DS18B20解析说明

DS18B20解析说明
DS18B20解析说明

●D S18B20的性能指标

●(1)只需一根口线与MCU连接,无需外部原件。

●由总线提供电源,或专线供电。

●测温范围为-55摄氏度至+125摄氏度。

●9到12位温度读数。

●温度转换时间为200ms。

●用户自行设定温度报警上下限,掉电后数据有效。

●可识别并寻址系统中温度超限报警的DS18B20,

●D S18B20的电源及工作方式

●DS18B20的供电方式,DS18B20有两种工作方式,一种是外部供电方

式即从VCC引脚供电,GND接地,另一种是寄生电源供电方式,直接从DQ端上获得电源,当DQ为高电平是为内部电容充电,当DQ 为低电平是电容为DS18B20供电(VCC端必须接地)已确保芯片的稳定性,

●DS18B20的测温原理,DS18B20通过内部温度寄存器接收一个受温度

系数影响的振荡器输出的脉冲个数直接影响到数字温度数据,温度转化命令执行后,发送读高速暂存器命令(BEh)可将温度数据经单线总线读出,温度数据传输时,低位在先。

●当收到温度转换命令后,DS18B20的内部数字化温度转换器讲温度

数据以二进制补吗形式储存到16位快速暂存器中,有效数据位可编程设定为9位,10位,11位,12位,分别对应4种分辨率:0.5摄氏度0.25摄氏度0.125摄氏度0.0625摄氏度。有效数据最高位为符号位,可表示温度的正负值。高字节的其他高位扩展为符号位;有效数据的第四位表示温度的小数位,DS18B20出厂默认状

态为12位。

表DS18B20温度值格式表

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8

●表 8-2 温度与转换数据的关系

//上电复位时温度寄存器的值为+85℃(0000 0101 0101 0000)

●报警信号的应用。DS18B20 每次执行完温度抓换后,温度值将与

储存在TH和TL内的触发值相比较,如果测量的结果大于TH的值或小于TL的值,就会置位内部的报警标志位,在连接多片DS18B20的应用系统中,主机发送报警搜索命令(ECh)时,有置位报警标志位的DS18B20会响应总线主机发回标志位,其他没有置位报警

标志位的DS18B20则保持沉默,这样便于主机立即识别DS18B20并读出数据。

● 16位的温度寄存器与8位TH 或TL 寄存器内容进行比较操作时,讲忽略温度寄存器高字节,而TH 或TL 得最高位对应温度数据的符号位。

● DS18B20的结构

● DS18B20的外部图及引脚意义。

● DS18B20的内部结构如图8-2所示。主要由数字器件组成;64位闪速ROM ,温度传感器,温度寄存器(告诉暂存RAM 与E 2

PR0M ) ● 64bit 闪速ROM 的结构如图8-3所示。每片DS18B20都有唯一的64位长的激光ROM 其中低8位是单线产品(DS18B20代码为28h ),后续的48位唯一的序列号,高8位是前56的CRC (循环冗余校验码) 。64位的

ROM 及其功能控制部分使DS18B20作物idanxian 总线器件进行操作,只有满足功能协议后对DS18B20的控制功能才能接受,总线主机必须提供5个

ROM 命令中的一个且这个名林被成功执行,DS18B20才可接受总线主机的指定功能,即后续提供的6个存储器操作中的一个命令。

8-2

Msb lsb msb lsb msb lsb 8--3 DS18B20闪速ROM的存储结构

●DS18B20结构废纸寄存器。第0—4位始终为“1”。第7位始终为“0”第5,6位(R1,R0)决定温度分辨率及时对应的温度转换时间,见表8-3。

MSB LSB

表8-3

●存储器。DS18B20 的存储器由一个告诉暂存器RAM和一个永久性电

可擦除E2PR0M组成,后则存储高,低温度触发器TH TL和结构配置寄存器的内容。暂存器有助于确保单线通信数据的完整性。数据首先用写暂存器命令(4Eh)读回进行校验;校验之后,再用复制暂存器;写入的数据可以被读,暂存器命令(BEh)读回进行校验;校验之后,再用复制暂存器命令(48h)把数据传送到永久性E2PROM中,这一过程确保了更改存储器是数据的完整性。

