第四章SPSS运行方差分析

合集下载

使用SPSS软件进行多因素方差分析

使用SPSS软件进行多因素方差分析

使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析是一种重要的统计方法,用于分析多个自变量对因变量的影响。

它可以帮助研究人员确定不同因素对研究对象的差异产生的影响,以及这些因素之间是否存在交互作用。

SPSS软件是一款功能强大且易于使用的统计分析工具,可以帮助用户在进行多因素方差分析时快速、准确地得出结果。

本文将介绍使用SPSS软件进行多因素方差分析的步骤,并通过一个案例来具体说明。

二、SPSS软件介绍SPSS(Statistical Package for the Social Sciences)是一款专业的统计分析软件,被广泛应用于社会科学、医学、商业等领域。

它提供了丰富的统计方法和分析工具,并具备数据清洗、可视化、报告生成等功能。

在多因素方差分析中,SPSS 可以帮助用户进行方差分析表的生成、方差分析的可视化、方差齐性检验和事后比较等操作,大大简化了分析过程。

三、多因素方差分析的步骤1. 数据准备:将需要分析的数据录入SPSS软件,并确定自变量和因变量的测量水平。

一般自变量为定类变量,而因变量可以是定量或定类变量。

2. 方差分析表的生成:选择“分析”菜单中的“一元方差分析”选项,然后将因变量添加到依赖变量框中,将自变量添加到因子框中。

接下来,点击“选项”按钮设置参数,如设定显著性水平和置信区间。

点击“确定”后,SPSS会生成方差分析表。

3. 方差分析的可视化:在方差分析表中,用户可以查看各个因素的主效应和交互作用,以及统计指标如F值、p值等。

此外,SPSS还提供了绘制效应图、交互作用图等功能,帮助用户更直观地理解分析结果。

4. 方差齐性检验:方差齐性检验用于验证因变量的变异是否在各组间具有相同的方差。

SPSS软件可以通过选择“分析”菜单中的“Compare Means”选项,进而进行多个组间方差齐性检验。

5. 事后比较:当发现方差分析存在显著差异时,需要进一步进行事后比较以确定差异所在。

方差分析SPSS

方差分析SPSS

F界值为单尾
4、根据统计推断结果,结合相应的专业知识,给出一个专 业的结论。
随机区组设计的两因素方差分析
配伍设计有两个研究因素,区组因素和处理因素。 事先将全部受试对象按某种或某些特征分为若干个 区组,使每个区组内研究对象的特征尽可能相近。 每个区组内的观察对象与研究因素的水平数k相等, 分别使每个区组内的观察对象随机地接受研究因素 某一水平的处理。
k ni
SS总=
( Xij X )2 ,总 N 1
i1 j 1
组间变异:各处理组的样本均数也大小不等。大小可用各组
均数 X i 与总均数 X 的离均差平方和表示。
k
SS组间= ni ( X i X )2 , 组间 k 1, MS组间=SS组间 组间 i 1
组内变异:各处理组内部观察值也大小不等,可用各处理组
内部每个观察值 X ij与组均数 X i 的离均差平方和表示。
k ni
SS组内=
( Xij Xi )2,组内 N k,MS组内=SS组内 组内
i1 j1
三种变异的关系
SS总 SS组间 SS组内
并且该等式和上面的等式存在如下的对应关系 总变异=随机变异+处理因素导致的变异
总变异=组内变异 + 组间变异
=0.05
2、选定检验方法,计算检验统计量
F MS处理 MS误差;F MS区组 MS误差 3、确定P值,作出推断结论
F F ,P (处理,误差 ) F F ,P (处理,误差 )
F界值为单尾
4、根据统计推断结果,结合相应的专业知识,给出一个专 业的结论。
多重比较
LSD-t 检验:适用于检验k组中某一对或某几对在 专业上有特殊意义的均数是否相等。

