北师大版数学九年级上册期末复习专题:第五章 投影与视图_1
九年级数学上册-第五章 投影与视图 复习课件1-北师大版
![九年级数学上册-第五章 投影与视图 复习课件1-北师大版](https://img.taocdn.com/s3/m/53f60a78d1f34693daef3eef.png)
正投影
视图
将物体向投影面作正投影所得的图形称为正视图。
三视图
(1)光线从几何体的前面向后面正投影得到的投 影图,叫做几何体的主视图;
(2)光线从几何体的左面向右面正投影得到的投 影图,叫做几何体的左视图;
(3)光线从几何体的上面向下面正投影得到的投 影图,叫做几何体的俯视图; (4)几何体的主视图、左视图、俯视图统称为几 何体的三视图。
从 侧 面
从正面看
例1、画下例几何体的三视图。
例2、画下例几何体的三视图。
投影
中心投影 投影线交于一点
平行投影 投影线平行
斜投影 正投影
主视图
左视图
三视图
视图
俯视图
根据三视图,我们可以得到一个精确的空间几何体。
谢谢
第五章 投影与三视图 复习课件
知识探究(一):中心投影与平行投影
光是直线传播的,一个不透明物体在光的照 射下,在物体后面的屏幕上会留下这个物体的影 子,这种现象叫做投影。其中的光线叫做投影线, 留下物体影子的屏幕叫做投影面。
不同的光源发出的光线是有差异的,其中 灯泡发出的光线与手电筒发出的光线有什么不 同?
平行投影
斜投影
中心投影
A
B
D
C
正投影
一定是三角形吗?
三角形一定相似吗?
知识小结
投影
平行投影 斜投影 正投影
中心投影
知识探究(二):柱、锥、台、球的三视图
把一个空间几何体投影到一个平面上,可以 获得一个平面图形。但只有一个平面图形难以把 握几何体的全貌,因此我们需要从多个角度进行 投影,这样就能较好地把握几何体的形状和大小, 通常选择三种正投影,即正面、侧面和上面。
北师大版本九年级数学上册第五章投影和视图知识点解析含习题练习
![北师大版本九年级数学上册第五章投影和视图知识点解析含习题练习](https://img.taocdn.com/s3/m/27153d07ae45b307e87101f69e3143323968f5f2.png)
北师大版本九年级数学上册第五章投影和视图知识点解析第01讲_投影与视图知识图谱投影知识精讲投影的定义1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影;照射光线叫做投影线;投影所在的平面叫做投影面.2.由平行光线(如太阳光线)形成的投影称为平行投影.3.由同一点发出的光线所形成的投影称为中心投影.4.在物体的平行投影中,投影线垂直于投影面,则该平行投影称为正投影.三点剖析一.考点:投影的定义二.重难点:投影的定义三.易错点:中心投影的光源为点光源,平行投影的光源为阳光;平行投影例题1、平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【答案】A 【解析】平行投影中的光线是平行的,如阳光等.例题2、下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化D.物体在阳光照射下,影子的长度和方向都是固定不变的【答案】C【解析】平行投影的特点:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻的同一物体在太阳光下的影子的大小也在变化.例题3、例已知:如图,AB 和DE 是直立在地面上的两根立柱,5AB m =,某一时刻,AB 在阳光下的投影4BC m =.(1)图中画出此时DE 在阳光下的投影;(2)AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长.【答案】(1)如图所示;(2)7.5m 【解析】(1)根据已知连接AC ,过点D 作DF AC ,即可得出EF 就是DE 的投影;(2)利用ABC DEF ∆∆ AB BC DE EF ∴=5AB m = ,4BC m =,6EF m =7.5DE m ∴=随练1、下列说法错误的是()A.两人在太阳光下行走,同一时刻他们的身高与影长的比相等B.两人在同一灯光下行走,同一时刻他们的身高与其影长不一定相等C.一人在同乙灯光下不同地点的影长不一定相同D.一人在不同时间的阳光下同一地点的影长相等【答案】D【解析】暂无解析随练2、请指出下列小明的影子,平行投影的是__________,中心投影是__________.①一个晴天的上午,小明身后的影子;②一个晴天的中午,小明脚下的影子;③夜晚,小明在路灯下的影子;④小明在幻灯机前经过时投在屏幕上的影子【答案】①②;③④【解析】根据中心投影和平行投影的性质,中心投影的光源为灯光,平行投影的光源为阳光与月亮.随练3、某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12m ,并测出此时太阳光线与地面成30 夹角.(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发上了变化,假设太阳光线与地面夹角保持不变,求树的最大影长.【答案】(1);(2)【解析】(1)3tan 3012)3AB AC m ==⨯=(2)如图2,112sin 45)2B N AN AB m ====11tan 60)NC NB m === ,11AC AN NC =+=+当树与地面成60 角时影长最大2AC ,222AC AB ==随练4、如图是两根标杆在地面上的影子,根据这些投影,在灯光下的影子是()A.①和②B.②和④C.③和④D.②和③【答案】D【解析】根据物体的顶端和影子顶端的连线必经过光源从而可判断出答案.随练5、如图,小明和小燕在院子里玩捉迷藏游戏,院子里有三堵墙,现在小明站在O点,小燕如果不想被小明看到,则不应该站的区域是()A.(1)B.(2)C.(3)D.(4)【答案】C【解析】∵(1)、(2)、(4)区域均为视力盲区∴站在(1)、(2)、(4)区域均不会被看见,而(3)区在视力范围内∴只要不站在(3)区就不会被看见.中心投影例题1、物体在光线的照射下,会在地面或墙壁上留下它的影子,这种现象就是__________现象,投影现象中,由阳光形成的影子是__________投影,由灯光形成的影子是__________投影,海滩上游人的影子是__________投影,晚上路旁栏杆的影子是__________投影.【答案】投影;平行;中心;平行;中心【解析】根据平行投影和中心投影的定义作答即可.