高速暂存器由8字节存储器组成,如图8-4所示。前两个字节妇女

别是测量温度数据的低字节Array(LSB),高字节(MSB);第3,4

字节是TH TL 的复制值,第5

字节是结构配置寄存器的复制

值,这三个字节数据虽会因普

通RAM掉电而失去信息,但每

次上电时都会自动从永久性

E2PROM中复制数据进行刷新,

第6-8字节保留作内部运算用,

第9字节是前面8个字节的循

环冗余校验码(CRC);

循环冗余校验码CRC产生。DS18B20内部64位ROM最高有效字节,是循环冗余校验码CRC,主机可以读出64位ROM的前56位,计算出CRC的值,并把它与存储器在

DS18B20内的CRC值进行比较,以决定ROM的数据是否已被主机正确地

接收,计算CRC的等效多项式函数为,

CRC=X^8+X^5+X^4+1

DS18B20 也利用与上述相同的多项式函数产生一个8位CRC值,并把此值提供给总线主机以证实数据字节的传送。在使用CRC来证实数据传送的每一种情况中,总线主机必须用上述多现实计算出CRC的值,并把计算机所得的值与存储在DS18B20的64位ROM中的最高字节CRC 值(ROM读数),或者DS18B20中计算得到CRC值(读暂存器操作时读出的第9字节)进行比较。总线主机根据CRC值的比较来决定是否继续操作。当以上CRC值比较不相符合,DS18B20内部没有电路来阻止命令序列的继续执行。

●单线总线CRC可以用由一个意味寄存器和异或X0R门组成的多项式

器来产生,如图8-5所示

图8-5

意味寄存器的所有为被初始化为零。然后从产品系列编码的最低有效位开始,每次一位。当产品系列编码的8位移入后,接着移入序列号。在序列号的第48位进入之后,移位寄存器便包含了CRC值。移入CRC的8位应该使移位寄存器返回为零。

●DS18B20D的操作命令

●DS18B20经单线接口协议进行存取操作的顺序是:

●初始化(发复位脉冲)→ROM功能命令操作→存储器功能命令操作

→数据处理操作。

●初始化。单线总线上的所有传输操作均从初始化序列开始,如图8-6。

初始化序列包括总线主机发出复位脉冲,接着由从属器件送出存在脉冲。存在脉冲使总线主机知道DS18B20挂在总线上并准备进行操作。

●ROM 命令代码及功能。总线主机检测到有DS18B20后,可发送5个8

位ROM命令中的一个命令。

●读ROM命令(33h):在单片机DS18B20系统应用中,用该命令可读出

其序列号,系列号和CRC;在总线上有多个DS18B20的系统中用该命令,将发生冲突。

●匹配ROM命令(55H);多个DS18B20在线应用时,总线主机在读取

64位ROM信息后用该命令寻址指定的DS18B20,只有64位ROM顺序正确匹配的DS18B20才响应此后的存储器操作命令,其他不匹配的从属器件将等待复位脉冲,该命令在单片DS18B20系统应用中也能

用。

●跳过ROM命令(cch);在单片DS18B20系统应用中,总线主机发送

该命令后直接执行存储器操作,而不需要传输64位ROM信息,这样可以节省存取时间。在总线上有多个DS18B20的系统中用该命令,将发生冲突。

●搜索ROM命令(f0h)系统初始化后,总线主机不知道总线是哪个器

件的数目和器件的64位ROM码,利用搜索ROM命令可使总线主机采用消除处理法识别总线上所有从属器件的64位ROM码。

●报警搜索命令(ECh);该命令与搜索ROM命令的流程相同,只有前

次温度测量时满足报警条件的DS18B20才响应该命令。报警条件定义为温度高于TH 或低于TL 中的数值,DS18B20上电时报警条件被置位。

●存储器操作命令代码及其含义

●温度转换暂存器命令(44h)启动在线DS18B20进行温度转换。

●写告诉暂存器命令(4Eh)写入高速暂存器命令。从TH 寄存器开始

连续写入三个字节,存储到告诉暂存器的2-4单元(TH TL CONFIG ).