SPSS操作—方差分析

SPSS操作—方差分析
• 实际工作中往往需要两两的组间均值比较。这就需要使用 One-way ANOVA进行单因素方差分析时使用选择项从而获 得更丰富的信息,使分析更深入。
例题进一步分析
析中剔除
实例-单因素方差分析各处理重复数不等的方差分析
用四种饲料喂养19头猪比较,四种饲料是否不同。
饲料 A 133.8 B 151.2 C 193.4 D 225.8
125.3
143.1 128.9 135.7
149.0
162.7 143.8 153.5
185.3
182.8 188.5 198.6
Post Hoc(均数的多重比较选项)
• 进行多重比较是对每两个组的均值进行如下比较:MEAN(i)MEAN(j)≥4.6625×RANGE×SQRT(1/N(i)+1/N(j));其中i、j分 别为组序号, MEAN(i)、MEAN(j)分别为第i、j组均值, N(i)、N(j) 分别为第i、j组中的观测数。各组均值的多重比较方法的算法 不同RANGE值也不同。
• Hochberg’s GT2(霍耶比GT2法):用正态最大系数进行多 重比较
• Gabriet(盖比理法):用正态标准系数进行配对比较,在单元 数较大时,这种方法较自由; • Waller-Duncan(瓦尔-邓肯法):用t统计量进行多重比较检验。
使用贝耶斯接近;
• Dunnett(邓尼特法):最小显著差数测验法,进行各组与对照 组的均值,默认的对照组是最后一组;选定此方法后,激活 下面的Control Catetory参数框,展开小菜单,选择对照组 • Tamhane‘s T2(塔海尼T2法):t检验进行配对比较; • Dunnett’s T3(邓尼特T3法):正态分布下的配对比较; • Games-Howell(盖门-霍威尔法):各组均值的配对比较,该方 法较灵活;

4-SPSS多因素、重复测量资料的方差分析

4-SPSS多因素、重复测量资料的方差分析

❖ 例:提取蛋白质成分的研究 中,蛋白质的提取量和温度 (高,中,低),试剂浓度 (0.1,0.2,0.3)及PH值 (6,8,12)的有关
❖ 三因素的各个水平相结合, 共形成3×3×3=27种处理组
PH值 温度
PH=6 高 中 低
PH=8 高 中 低
PH=12 高 中 低
试剂浓度 0.1 0.2 0.3
F
32.639 0.825
P
<0.01 >0.05
2020/3/28
Page8
SPSS统计软件操作
随机区组设计资料的方差分析
❖ 做结论 ▪ 按a =0.05水准,拒绝H0,接受H1,差异有统计学意义 ▪ 认为三种方案的处理效果不全相等,还不能认为十个 区组的总体均数不全相同。
2020/3/28
Page9
2020/3/28
Page27
SPSS统计软件操作
2020/3/28
Page16
SPSS统计软件操作
析因设计资料的方差分析
2020/3/28
Page17
SPSS统计软件操作
析因设计资料的方差分析
❖ 练习1 ❖ 研究者预研究煤焦油(因素A)以及作用时间(因素B)
对细胞毒性的作用,煤焦油的含量分别为3ug/ml和75ug/ml 两个水平,作用时间分别为6小时和8小时。将统一制备的 16盒已培养好的细胞随机分为四组,分别接受A、B不同 组合情况下的四种不同处理,测得处理液吸光光度的值, 结果如下表
3.67
4.33
3.79
3.89
3.0133
5
2.56
2.45
3.78
2.9300
6
1.98
2.74

SPSS教程讲义培训教程简明教程(4)方差分析

SPSS教程讲义培训教程简明教程(4)方差分析

试验4:方差分析一、试验目标与要求1.帮助学生深入了解方差及方差分析的基本概念,掌握方差分析的基本思想和原理2.掌握方差分析的过程。

3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析等操作,激发学生的学习兴趣,增强自我学习和研究的能力。

二、试验原理在现实的生产和经营管理过程中,影响产品质量、数量或销量的因素往往很多。

例如,农作物的产量受作物的品种、施肥的多少及种类等的影响;某种商品的销量受商品价格、质量、广告等的影响。

为此引入方差分析的方法。

方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种控制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。

若存在显著差异,则说明该因素对各总体的影响是显著的。

方差分析有3个基本的概念:观测变量、因素和水平。

观测变量是进行方差分析所研究的对象;因素是影响观测变量变化的客观或人为条件;因素的不同类别或不通取值则称为因素的不同水平。

在上面的例子中,农作物的产量和商品的销量就是观测变量,作物的品种、施肥种类、商品价格、广告等就是因素。

在方差分析中,因素常常是某一个或多个离散型的分类变量。

根据观测变量的个数,可将方差分析分为单变量方差分析和多变量方差分析;根据因素个数,可分为单因素方差分析和多因素方差分析。

在SPSS中,有One-way ANOVA(单变量-单因素方差分析)、GLM Univariate(单变量多因素方差分析);GLM Multivariate (多变量多因素方差分析),不同的方差分析方法适用于不同的实际情况。

