f(4+x)=-f(-x)①,∵函数f(x+3)关于直线x=1对称,∴将函数f(x+3)的图象向右平移3个单位得到y=f(x)的图象,则函数f(x)的图象关于直线x=4对称,∴f(4+x)=f(4-x)②,由①②得:f(4-x)=-f(-x),即f(x+4)=-f(x),∴f(x+8)=-f(x+4)即f(x+8)=f(x),故函数f(x)的最小正周期为8.故选B.根据函数f(2-x)为奇函数,由定义将x换为-x,再将x换为x+2,得到f(4+x)=-f (-x),由于函数f(x+3)关于直线x=1对称,应用平移得到函数f(x)的图象关于x=4对称,即f(4+x)=f(4-x),从而得到f(x+4)=-f(x),再将x换为x+4,即可得到函数f(x)的最小正周期.本题主要考查函数的性质及应用,考查函数的奇偶性的定义,图象平移和对称性,以及周期性,考查解决抽象函数问题常用的方法:赋值法,将x换为x+1,x+2等这种赋式法一定要掌握.10.在平面直角坐标系中,已知三点A(m,n),B(n,t),C(t,m),直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线x2=2p(y-q),(p>0)的焦点F并且与抛物线交于P、Q两点(P在y轴左侧).则||=()A.9 B.4 C. D.【答案】A【解析】解:设k AB=,k AC=,则+=,∵(n-m)•k AB=t-n=(t-m)+(m-n),∴=-,∴k AB-=,解得k AB=-或2(舍去),∵直线AB过抛物线x2=2p(y-q)的焦点,和直线AB过抛物线x2=2py的焦点,对||的值没有影响,故可研究AB过抛物线x2=2py的情况,∴直线AB的方程为y=-x+,与抛物线联立消去y,整理得x2+x-p2=0,求得x=-或.∵抛物线x2=2py的焦点为(0,),设P(x1,y1),Q(x2,y2),P在y轴左侧,∴x1=-,x2=∴|PF|=(|x1-0|)=|x1|,|QF|=(|x1-0|)=x2,∴||=||=||=||=9.故选:A.先设出直线AB,AC的斜率,利用已知条件建立等式求得直线AB的斜率,进而利用点斜式表示出直线AB的方程,与抛物线方程联立,求得关于x的方程,求得P,Q的坐标,进而利用斜率和横坐标分别表示出|PF|,|QF|,最后求得其比值.本题主要考查了直线与圆锥曲线的位置关系.一般思路是直线方程与抛物线方程联立,消去x或y,转化为一元二次方程的问题,找到问题的突破口.二、填空题(本大题共5小题,共25.0分)11.把命题“∃x0∈R,x02-2x0+1<0”的否定写在横线上______ .【答案】∀x∈R,x2-2x+1≥0【解析】解:特称命题的否定是全称命题∴命题“∃x0∈R,x02-2x0+1<0”的否定是:∀x∈R,x2-2x+1≥0.故答案为:∀x∈R,x2-2x+1≥0.利用特称命题的否定是全称命题写出结果即可.本题考查命题的否定,全称命题与特称命题的否定关系,考查基本知识的应用.12.一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是______ .【答案】【解析】解:由三视图可知:几何体是三棱锥,∵正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,∴三棱锥的高为1,底面是直角边长为1的等腰直角三角形,∴几何体的体积V=××1×1×1=.故答案为:.几何体是三棱锥,结合三视图判断知:三棱锥的高为1,底面是直角边长为1的等腰直角三角形,把数据代入棱锥的体积公式计算.本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键.13.已知函数f(x)=,g(x)=lnx,则函数y=f(x)-g(x)的零点个数为______ .【答案】解:令g(x)=f(x)-log4x=0得f(x)=log4x∴函数g(x)=f(x)-log4x的零点个数即为函数f(x)与函数y=log4x的图象的交点个数,在同一坐标系中画出函数f(x)与函数y=log4x的图象,如图所示,有图象知函数y=f(x)-log4x上有3个零点.故答案为:3个.【解析】在同一坐标系中画出函数函数f(x)与函数y=log4x的图象,两函数图象交点的个数即为函数y=f(x)-log3x的零点的个数.此题是中档题.考查函数零点与函数图象交点之间的关系,体现了转化的思想和数形结合的思想,体现学生灵活应用图象解决问题的能力.14.过抛物线y2=4x的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于______ .【答案】8【解析】解:∵抛物线方程为y2=4x,∴抛物线的焦点为F(1,0),准线为l:x=-1设线段AB的中点为M(3,y0),则M到准线的距离为:|MN|=3-(-1)=4,过A、B分别作AC、BD与l垂直,垂足分别为C、D根据梯形中位线定理,可得|AC|+|BD|=2|MN|=8再由抛物线的定义知:|AF|=|AC|,|BF|=|BD|∴|AB|=|AF|+|BF||AC|+|BD|=8.故答案为:8根据抛物线方程得它的准线为l:x=-1,从而得到线段AB中点M到准线的距离等于4.