三个字节都必须在复位操作之前写入。

●读高速暂存器命令;(beh);读取高速暂存器命令。读操作从字节0

开始连续读出低位在前,直到读完第9字节。没有读完所有字节时。

总线主机发送复位脉冲可终止操作。

●复制高速暂存器命令(48h):将高速暂存器中TH TL CONGIG 三个

字节数值复制到EERAM中,保存温度触发器和结构配置的内容不丢失。

●召回EEROM命令(b8h):将EERAM中的TH TL 和CONFIG的数值复

制到高速暂存器相应单元中。

●度供电状态命令(b4h):读出供电模式,“0”为寄生电源;“1”

为外部电源。

●5.单线总线的读/写时际

●DS18B20采用读/写时际处理数据位(0/1)形成命令字而完成指定

的操作。

●写时际。写时际是主机力高数据线后,使数据线从逻辑高电平跳变

为逻辑低电平再释放的过程,有写“1”时际和写“0”时际两种,所有写时际操作持续时间至少需要60us且两个写时际周期的间隔时间必须大于1us,如图8-7所示

DS18B20在DQ数据线变低后15-60us之间采样数据线,DQ数据线为高电平既是数据“1”,DQ数据线为低电平既是数据“0:”。

主机发送写“1”时际拉低数据线至少1us,再拉高数据线,也也已在15us后拉高数据线然后释放;发送写“0”时际拉低数据线后一直保持低电平60us 在释放。

●读时际。读时际是主机使数据线从逻辑高电平大地为逻辑低电平,持续

至少1us后释放数据线,再接收从DS18B20传来的数据位的过陈塘关,读时际的持续时间必须大于60us,且两个读时际操作的回复时间间

隔必须大于1us ,如图8-8所示。

DS18B20在读时际数据线下降沿之后15us 开始输出有效数据,,此时主机必须释放数据线(转为输入状态)。读时际技术后数据线由外部上拉电阻拉回至高电平。

DS18B20中文资料--最全版

18B20温度传感器应用解析 温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯)公司生产的DS18B20温度传感器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B20更受欢迎。对于我们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工作原理和应用可以拓宽您对单片机开发的思路。 DS18B20的主要特征: ?? 全数字温度转换及输出。 ?? 先进的单总线数据通信。 ?? 最高12位分辨率,精度可达土0.5摄氏度。 ?? 12位分辨率时的最大工作周期为750毫秒。 ?? 可选择寄生工作方式。 ?? 检测温度范围为–55°C ~+125°C (–67°F ~+257°F) ?? 内置EEPROM,限温报警功能。 ?? 64位光刻ROM,内置产品序列号,方便多机挂接。 ?? 多样封装形式,适应不同硬件系统。 DS18B20芯片封装结构: DS18B20引脚功能: ·GND 电压地·DQ 单数据总线·VDD 电源电压·NC 空引脚 DS18B20工作原理及应用: DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解18B20的内部存储器资源。18B20共有三种形态的存储器资源,它们分别是: ROM 只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20共64位ROM。RAM 数据暂存器,用于内部计算和数据存取,数据在掉电后丢失,DS18B20共9个字节RAM,每个字节为8位。第1、2个字节是温度转换后的数据值信息,第3、4个字节是用户EEPROM(常用于温度报警值储存)的镜像。在上电复位时其值将被刷新。第5个字节则是用户第3个EEPROM的镜像。第6、7、8个字节为计数寄存器,是为了让用户得到更高的温度分辨率而设计的,同样也是内部温度转换、计算的暂存单元。第9个字节为前8个字节的CRC码。EEPROM 非易失性记忆体,用于存放长期需要保存的数据,上下限温度报警值和校验数据,DS18B20共3位EEPROM,并在RAM都存在镜像,以方便用户操作。 RAM及EEPROM结构图: 图2 我们在每一次读温度之前都必须进行复杂的且精准时序的处理,因为DS18B20的硬件简单结果就会导致软件的巨大开消,也是尽力减少有形资产转化为无形资产的投入,是一种较好的节约之道。 控制器对18B20操作流程: 1,复位:首先我们必须对DS18B20芯片进行复位,复位就是由控制器(单片机)给DS18B20单总线至少480uS的低电平信号。当18B20接到此复位信号后则会在15~60uS后回发一个芯片的存在脉冲。 2,存在脉冲:在复位电平结束之后,控制器应该将数据单总线拉高,以便于在15~60uS后接收存在脉冲,存在脉冲为一个60~240uS的低电平信号。至此,通信双方已经达成了基本的协议,接下来将会是控制器与18B20间的数据通信。如果复位低电平的时间不足或是单总线的电路断路都不会接到存在脉冲,在设计时要注意意外情况的处理。