本节仅练习最为常用的单因素单变量方差分析。

三、试验演示内容与步骤单因素方差分析也称一维方差分析,对两组以上的均值加以比较。

检验由单一因素影响的一个分析变量由因素各水平分组的均值之间的差异是否有统计意义。

并可以进行两两组间均值的比较,称作组间均值的多重比较。

《SPSS的方差分析》课件

《SPSS的方差分析》课件
总结词
数据来源与格式
详细描述
介绍如何新建数据文件,以及如何导入不同格式的数据文件,如Excel、CSV等。同时说明数据的基本 格式和要求。
SPSS数据的基本操作与整理
总结词
数据清洗与整理技巧
VS
详细描述
介绍SPSS中常见的数据清洗和整理操作 ,如缺失值处理、异常值检测与处理、数 据排序与分组等。同时提供实际操作案例 和技巧。
03
对于非数值型数据或分类数据,需要进行 转换或处理,较为繁琐。
04
对于大规模数据集,计算量大,需要较长 时间才能得出结果。
方差分析的未来发展方向
结合机器学习算法
01
利用机器学习算法对方差分析进行优化,提高分析的效率和准
确性。
拓展到多因素分析
02
将方差分析拓展到多因素分析领域,对方差分析进行更深入的
06
总结与展望
方差分析的优缺点总结
01
优点
02
适用于多组数据的比较,能够快速准确地判断各组 之间的差异。
03
可用于不同类型的数据,如计数数据、计量数据等 ,具有广泛的适用性。
方差分析的优缺点总结
• 能够考虑多种影响因素,进行多因素分析 。
方差分析的优缺点总结
01
缺点
02
对数据的要求较高,需要满足一定的假设 条件,如正态分布、方差齐性等。
双因素方差分析
总结词
用于比较两个分类变量各自所划分的不同组 之间的总体均值是否存在显著差异。
详细描述
双因素方差分析是单因素方差分析的扩展, 用于比较两个分类变量各自所划分的不同组
之间的总体均值是否存在显著差异。在 SPSS中,可以通过“分析”菜单中的“一 般线性模型”选项进行双因素方差分析。

SPSS中的方差分析

SPSS中的方差分析

共同
方差分析由英国统计学家 R.A.Fisher在1923年提出 ,为纪念Fisher,以F命 名,故方差分析又称 F 检验。
成长
一切皆有可能,努力中……go go go
共同
成长
• 思考:
某研究者为考察所喝咖啡的浓度是否会影响人们反 应的快慢,从某大学一年级男生中随机抽取了15名学 生,再随机分成三组。每一学生都要喝一杯咖啡,20 分钟后测试每一被试的简单反应时间。三组所喝咖啡 的浓度分别为:淡、中、浓,实验数据如下表所示, 请问:咖啡浓度对反应速度有明显影响吗?
一切皆有可能,努力中……go go go
共同
成长
(一)方差分析的目的 推断多个总体均数是否相等
(双侧检验:μ1 = μ2=….. μk ?)
三组及其三组以 上的均数检验
(二)方差分析的适用条件
各处理组样本来自正态总体 各样本是相互独立的随机样本
样本之间没有系 统的相关性
各处理组的总体方差相等,即方差齐性
Optioning”对话框。:
一切皆有可能,努力中……go go go
共同
成长
一切皆有可能,努力中……go go go
共同
成长
一切皆有可能,努力中……go go go
共同
成长
一切皆有可能,努力中……go go go
共同
成长
方差分析的可能结果:
不拒绝H0,表示拒绝总体均数相等的证据不足
———>分析终止。
一切皆有可能,努力中……go go go
共同