过A、B分别作AC、BD与l垂直,垂足分别为C、D,根据梯形中位线定理算出|AC|+|BD|=2|MN|=8,结合抛物线的定义即可算出AB的长.本题给出过抛物线y2=4x焦点的一条弦中点的横坐标,求该弦的长度.着重考查了抛物线的标准方程和简单几何性质等知识,属于基础题.15.O是面α上一定点,A、B、C是面α上△ABC的三个顶点,∠B,∠C分别是边AC,AB对应的角.以下命题正确的序号是______①动点P满足,则△ABC的外心一定在满足条件的P点集合中.②动点P满足>,则△ABC的内心一定在满足条件的P点集合中.③动点P满足>,则△ABC的重心一定在满足条件的P点集合中.④动点P满足>,则△ABC的垂心一定在满足条件的P点集合中.【答案】②③④【解析】解:①∵动点P满足,∴,则点P是△ABC的重心,因此①不正确;②∵动点P满足>,∴(λ>0),∵向量在∠BAC的平分线上,∴与∠BAC的平分线所在向量共线,∴△ABC的内心一定在满足条件的P点集合中.因此正确.③∵动点P满足>,∴=.过点A作AD⊥BC,垂足为D,则,∴,而向量与BC边的中线共线,因此△ABC的重心一定在满足条件的P点集合中,故正确.④∵动点P满足>,∴=,∴==λ=0,∴,∴△ABC的垂心一定在满足条件的P点集合中.因此正确.综上可知:只有②③④正确.故答案为:②③④.①由动点P满足,化为,可得点P是△ABC的重心;②由动点P满足>,可得(λ>0),由向量在∠BAC的平分线上,即可判断出;③由动点P满足>,可得=.过点A作AD⊥BC,垂足为D,可化为,即可判断出;④由动点P满足>,化为=,作数量积==λ=0,即可判断出.本题综合考查了向量形式的三角形的外心、重心、内心、垂心的性质及其向量运算和数量积运算,考查了数形结合的思想方法,属于难题.三、解答题(本大题共6小题,共75.0分)16.等比数列{a n}中,已知a1=2,a4=16(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.【答案】解:(I)设{a n}的公比为q由已知得16=2q3,解得q=2∴=2n(Ⅱ)由(I)得a3=8,a5=32,则b3=8,b5=32设{b n}的公差为d,则有解得.从而b n=-16+12(n-1)=12n-28所以数列{b n}的前n项和.【解析】(I)由a1=2,a4=16直接求出公比q再代入等比数列的通项公式即可.(Ⅱ)利用题中条件求出b3=8,b5=32,又由数列{b n}是等差数列求出.再代入求出通项公式及前n项和S n.本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查归化与转化思想.17.已知向量=(1+cosωx,1),=(1,a+sinωx)(ω为常数且ω>0),函数f (x)=在R上的最大值为2.(Ⅰ)求实数a的值;(Ⅱ)把函数y=f(x)的图象向右平移个单位,可得函数y=g(x)的图象,若y=g (x)在[0,]上为增函数,求ω取最大值时的单调增区间.【答案】解:(Ⅰ)函数f(x)==1+cosωx+a+sinx=2sin(ωx+)+a+1,…(3分)∵函数f(x)在R上的最大值为2,∴3+a=2故a=-1…(4分)(Ⅱ)由(Ⅰ)知:f(x)=2sin(ωx+),把函数f(x)=2sin(ωx+)的图象向右平移个单位,可得函数y=g(x)=2sinωx…(7分)又∵y=g(x)在[0,]上为增函数,∴g(x)的周期T=≥π即ω≤2.∴ω的最大值为2…(10分)此时单调增区间为,,…(12分)【解析】(Ⅰ)通过向量的数量积以及两角和与差的三角函数,化为一个角的一个三角函数的形式,通过函数的最大值,即可求实数a的值;(Ⅱ)通过函数y=f(x)的图象向右平移个单位,可得函数y=g(x)的图象,利用y=g(x)在[0,]上为增函数,以及函数的周期,即可求ω取最大值,求出函数的单调增区间.本题考查向量的数量积以及两角和与差的三角函数就三角函数的图象的平移,函数的基本性质,考查计算能力.18.如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC-A1B1C1的体积.【答案】(Ⅰ)证明:如图,取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,∠°,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以.又,则,故OA1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC-A1B1C1的高.又△ABC的面积,故三棱柱ABC-A1B1C1的体积.【解析】(Ⅰ)由题目给出的边的关系,可想到去AB中点O,连结OC,OA1,可通过证明AB⊥平面OA1C得要证的结论;(Ⅱ)在三角形OCA1中,由勾股定理得到OA1⊥OC,再根据OA1⊥AB,得到OA1为三棱柱ABC-A1B1C1的高,利用已知给出的边的长度,直接利用棱柱体积公式求体积.题主要考查了直线与平面垂直的性质,考查了棱柱的体积,考查空间想象能力、运算能力和推理论证能力,属于中档题.