DS18B20中文资料

第一部分:DS18B20的封装和管脚定义 首先,我们来认识一下DS18B20这款芯片的外观和针脚定义,DS18B20芯片的常见封装为TO-92,也就是普通直插三极管的样子,当然也可以找到以SO(DS18B20Z)和μSOP(DS18B20U)形式封装的产品,下面为DS18B20各种封装的图示及引脚图。 了解了这些该芯片的封装形式,下面就要说到各个管脚的定义了,如下表即

为该芯片的管脚定义: 上面的表中提到了一个“奇怪”的词——“寄生电源”,那我有必要说明一下了,DS18B20芯片可以工作在“寄生电源模式”下,该模式允许DS18B20工作在无外部电源状态,当总线为高电平时,寄生电源由单总线通过VDD 引脚,此时DS18B20可以从总线“窃取”能量,并将“偷来”的能量储存到寄生电源储能电容(Cpp)中,当总线为低电平时释放能量供给器件工作使用。所以,当DS18B20工作在寄生电源模式时,VDD引脚必须接地。 第二部分:DS18B20的多种电路连接方式 如下面的两张图片所示,分别为外部供电模式下单只和多只DS18B20测温系统的典型电路连接图。 (1)外部供电模式下的单只DS18B20芯片的连接图

(2)外部供电模式下的多只DS18B20芯片的连接图 这里需要说明的是,DS18B20芯片通过达拉斯公司的单总线协议依靠一个单线端口通讯,当全部器件经由一个三态端口或者漏极开路端口与总线连接时,控制线需要连接一个弱上拉电阻。在多只DS18B20连接时,每个DS18B20都拥有一个全球唯一的64位序列号,在这个总线系统中,微处理器依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地址,从而允许多只DS18B20同时连接在一条单线总线上,因此,可以很轻松地利用一个微处理器去控制很多分布在不同区域的DS18B20,这一特性在环境控制、探测建

18B20应用手册

DoYoung 电子技术—创造独立资源! 18B20温度传感器应用解析 DoYoung 原创 V2.0 2007.3.16 DS18B20 温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯)公司生产的DS18B20温度传感 器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B20更受欢迎。对于我 们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工 作原理和应用可以拓宽您对单片机开发的思路。 DS18B20的主要特征: .. 全数字温度转换及输出。 .. 先进的单总线数据通信。 .. 最高12位分辨率,精度可达土0.5摄氏度。 .. 12位分辨率时的最大工作周期为750毫秒。 .. 可选择寄生工作方式。 .. 检测温度范围为–55°C ~+125°C (–67°F ~+257°F) .. 内置EEPROM,限温报警功能。 .. 64位光刻ROM,内置产品序列号,方便多机挂接。 .. 多样封装形式,适应不同硬件系统。

DS18B20芯片封装结构: 图1 DS18B20引脚功能:·GND 电压地·DQ 单数据总线·VDD 电源电压·NC 空引脚DS18B20工作原理及应用: DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解18B20的内部存储器资源。18B20共有三种形态的存储器资源,它们分别是:ROM 只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20共64位ROM。 RAM 数据暂存器,用于内部计算和数据存取,数据在掉电后丢失,DS18B20共9个字节RAM,每个字节为8位。第1、2个字节是温度转换后的数据值信息,第3、4个字节是用户EEPROM(常用于温度报警值储存)的镜像。在上电复位时其值将被刷新。第5个字节则是用户第3个EEPROM的镜像。第6、7、8个字节为计数寄存器,是为了让用户得到更高的温度分辨率而设计的,同样也是内部温度转换、计算的暂存单元。第9个字节为前8个字节的CRC码。EEPROM 非易失性记忆体,用于存放长期需要保存的数据,上下限温度报警值和校验数据,DS18B20共3位EEPROM,并在RAM都存在镜像,以方便用户操作。