X(观察值)
第一组 (i=1)
5 6 3 6 3 3
第二组 (i=2)
5 7 8 5 8 5

SPSS软件操作方差分析

SPSS软件操作方差分析
交叉设计的方差分析 析因设计的方差分析
一、完全随机设计方差分析
又称单因素方差分析,是指将同质受试对象随机地 分配到各处理组,再观察其实验效应。各组样本含 量可以等或不等。
最常见的研究单因素两水平或多水平的实验设计方 法。
离均差平方和与自由度的分解:
SS总 SS组间 SS组内 v v v 总 组间 组内
目的要求
掌握:几种常用方差分析的应用条件、计算原
理及结果解释 熟悉:方差分析的基本思想 学会:使用SPSS操作及对输出结果做恰当解释
方差分析 (ANOVA ,analysis of variance)
又称F检验
通过对数据变异的分析来推断两个或 多个样本均数所代表的总体均数是否有差 别的一种统计学方法。
出标准误、95%可信区间和成分间方差。
3)Homogeneity of variance test:方差齐性检验。
4)Brown-Forsythe:采用Brown-Forsythe统计量检
验各组均数是否相等,当方差不齐时,该方法较稳健。
5)Welch:采用Welch统计量检验各组均数是否相等,
当方差不齐时,该方法较稳健。
2. 计算统计量F
3. 确定概率,统计推断
二、随机区组设计的两因素方差分析
随机区组设计又称配伍组设计,通常是将受试对象 按性质相同或相近者组成b个区组,再将每个区组 中的受试对象分别随机分配到k个处理组中去。
随机区组设计的方差分析属于无重复数据的两因素 方差分析。
离均差平方和与自由度的分解:
方差分析的基本思想
将全部观察值间的变异按设计类型的不 同,分解成两个或多个组成部分,然后将各 部分的变异与随机误差进行比较,以判断各 部分的变异是否具有统计学意义。

SPSS方差分析

SPSS方差分析
说明品种5、品种2、品种3的样本均数两两之间无显著差 异;品种3、4、1位于同一个Subset内,他们之间无显著 差异;而品种5、2与品种4、1的样本均数有显著差异。 • 如欲了解是否达到极显著差异,需要将显著水平框中的值 输入0.01。
2019/12/18
• 例. 为了研究烫伤后不同时间切痂对大鼠肝脏ATP 的影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时 切痂组,C组为烫伤后96小时切痂组。全部大鼠 在烫伤168小时候处死并测量器肝脏ATP含量,结 果如下。问试验3组大鼠肝脏ATP总数均数是否相 同。
2019/12/18
2019/12/18
• 选中Custom,在 Build Term [s]下拉菜单中选中 Main effects(只分析主效应),再分别选中“品 系”、“剂量”将其置入Model框内,
• 单击Continue按钮,返回上一个对话框。 • Special Model 用于对所有方差分析模型进行精
确设定。Full factorial即分析所有分类变量的主效 应和交互作用。只分析主效应需自定义,并在 Build Term[s]下选Main effects。平方和一般选 Type3默认即可。
2019/12/18
•S-N-K法:本例按0.5水平,将无显著差异的均数归为一类。 •第一组和第三组为一类,无显著差异,它们与第二组之间均数 差异显著。 •LSD和S-N-K法,不同的两两比较法会有不同。
2019/12/18
两(多)因素方差分析
总体思路: 1、观察数据类型选择方法 ——一般线性模型——多因素方差分析 2、选择要分析的结果变量,固定因素或随 机因素变量的选择。 3、方差分析模型的选择:全因素or自定义 4、选择描述性统计分析。 5、两两比较(多重比较)方法的选择。

方差分析的SPSS过程PPT课件

方差分析的SPSS过程PPT课件
2024/10/16
均数估计
41
点击“OK”,运行结果
2024/10/16
42
➢结果输出
2024/10/16
43
有效数据例数统计
2024/10/16
44
分组统计描 述(均数、 标准差)
2024/10/16
45
方差分析表
平方 和
自由 度
均方
F值 P值
2024/10/16
46
均数估计
均数
标准误
3.16
3.26
3.82
3.28
2024/10/16
19
t检验法的不足
t 检验法适用于单样本及两样本平均数间的差异显著性检验 ⑴ 检验过程烦琐
本例中用t 检验法要进行 3次两两平均数的差异显著性检验 若有k个处理,则要作 k(k-1)/2次类似的检验
⑵无统一的试验误差,误差估计的精确性和检验的灵敏性低 ⑶推断的可靠性低,检验的 I 型错误率大
• 另一种情况是处理因素确实有作用。组间均方是 由于误差与不同处理共同导致的结果,即各样本 来自不同总体。那么,组间均方会远远大于组内 均方。MS组间>>MS组内。
• MS组间/MS组内比值构成F分布。用F值与其临界 值比较,推断各样本是否来自相同的总体。
2024/10/16
5ቤተ መጻሕፍቲ ባይዱ
多重比较检验问题
多重比较是通过对总体均值之间的配对比较来进一步 检验到底哪些均值之间存在差异。
方此差43案224分02平 ..4例均 28/析1方 0将/1数 6和数((xQ据i i按))区组和处153理531657组4...3843两.802个方向进行17分3594组.55.5,6540属46..于20 无重2复247数44.97据.94的9 双向34