(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.【答案】解:(1)苹果的重量在[90,95)的频率为.(2)重量在[80,85)的有个.(3)设这4个苹果中,重量在[80,85)段的有1个,编号为1.重量在[95,100)段的有3个,编号分别为2、3、4,从中任取两个,可能的情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种.设任取2个,重量在[80,85)和[95,100)中各有1个的事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以.【解析】(1)用苹果的重量在[90,95)的频数除以样本容量,即为所求.(2)根据重量在[80,85)的频数所占的比例,求得重量在[80,85)的苹果的个数.(3)用列举法求出所有的基本事件的个数,再求出满足条件的事件的个数,即可得到所求事件的概率.本题考查古典概型问题,用列举法计算可以列举出基本事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想.本题还考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.20.已知椭圆C:=1(a>b>0)的短轴长为2,离心率为.(1)求椭圆C的方程;(2)若过点M(2,0)的引斜率为k的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当<时,求实数t的取值范围?【答案】解:(1)∵椭圆C:=1(a>b>0)的短轴长为2,离心率为,∴b=1,=,∵a2=b2+c2,∴a=,b=1,∴椭圆C的方程为…(3分)(2)设G(x1,y1),H(x2,y2),设直线y=k(x-2),联立椭圆,可得(1+2k2)x2-8kx+8k2-2=0△=(-8k)2-4(1+2k2)(8k2-2)>0,得<,…(5分)条件<转换一下就是<,∵x1+x2=,x1x2=根据弦长公式,•<,得到>.…(7分)设P(x,y),则∵,∴(x1+x2,y1+y2)=t(x,y),∴x=(x1+x2),y=(y1+y2)根据x1+x2=,x1x2=,把x1,x2消成k,得,(9分)然后代入椭圆,得到关系式,…(11分)∴,∵<<,∴实数t的取值范围为,,…(13分)【解析】(1)根据椭圆C:=1(a>b>0)的短轴长为2,离心率为,求出几何量,即可求椭圆C的方程;(2)设直线y=k(x-2),联立椭圆,△>0,得<,条件<转换一下就是<,根据弦长公式,得到>,然后把把P点的横纵坐标用t,x1,x2表示出来,设G(x1,y1),H(x2,y2),其中要把y1,y2分别用直线代换,最后还要根据根系关系把x1,x2消成k,得,,代入椭圆,得到关系式,所以,根据<<利用已经解的范围得到,,.本题考查椭圆的方程,考查向量知识的运用,考查直线与椭圆的位置关系,考查韦达定理的运用,有难度.21.已知函数f(x)=x-1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.【答案】解:(Ⅰ)由f(x)=x-1+,得f′(x)=1-,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1-=0,解得a=e.(Ⅱ)f′(x)=1-,①当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以f(x)无极值;②当a>0时,令f′(x)=0,得e x=a,x=lna,x∈(-∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;∴f(x)在∈(-∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.(Ⅲ)当a=1时,f(x)=x-1+,令g(x)=f(x)-(kx-1)=(1-k)x+,则直线l:y=kx-1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=-1+<0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,所以k的最大值为1.【解析】(Ⅰ)依题意,f′(1)=0,从而可求得a的值;(Ⅱ)f′(x)=1-,分①a≤0时②a>0讨论,可知f(x)在∈(-∞,lna)上单调递减,在(lna,+∞)上单调递增,从而可求其极值;(Ⅲ)令g(x)=f(x)-(kx-1)=(1-k)x+,则直线l:y=kx-1与曲线y=f(x)没有公共点⇔方程g(x)=0在R上没有实数解,分k>1与k≤1讨论即可得答案.本题考查利用导数研究函数的极值,考查利用导数研究曲线上某点切线方程,突出分类讨论思想与等价转化思想的综合运用,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 12 页
四川省成都七中2014届高三考前热身考试题
文科数学 2014.6
一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。