DS18B20数据手册-中文版

概述 DS18B20数字温度传感器提供9-Bit 到12-Bit的摄氏温度测量精度和一个用户可编程的非易失性且具有过温和低温触发报警的报警功能。DS18B20采用的1-Wire通信即仅采用一个数据线(以及地)与微控制器进行通信。该传感器的温度检测范围为-55℃至+125℃,并且在温度范围超过-10℃至85℃之外时还具有+-0.5℃的精度。此外,DS18B20可以直接由数据线供电而不需要外部电源供电。 每片DS18B20都有一个独一无二的64位序列号,所以一个1-Wire总线上可连接多个DS18B20设备。因此,在一个分布式的大环境里用一个微控制器控制多个DS18B20是非常简单的。这些特征使得其在HV AC环境控制,在建筑、设备及机械的温度监控系统,以及温度过程控制系统中有着很大的优势。 特性 ·独特的1-Wire总线接口仅需要一个管脚来通信。 ·每个设备的内部ROM上都烧写了一个独一无二的64位序列号。 ·多路采集能力使得分布式温度采集应用更加简单。 ·无需外围元件。 ·能够采用数据线供电;供电范围为3.0V至5.5V。 ·温度可测量范围为:-55℃至+125℃(-67℉至+257℉)。 ·温度范围超过-10℃至85℃之外时具有+-0.5℃的精度。 ·内部温度采集精度可以由用户自定义为9-Bits至12-Bits。 DS18B20 分辨率可编程 1-Wire数字温度传感器 ·温度转换时间在转换精度为12-Bits时达到最大值750ms。 ·用户自定义非易失性的的温度报警设置。·定义了温度报警搜索命令和当温度超过用户自定义的设定值时。 ·可选择的8-Pin SO (150 mils), 8-PinμSOP,及3-Pin TO-92封装。 ·与DS1822程序兼容。 ·应用于温度控制系统,工业系统,民用产品,温度传感器,或者任何温度检测系统中。 管脚定义图

DS18B20中文全套资料

温度传感器DS18B20资料 2008-08-28 16:06 美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。目前DS18B20批量采购价格仅10元左右。 在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案,新型数字温度传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。 新的"一线器件"DS18B20体积更小、适用电压更宽、更经济。 DS18B20、DS1822的特性 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。 继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 DS18B20、DS1822 "一线总线"数字化温度传感器 同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C 范围内,精度为±0.5°C。DS1822的精度较差为±2°C。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 一、DS18B20的主要特性 (1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 (2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯 (3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温 (4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内 (5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃ (6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,

DS18B20中文资料

Skyle 整理----skyle@https://www.360docs.net/doc/8314252208.html,-----有不对之处请来信指正 数字温度传感器DS1820(DS18B20)的应用 一 单线数字温度计DSl820介绍 DSl820数字温度计提供9位(二进制)温度读数指示器件的温度信息经过单线接口送 入DSl820或从DSl820送出因此从主机CPU 到DSl820仅需一条线(和地线)DSl820的电源可以由数据线本身提供而不需要外部电源因为每一个DSl820在出厂时已经给定了唯一的序号因此任意多个DSl820可以存放在同一条单线总线上这允许在许多不同的地方放置温度敏感器件DSl820的测量范围从-55到 +125增量值为 0.5可在l s(典型值)内把温度变换成数字 每一个DSl820包括一个唯一的64位长的序号该序号值存放在DSl820内部的ROM(只读存贮器)中开始8位是产品类型编码(DSl820编码均为10H)接着的48位是每个器件唯一的序号最后8位是前面56位的CRC(循环冗余校验)码DSl820中还有用于贮 存测得的温度值的两个8位存贮器RAM 编号为0号和1号1号存贮器存放温度值的符号如果温度为负()则1号存贮器8位全为1否则全为00号存贮器用于存 放温度值的补码LSB(最低位)的1表示0.5 将存贮器中的二进制数求补再转换成十进制数并除以2就得到 被测温度值(-550 125)DSl820的引脚如图226l 所示每只D51820都可以设置成两种供电方式即数据 总线供电方式和外部供电方式采取数据总线供电方式可以节省一根导线但完成温度测量的时间较长采取外部供电方式则多用一根导线但测量速度较快 温度计算 1 Ds1820用9位存贮温值度最高位为符号位下图为18b20的温度存储方式负温度 S=1正温度S=0 如 00AAH 为+85,0032H 为25FF92H 为55 2Ds18b20用12位存贮温值度最高位为符号位下图为18b20的温度存储方式负温度S=1正温度S=0如 0550H 为 +85 0191H 为25.0625,FC90H 为-55 w w w .t a i -y a n . c o m /b b s