SPSS篇—方差分析

SPSS篇—方差分析

SPSS篇—方差分析昨天跟大家分享了如何用SPSS进行回归分析,知道了回归分析的用途以及使用的场景。

今天跟大家分享的就是之前文章里面出现很多次的一个分析—方差分析。

方差分析又被称作“F检验”或者“变异数分析”,主要是用于两个及两个以上样本均值差异的显著性检验。

方差分析和回归分析一样,也有很多个分支。

对于方差分析,一般我们是用来研究不同来源的变异对总变异的贡献大小,从而确定可控因素对因变量的影响大小。

我们今天通过一个例子来了解一下什么是方差分析,又应该如何去理解它的分析结果。

上面两个图就是本次用来分析的数据,本题的数据是讨论四种不同的药物对植物生长高度的影响,在数据中我们列出了四种药物使用以后对应植物生长高度的测量值。

我们先对数据视图和变量视图进行相应的操作,然后我们就可以开始对数据进行方差分析了:在SPSS中,我们需要从分析选项栏中选择比较均值再选择单因素,就会出现下面的操作框:我们把两个变量输入到不同的变量框以后,开始对右边的几个选项进行操作,我们需要在两两比较中选择LSD法(最小显著性差异法):然后我们在选项中选择描述性和方差同质性检验,需要的话也可以把均值图选上:上面操作步骤全部完成以后点击确定,我们就可以得到我们本次方差分析的结果了,这个时候输出界面就会把整个分析结果全部列出来:我们先来看上面这个图,这里面有三个结果,第一个描述图里面是对我们本次进行分析的所有数据进行了整理,并且将其用这个图表示出来,每一列数据的上方就是本列数据代表的意义。

看完描述图以后,我们需要看一下方差齐性检验这个图,从这个图里我们可以看到,显著性0.992>0.05,说明本次分析方差是齐的,可以使用单因素方差分析法。

如果这个显著性是小于0.05,说明方差不齐,我们就算后面得出了结果也是没有意义的,因为方差分析可以使用的前提就是方差是齐的。

最后我们看单因素方差分析这个表,通过F检验我们可以看到,显著性0.000<0.05,这就说明这四种药品分组之间至少有两个组之间是存在着显著性差异的。

熟练使用SPSS进行单因素方差分析

熟练使用SPSS进行单因素方差分析

熟练使用SPSS进行单因素方差分析
一、单因素方差分析介绍
单因素方差分析又称因子方差分析,是分析两组或多组数据中变量之
间差异大小的统计方法。

它利用方差分析检验对比数据之间的统计学差异,检验其中一成分是否有一定的影响,而其他成分是否能够有一定的共同作用。

单因素方差分析的设计以及分析结果解释与双因素方差分析大体类型,但是单因素方差分析只有一个变量,因果关系没有双因素方差分析的那么
清楚,只能用于衡量数据之间的统计学差异。

二、SPSS进行单因素方差分析步骤
1.打开spss统计软件,进入数据文件,“新建”,双击“统计分析”,“ANOVA”,“一因子方差分析”菜单,可以调出一因子方差分析
的菜单
2.选择数据输入框,点击“定义变量”,在工具栏出现的表格中,双
击“变量名”栏位,输入分析变量的名称(建议以英文字母表示)
3.点击定义按钮,定义变量类型,选择“基本类型”,输入变量名,
点击确定按钮
4.在定义按钮下,右击工具栏中的“数据”栏位,然后点击“设定数据”,在设定数据窗口中,选择“任何变量”,输入变量的值,点击确定
按钮,完成变量定义
5.点击完成按钮,输入变量名,点击确定按钮,至此。