例题2、四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、KB.CC.KD.L、K、C【答案】A【解析】根据平行投影和中心投影的特点和规律.“L”、“K”与“N”属中心投影.例题3、如图,我们常用“y随x的增大而增大”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()y x=+A.y x=B.3C.3y x = D.()233y x =-+【答案】D【解析】从A 到路灯的正下方前他与路灯的距离逐渐减少,经过路灯后它与路灯的距离逐渐增加.随练1、如图,夜晚小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致是()A.B.C.D.【答案】A【解析】设身高GE h =,1CF =,AF a=当x a ≤时,OEG OFC∆∆ OE GE OF CF ∴=,即y h a x l =-h hay x l l∴=-+a 、h l 、均为常数∴这个函数图像是一次函数图像影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.正投影例题1、Rt ABC ∆斜边在平面α上,则ABC ∆在平面α的正投影()A.一定不是钝角三角形B.一定不是直角三角形C.一定不是锐角三角形D.一定是三角形【答案】C【解析】当三角形所在的平面与平面α垂直时,三角形在平面上的正投影是一条线段;当三角形所在的平面与平面不垂直时,投影形成钝角三角形;当三角形在平面上时,形成投影是直角三角形.例题2、一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是()A.AB CD =B.AB CD ≤C.AB CD >D.AB CD≥【答案】D【解析】根据正投影的定义,当AB 与投影面平行时,AB CD =;当AB 与投影面不平行时,AB CD >.视图知识精讲一.视图当我们从某一角度观察一个物体时,所看到的图像叫做物体的一个视图.视图也可以看做物体在某一角度的光线下的投影.二.常见立体图的三视图如图,我们用三个互相垂直的平面(例如墙角处的三面墙壁)作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行投影:在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.三.三视图的做法:1.主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高,左视图与俯视图表示同一物体的宽;主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.2.看得见部分的轮廓线画成实线;3.看不见部分的轮廓线画成虚线.一个投射面水平放置,叫做水平投射面,投射到这个面内的图形叫做俯视图;一个投射面放置在正前方,叫直立投射面,投射到此平面内的图形叫做主视图;和水平投射面、直立投射面都垂直的投射面叫做侧立投射面,通常把这个平面放在直立投射面的右面,投射到这个平面内的图形叫做左视图;三点剖析一.考点:立体图形三视图二.重难点:立体图形三视图及由三视图求解立体图形三.易错点:1.画三视图时看不见的线应该用虚线;2.利用三视图确定小立方体的个数立体图形的三视图例题1、下列几何体的主视图、左视图、俯视图的图形完全相同的是()A.三棱锥B.长方体C.三棱柱D.球体【答案】D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图.例题2、如图是一个底面为正三角形的直三棱柱,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】从正面看是两个矩形,矩形的公共边是虚线,例题3、下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是()A. B. C. D.【答案】C【解析】A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.例题4、如图是一个由若干个正方形搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:________________.【答案】①②③【解析】综合左视图跟主视图:从正面看,第一行第一列有3个正方形,第一行第二列有1个或第二行第2列有一个或都有一个.第二行第1列有2个正方体.随练1、如图①,这是一个正方体毛坯,将其沿一组对面的对角线切去一半,得到一个工件如图②,对于这个工件,左视图、俯视图正确的一组是()①②a b c dA.a,bB.b,dC.a,cD.a,d【答案】D【解析】左视图、俯视图是分别从物体的侧面和上面看所得到的图形.由三视图求解立体图形例题1、若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球【答案】A【解析】∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.例题2、如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的正方体有多少个小立方块()A.4个B.5个C.6个D.7个【答案】【解析】根据图形可得:最底层有4个小立方块,第二层有1个小立方块,所以构成这个立体图形的小立方块有5个.例题3、如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【答案】B 【解析】观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为22104370πππ⨯-=(),例题4、由一些大小相同的小正方体组成的简单几何体的主视图和俯视图.(如图)(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.【答案】(1)见解析;(2)8n =,9,10,11.【解析】(1)左视图有以下5种情形:(2)8n =,9,10,11.随练1、从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A. B. C. D.【答案】C【解析】如图所示:∵从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,∴该几何体的左视图为:.