DS18B20中文手册

达拉斯DS18B20 半导体可编程分辨率的 单总线?数字温度计特征引脚排列 l独特的单线接口仅需一个端口引脚 进行通讯 l每个器件有唯一的64位的序列号存 储在内部存储器中 l简单的多点分布式测温应用 l无需外部器件 l可通过数据线供电。供电范围为3.0V 到5.5V。 l测温范围为-55~+125℃(-67~+ 257℉) l在-10~+85℃范围内精确度为±5 ℃ l温度计分辨率可以被使用者选择为 9~12位 l最多在750ms内将温度转换为12位 数字 l用户可定义的非易失性温度报警设 置 l报警搜索命令识别并标志超过程序 限定温度(温度报警条件)的器件 l与DS1822兼容的软件 l应用包括温度控制、工业系统、消费 品、温度计或任何热感测系统 引脚说明 GND -地 DQ -数据I/O VDD -可选电源电压 NC -无连接

说明 DS18B20数字温度计提供9-12位摄氏温度测量而且有一个由高低电平触发的可编程的不因电源消失而改变的报警功能。DS18B20通过一个单线接口发送或接受信息,因此在中央处理器和DS18B20之间仅需一条连接线(加上地线)。它的测温范围为-55~+125℃,并且在-10~+85℃精度为±5℃。除此之外,DS18B20能直接从单线通讯线上汲取能量,除去了对外部电源的需求。 每个DS18B20都有一个独特的64位序列号,从而允许多只DS18B20同时连在一根单线总线上;因此,很简单就可以用一个微控制器去控制很多覆盖在一大片区域的DS18B20。这一特性在HVAC环境控制、探测建筑物、仪器或机器的温度以及过程监测和控制等方面非常有用。 详细的引脚说明表1 8引脚SOIC封装* TO-9封装符号说明 5 1 GND 接地。 4 2 DQ 数据输入/输出引脚。对于单线操作: 漏极开路。当工作在寄生电源模式时 用来提供电源(建“寄生电源”节)。 3 3 VDD 可选的VDD引脚。工作与寄生电源模 式时VDD必须接地。 *所有上表未提及的引脚都无连接。 概览 图1是表示DS18B20的方框图,表1已经给出了引脚说明。64位只读存储器储存器件的唯一片序列号。高速暂存器含有两个字节的温度寄存器,这两个寄存器用来存储温度传感器输出的数据。除此之外,高速暂存器提供一个直接的温度报警值寄存器(TH和TL),和一个字节的的配置寄存器。配置寄存器允许用户将温度的精度设定为9,10,11或12位。TH,TL和配置寄存器是非易失性的可擦除程序寄存器(EEPROM),所以存储的数据在器件掉电时不会消失。 DS18B20通过达拉斯公司独有的单总线协议依靠一个单线端口通讯。当全部器件经由一个3态端口或者漏极开路端口(DQ引脚在DS18B20上的情况下)与总线连接的时候,控制线需要连接一个弱上拉电阻。在这个总线系统中,微控制器(主器件)依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地址。由于每个装置有一个独特的片序列码,总线可以连接的器件数目事实上是无限的。单总线协议,包括指令的详细解释和“时序”见单总线系统节。 DS18B20的另一个功能是可以在没有外部电源供电的情况下工作。当总线处于高电平状态,DQ与上拉电阻连接通过单总线对器件供电。同时处于高电平状态的总线信号对内部电容(Cpp)充电,在总线处于低电平状态时,该电容提供能量给器件。这种提供能量的形式被称为“寄生电源”。作为替代选择,DS18B20同样可