在SPSS中进行方差分析

在SPSS中进行方差分析

均值的多项式比较
• 可以同时建立多个多项式。一个多项式的一级系数 输入结束,激活Next按钮,单击该按钮后 Coefficients 框中清空,准备接受下一组系数数据。 • 如果认为输入的几组系数中有错误,可以分别单击 Previous或Next按钮前后翻找出错误的一组数据。 单击出错的系数,该系数显示在编辑框中,可以在 此进行修改,修改后击Change按钮,在系数显示框 中出现正确的系数值。当在系数显示框中选中一个 系数时,同时激活Remove按钮;单击该按钮将选中 的系数清除。
One-Way过程
• One-Way过程:单因素简单方差分析过程。在 Compare Means菜单项中,可以进行单因素方差分析 (完全随机设计资料的多个样本均数比较和样本均 数间的多重比较,也可进行多个处理组与一个对照 组的比较)、均值多重比较和相对比较,用于。 • One-Way ANOVA过程要求: 因(分析)变量属于正态分布总体,若因(分析) 变量的分布明显的是非正态,应该用非参数分析 过程。 对被观测对象的实验不是随机分组的,而是进行 的重复测量形成几个彼此不独立的变量,应该用 Repeated Measure菜单项,进行重复测量方差分 析,条件满足时,还可以进行趋势分析。
SPSS操作—方差分析
方差分析由英国统计 学家R.A.Fisher在 1923年提出,为纪念 Fisher,以F命名, 故方差分析又称 F 检 验。
三种变异
• • 总变异:全部观察值大小各不相等,其变异就称为总变异 (total variation)。用SST表示 组间变异:由于各组处理不同所引起的变异称为组间变异 (variation between groups)。它反应了处理因素对不同 组的影响,同时也包括了随机误差。用SS组间表示 组内变异:每个处理组内部的各个观察值也大小不等,与每 组的样本均数也不相同,这种变异称为组内变异 (variation within groups)。组内变异只反映随机误差 的大小,如个体差异、随机测量误差等。因此,又称为误差 变异。用SS组内表示

SPSS教程-方差分析

SPSS教程-方差分析

SPSS教程-⽅差分析⽅差分析是⽤于两个及两个以上样本均数差别的显著性检验。

由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,⼀是不可控的随机因素,另⼀是研究中施加的对结果形成影响的可控因素。

⽅差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献⼤⼩,从⽽确定可控因素对研究结果影响⼒的⼤⼩。

⽅差分析主要⽤途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作⽤,③分析因素间的交互作⽤,④⽅差齐性检验。

在科学实验中常常要探讨不同实验条件或处理⽅法对实验结果的影响。

通常是⽐较不同实验条件下样本均值间的差异。

例如医学界研究⼏种药物对某种疾病的疗效;农业研究⼟壤、肥料、⽇照时间等因素对某种农作物产量的影响;不同化学药剂对作物害⾍的杀⾍效果等,都可以使⽤⽅差分析⽅法去解决。

⽅差分析原理⽅差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,⽤变量在各组的均值与该组内变量值之偏差平⽅和的总和表⽰,记作SS w,组内⾃由度df w。

(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。

⽤变量在各组的均值与总均值之偏差平⽅和表⽰,记作SS b,组间⾃由度df b。

总偏差平⽅和 SS t = SS b + SS w。

组内SS t、组间SS w除以各⾃的⾃由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均⽅MS w和MS b,⼀种情况是处理没有作⽤,即各组样本均来⾃同⼀总体,MS b/MS w≈1。

另⼀种情况是处理确实有作⽤,组间均⽅是由于误差与不同处理共同导致的结果,即各样本来⾃不同总体。

那么,MS b>>MS w(远远⼤于)。

MS b/MS w⽐值构成F分布。

⽤F值与其临界值⽐较,推断各样本是否来⾃相同的总体。

⽅差分析的假设检验假设有m个样本,如果原假设H0:样本均数都相同即µ1=µ2=µ3=…=µm=µ,m个样本有共同的⽅差。

SPSS操作—方差分析

SPSS操作—方差分析

SPSS操作—方差分析
一、概念
方差分析(ANOVA)法是统计学中一种用于检验三个或以上水平的均数差异的统计方法。

方差分析从表面上看是利用方差的大小,在一定的概率和显著水平下,比较多组数据的均值差异,确定数据的显著性。

一般来说,它用来检验有多自变量时的均数差异,其中包括一个或多个因素,每个因素又有两个或者多个水平。

二、SPSS操作步骤
1、打开SPSS软件,点击“文件”,选择“新建”,在弹出的界面中选择“数据集”,点击“确定”,新建一个数据集。

2、将所要分析的数据输入到数据集中,在“变量视图”中定义响应变量和自变量,并设置其变量类型,完成数据的输入。

3、点击“分析”,选择“统计”,在弹出的界面中选择“参数检验”,点击“F检验”,然后在窗口中选择因变量和自变量,完成基本的参数设置,点击“确定”,弹出方差分析窗口,点击“确定”,即可开始运行方差分析。