1. 复数i z 23-=,i 是虚数单位,则z 的虚部是
A .i 2
B .i 2-
C .2
D .2-
2.双曲线15
42
2=x y —的离心率的值为 A. 21 B. 32 C. 23 D.3
5 3.已知y x ,的取值如下表所示
从散点图分析y 与x 的线性关系,且a x y
+=95.0ˆ,则=a A. 2.2 B. 2.6 C.3.36
D.1.95 4.在等差数列}{n a 中,已知2a 与4a 是方程0862=+-x x
的两个根,若24a a >,则2014a =
(A )2012 (B )2013
(C )2014 (D )2015
5.执行如图所示的程序框图,则输出的结果为

A )2
(B )1 (C )21 (D )
1-
6.一个几何体的三视图及其尺寸如下图所示,其中正视图是
直角三角形,侧视图是半圆,俯视图是等腰三角形,则
这个几何体的表面积为
(A )
2(1
π++
(B
)2(1π+(C )4(1π+
(D )2(2π+
第 2 页 共 12 页
7.有一个正方体的玩具,六个面标注了数字1,2,3,4,5,6,甲、乙两位学生进行如下游戏:甲先抛掷一次,记下正方体朝上的数字为a ,再由乙抛掷一次,朝上数字为b ,若1≤-b a 就称甲、乙两人“默契配合”,则甲、乙两人“默契配合”的概率为
(A )91 (B )92 (C )187 (D )9
4 8.已知函数c bx ax x x f +++=22
13)(23的两个极值分别为)(1x f 和)(2x f ,若1x 和2x 分别在区间(0,1)与(1,2)内,则1
2--a b 的取值范围为 (A )⎪⎭⎫ ⎝⎛1,41 (B )⎥⎦⎤⎢⎣⎡1,41 (C )()+∞⋃⎪⎭⎫ ⎝⎛∞-,141, (D )[)+∞⋃⎥⎦
⎤ ⎝⎛∞-,141, 9.已知两个实数)(,b a b a ≠,满足b
a be ae =,命题
b b a a p +=+ln ln :;命题0)1)(1(:<++b a q 。

则下面命题正确的是
A.
p 真q 假 B.p 假q 真 C. p 真q 真 D. p 假q 假
10.设函数()f x 是定义在区间D 上的函数,任给12,x x D ∈,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭
,则称函数()f x 为区间D 上的严格凸函数.现给出下列命题:①函数2log y x =与函数2y x =-在区间()0,+∞上均为严格凸函数;
②函数2x y =与tan y x =在()1,1-均不为严格凸函数;
③一定存在实数k ,使得函数k y x x
=+在区间(),0-∞上为严格凸函数. 其中正确的命题个数为
A .0个
B .1个
C .2个
D .3个
二、填空题(本大题共5小题,每小题5分,共25分。

将答案填在题中的横线上。


11.
集合{|}A x y x R =∈,}∈,12|{R x y y B x +==,则A B =I 。

12. 已知圆C 的圆心为(0,1),直线0234=--y x 与圆C 相交于A ,B 两点,且52=AB ,则圆C 的半径为 . 13.如图所示的几何体,是将高为
2、底面半径为1的圆柱沿过
旋转轴的平面切开后,将其中一半沿切面向右水平平移后形成。

相关文档
最新文档