DS18B20数据手册_引脚图_参数

General Description The DS18B20 digital thermometer provides 9-bit to 12-bit Celsius temperature measurements and has an alarm function with nonvolatile user-programmable upper and lower trigger points. The DS18B20 communicates over a 1-Wire bus that by definition requires only one data line (and ground) for communication with a central micro-processor. In addition, the DS18B20 can derive power directly from the data line (“parasite power”), eliminating the need for an external power supply. Each DS18B20 has a unique 64-bit serial code, which allows multiple DS18B20s to function on the same 1-Wire bus. Thus, it is simple to use one microprocessor to control many DS18B20s distributed over a large area. Applications that can benefit from this feature include HVAC environmental controls, temperature monitoring systems inside buildings, equipment, or machinery, and process monitoring and control systems. Applications ●Thermostatic Controls ●Industrial Systems ●Consumer Products ●Thermometers ●Thermally Sensitive Systems Benefits and Features ●Unique 1-Wire ? Interface Requires Only One Port Pin for Communication ●Reduce Component Count with Integrated Temperature Sensor and EEPROM ? Measures Temperatures from -55°C to +125°C (-67°F to +257°F) ? ±0.5°C Accuracy from -10°C to +85°C ? Programmable Resolution from 9 Bits to 12 Bits ? No External Components Required ●Parasitic Power Mode Requires Only 2 Pins for Operation (DQ and GND) ●Simplifies Distributed Temperature-Sensing Applications with Multidrop Capability ? Each Device Has a Unique 64-Bit Serial Code Stored in On-Board ROM ●Flexible User-Definable Nonvolatile (NV) Alarm Settings with Alarm Search Command Identifies Devices with T emperatures Outside Programmed Limits ●Available in 8-Pin SO (150 mils), 8-Pin μSOP , and 3-Pin TO-92 Packages 19-7487; Rev 4; 1/15 1-Wire is a registered trademark of Maxim Integrated Products, Inc. 1-Wire Digital Thermometer

DS18B20中文资料

DS18B20一线总线数字式传感器 DS18B20、DS1822 “一线总线”数字化温度传感器是DALLAS最新单线数字温度传感器,同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为± 2°C 。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色! DS1822与 DS18B20软件兼容,是DS1 8B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPRO M,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。 继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 DS18B20的内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下:

DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该D S18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS1 8B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

数字温度传感器DS18B20中文资料

数字温度传感器DS18B20中文资料

18B20温度传感器应用解析 温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLA S(达拉斯)公司生产的DS18B20温度传感器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B 20更受欢迎。对于我们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工作原理和应用可以拓宽您对单片机开发的思路。 DS18B20的主要特征: ?? 全数字温度转换及输出。 ?? 先进的单总线数据通信。 ?? 最高12位分辨率,精度可达土0.5摄氏度。 ?? 12位分辨率时的最大工作周期为750毫秒。 ?? 可选择寄生工作方式。 ?? 检测温度范围为–55°C ~+125°C (–67°F ~+257°F) ?? 内置EEPROM,限温报警功能。 ?? 64位光刻ROM,内置产品序列号,方便多机挂接。 ?? 多样封装形式,适应不同硬件系统。 DS18B20芯片封装结构: DS18B20引脚功能: ·GND 电压地·DQ 单数据总线·VDD 电源电压·NC 空引脚

DS18B20工作原理及应用: DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解18B20的内部存储器资源。18B20共有三种形态的存储器资源,它们分别是: ROM 只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20共64位ROM。 RAM 数据暂存器,用于内部计算和数据存取,数据在掉电后丢失,D S18B20共9个字节RAM,每个字节为8位。第1、2个字节是温度转换后的数据值信息,第3、4个字节是用户EEPROM(常用于温度报警值储存)的镜像。在上电复位时其值将被刷新。第5个字节则是用户第3个EEPROM的镜像。第6、7、8个字节为计数寄存器,是为了让用户得到更高的温度分辨率而设计的,同样也是内部温度转换、计算的暂存单元。第9个字节为前8个字节的CRC码。EEPROM 非易失性记忆体,用于存放长期需要保存的数据,上下限温度报警值和校验数据,DS18B20共3位EEPROM,并在RAM都存在镜像,以方便用户操作。RAM及EEPROM结构图: 图2 我们在每一次读温度之前都必须进行复杂的且精准时序的处理,因为DS18B20的硬件简单结果就会导致软件的巨大开消,也是尽力减少有

数字温度传感器DS18B20介绍

数字温度传感器DS18B20介绍 1、DS18B20的主要特性 1.1、适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 1.2、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯 1.3、DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温 1.4、DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内 1.5、温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃ 1.6、可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、 0.125℃和0.0625℃,可实现高精度测温 1.7、在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快 1.8、测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力 1.9、负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。 2、DS18B20的外形和内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的外形及管脚排列如下图1: DS18B20引脚定义: (1)DQ为数字信号输入/输出端; (2)GND为电源地; (3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 图2: DS18B20内部结构图

3、DS18B20工作原理 DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 图3: DS18B20测温原理框图 DS18B20有4个主要的数据部件: (1)光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 (2)DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 表1: DS18B20温度值格式表 这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM 中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

相关主题
相关文档
最新文档