4、方差分析运行完毕后,在输出窗口中可以看到结果,包括方差分析汇总表和方差分析的结果等信息。

5、方差分析的结果主要包括拟合度指数、F值、绝对值、样本量、概率值、单组比较、多组比较等内容,在这里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Tests of Between-Subjects Effects Dependent Variable: 产量X Type III Sum Source of Squares df Mean Square F Corrected Model 55.058a 8 6.882 51.747 Intercept 6640.027 1 6640.027 49925.013 处理T 52.378 5 10.476 78.764 重复R 2.680 3 .893 6.717 Error 1.995 15 .133 Total 6697.080 24 Corrected Total 57.053 23 a. R Squared = .965 (Adjusted R Squared = .946)

Tests of Between-Subjects Effects Dependent Variable: X产量 Type III Sum Source of Squares df Mean Square Corrected Model 373.704a 10 37.370 Intercept 4853.481 1 4853.481 重复R 35.185 2 17.593 A因素 108.963 2 54.481 B因素 81.407 2 40.704 A因素 * B因素 148.148 4 37.037 Error 62.815 16 3.926 Total 5290.000 27 Corrected Total 436.519 26 a. R Squared = .856 (Adjusted R Squared = .766)
x g x
第一步:变量定义。单击Excel表格下方 的variable view标签,用g表示处理组别 ,x表示产量; 第二步:建立数据文件。单击Excel下方 的Data view标签,按组别对应输入数据 。本例建立的数据文件如下表。

g 1 1 1 1
x 24 30 28 26
g 2 2 2 2
Sig. .000 .000 .000 .004
x Student-Newman-Keuls t N 子集 1 2 3 4 5.00 4 13.8000 1.00 4 15.6500 4.00 4 17.2000 3.00 4 17.4500 6.00 4 17.5750 2.00 4 18.1250 Sig. 1.000 1.000 .340 1.000 已显示同类子集中的组均值。 基于观测到的均值。 误差项为均值方 (错误) = .133。 a. 使用调和均值样本大小 = 4.000。 b. Alpha = 0.05。
SPSS过程
建立数据文件:a、b分别标识不同机器和工 人,x存放日产量数据; Analyze→General Linear Model→Univariate; x放入依变量框,a、b放入固定因素框; 点击Model,选择custom,效应选项中选主效应 “main effect”,单击“continue” 在主对话框中,点击“post Hoc”多重比较 对话框,将因素栏a、b放入其中,在等方差 假定中选S-N-K法,继续; 在主对话框中,单击OK,提交运行。
第一步:定义变量,建立数据文件。r表示重复, 赋值1、2、3、4;t代表处理,1、2、3、4、5、6 分别表示A、B、C、D、E、F处理,小区产量以x 表示。
r 1 1 1 1 1 1 t 1 2 3 4 5 6 x 15.3 18.0 16.6 16.4 13.7 17.0 r 2 2 2 2 2 2 t 1 2 3 4 5 6 x 14.9 17.6 17.8 17.3 13.6 17.6 r 3 3 3 3 3 3 t 1 2 3 4 5 6 x 16.2 18.6 17.6 17.3 13.9 18.2 r 4 4 4 4 4 4 t 1 2 3 4 5 6 x 16.2 18.3 17.8 17.8 14.0 17.5

第四步:单击 Post Hoc按钮,进入Post Hoc Multiple Comparisons for obserted Means(多重 比较)对话框。把Factor(s)栏中的a、b放入Post Hoc Tests For栏中,在Fqual Variance(s) Assuned栏中选择Duncan法。点击Continue返 回主对话框。 第五步:点击“OK”按钮,提交程序运行。得 结果如下:
x 27 24 21 26
g 3 3 3 3
x 31 28 25 30
g 4 4 4 4
x 32 33 33 28
g 5 5 5 5
x 21 22 16 21
第三步:由“Analyze”→“Compare means”→“One-Way ANOVA”,调用 One-Way ANOVA对话框,将变量x放入 Dependent List栏,组别g放入Factor栏。 第四步:单击“post Hoc”,进入均数多重 比较(Multiple Comparisons)对话框,选 择LSD,单击“Continue”按钮,返回主对 话框。 第五步:单击“OK”按钮,提交程序运行 。

第四步:点击“Post Hoc”按钮,进入Post Hoc Multiple comparisons for observed Means(多复比 较)对话框,把Factor(s)栏中品种因子放入Post Host Hoc Testsfor栏中,再在Equal Variances Assumed栏选择LSD法,单击Continue,返回 univariate主对话框。 第五步:单击“OK”提交运行,即得方差分析结 果如下:

第一节 单因素完全随机资料 方差分析
也称一维方差分析,它检验由单一因 素影响的一个(或几个相互独立的)因 变量的几个(三个以上)组间平均数差 异是否显著,即检验H0:μ1= μ2 =μ3 =μ4 =μ5,并进行多重比较。 由 analyze → compare means →oneway-ANOVA实现。

第三节 随机区组试验资料方差分析
6个烟草品种比较试验小区产量

E C A F D B 13.7 16.6 15.3 17.0 16.4 18.0

A B E B C F 14.9 17.3 13.6 17.6 17.8 17.6

A B F D E C 16.2 18.3 17.5 17.8 14.0 17.8
A 区组1 区组2 区组3 区组4 15.3 14.9 16.2 16.2 B 18.0 17.3 18.3 18.6 C 16.6 17.8 17.8 17.6

F C A E B D 18.2 17.6 16.2 13.9 18.6 17.3
D 16.4 17.6 17.8 17.3 E 13.7 13.6 14.0 13.9 F 17.0 17.6 17.5 18.2
基本思路:若一个因素的几个水平会 引起事物的结果很不同时,则该因素很 重要;若一个因素几个水平导致事物结 果很相近,则这个因素就是不重要的。
涉及单响应变量多因素方差分析的SPSS实现 。该过程用到Analyze中的 General Linear Model 子菜单中的Univariate命令。 可检验不同组之间均数受不同因素影响是否 有显著差异,也可分析因素间的互作。 双因素不重复资料和双因素有重复资料
SPSS运行过程
第一步:定义分组变量,品种因素为a,施肥 因素为b,区组因素为r,小区产量为x。 第二步:按顺序输入各组别对应的X值。 第三步:调用univariate命令,打开主对话框 ,将x放入Dependent Variable栏,将a、b、r 放入Fixed Factor(s)栏,单击Model按钮,进入 Univariate:Model对话框,此对话框有两个选 择:①Full Factorial选项(即全模型选项), ② Custom选项(自定义模型)
水稻施肥盆栽试验的产量结果
处理 ①(氨水1) ②(氨水2) ③(碳氨) ④(尿素) ⑤(不施肥) 观察值 (克/盆) 24,30,28,26 27,24,21,26 31,28,25,30 32,33,33,28 21,22,16,21 平均值 27.0 24.5 28.5 31.5 20.0
试检验5个肥料水平分组的平均数间是否有 显著差异?哪一种氮肥对水稻产量最有效?
Ⅲ 13 13 8 11 13 18 16 10 7
Tt 45 38 28 43 52 51 53 28 24
线性模型
xijl i j ( )ij l ijl
误差项 ijl 用样本符号表示, 实际是(A B R) ijl ( A R )il ( B R ) jl 自由度:(2 2 2)( 2 2)( 2 2) 16
SPSS分析过程
第二步:选择“Analyze”→“General Linear Model”→“univariate”激活双因素方差分析 对话框,将x放入Dependent variable栏,品种 因素放入Fixed Factor(s)栏,区组放随机栏。 第三步:在主对话框点击“Model”按钮,进 入Model对话框,选择Custom(惯例分析),再 选择Main effect(主效分析),把Factors&栏中 的品种因子和区组因子放入Model栏,单击 Continue,返回主对话框;

ANOVA X Between Groups Within Groups Total Sum of Squares 301.200 101.000 402.200 df 4 15 19 Mean Square 75.300 6.733 F 11.183 Sig. .000

矿工 肺活量 类别 石棉 肺患 者 可疑 患者 非患 者 1.8 1.4 1.5 2.1 1.9
相关文档
最新文档