随练2、如图所示的是某几何体的三视图,则该几何体的形状是()A.长方形B.三棱柱C.圆柱D.正方体【答案】C 【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.随练3、如图是由一些相同的小正方体组成的几何体的三视图,则组成该几何体的小正方体的个数最少为()A.7个B.8个C.9个D.10个【答案】C 【解析】由俯视图可得底面有一排有6个小正方体;从主视图看,第二层最少有2个正方体,第3层最少有一个小正方体,组成该几何体的小正方体的个数为9个.随练4、如图是一个几何体的三视图,则这个几何体的侧面积是()A.πB.9πC.18πD.27π【答案】C 【解析】根据三视图可得:这个几何体为圆锥,∵直径为6,圆锥母线长为6,∴侧面积66218ππ=⨯⨯÷=;随练5、如右图,是一个由若干个小正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是___________.【答案】①②③【解析】根据几何的主视图和左视图即可判断.拓展1、给下列几种关于投影的说法,正确的是()A.矩形的平行投影一定是矩形B.平行直线的平行投影仍是平行直线C.垂直于投影面的直线或线段的正投影是点D.中心投影的投影线是互相平行的【答案】C【解析】矩形的平行投影可能是平行四边形,也可能是线段;平行直线的平行投影可能是平行直线,也可能重合;垂直于投影面的直线或线段的正投影是点;中心投影的投影线是相交于一点的.2、李华的弟弟拿着一个菱形木框在阳光下玩,李华发现菱形木框在阳光照射下,在地面上形成了各种图形的阴影,但以下一种图形始终没有出现,没有出现的图形是()A.B.C. D.【答案】D【解析】根据平行四边形投影的特点,在同一时刻不同物体的物高和影长成比例,所以不可能是梯形.3、如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为AC (假定AC AB >)的最大值为m ,最小值为n ,那么下列结论:①m AC >;②m AC =;③n AB =;④影子的长度先增大后减小.其中,正确结论的序号是.【答案】①③④【解析】当木杆绕点A 按逆时针方向旋转时,如图所示当AB 与光线BC 垂直时,m 最大,则m AC >,①成立;最小值为AB 与底面重合,故n AB =;由上可知,影子的长度先增大后减小.4、如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为_________m .【答案】3【解析】如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴CD DE =AB BE ,FN MN =FB AB ,即1.8 1.8=AB 1.8+BD , 1.5 1.5=AB 1.5+2.7-BD,解得:AB=3m5、如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.不能确定【答案】A【解析】灯光下,涉及中心投影,根据中心投影的特点灯光下影子与物体离灯源距离有关,此距离越大,影子才越小.6、如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5mB.变长2.5mC.变短3.5mD.变短2.5m【答案】C【解析】设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴AC MAOP MO=,BD BNOP ON=,则1.68xx a=+,∴14x a=;1.6148yy a= +-,∴1 3.54y a=-,∴ 3.5x y-=,故变短了3.5米.7、如图所示零件的左视图是()A.B.C.D.【答案】D【解析】零件的左视图是两个竖叠的矩形.中间有2条横着的虚线8、如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有()A.4个B.5个C.6个D.7个【答案】B【解析】由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成.故选B.9、如图所示的几何体是由五个小正方体组合而成的,它的左视图是()A. B. C. D.【答案】A【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,10、与如图所示的三视图对应的几何体是()A.B.C.D.【答案】B【解析】根据主视图、左视图、俯视图判断即可得到.11、一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.14【答案】B【解析】由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个。
九年级数学上册5投影与视图小结与复习课件(新版)北师大版
![九年级数学上册5投影与视图小结与复习课件(新版)北师大版](https://img.taocdn.com/s3/m/712a4fd15ef7ba0d4a733bf2.png)
【解析】所要画出的乙木杆的影子与甲木杆形成的影子是同 一时刻,根据同一时刻两物体的高度比等于其影长的比,同时, 在同一时刻太阳光线是互相平行的,平行移动乙杆,使乙杆顶端 的影长恰好抵达墙角.
解:(1)如图①,过E点作直线DD′的平行线,交AD′所在直 线于E′,则BE′为乙木杆的影子.
(2) 平 移 由 乙 杆 、 乙 杆 的 影 子 和 太 阳 光 线 所 构 成 的 图 形 ( 即 △BEE′),直到其影子的顶端E′抵达墙角(如图②).
方法总结 平时要多注意积累常见的几何体的三视图,并进行适当
的分类.如视图可能是圆的有球、圆柱、圆锥等,可能是三 角形的有圆锥、棱锥,可能是长方形的有长方体、圆柱等.
针对训练
4. 如图,是一个带有方形空洞和 圆形空洞的儿童玩具,如果用下列几 何体作为塞子,那么既可以堵住方形 空洞,又可以堵住圆形空洞的几何体 是( B )
二、平行投影和中心投影的区别 已知两棵小树在同一时刻的影子,你如何确定影子是在太阳
光线下还是在灯光的光线下形成的.
平行投影
中心投影
三、视图 三视图是 主视图 、 俯视图 、 左视图
Байду номын сангаас
的统称.
三视图位置有规定,主视图要在 左上方 ,它的下方应
是 俯视图
, 左视图
坐落在右边.
三视图的对应规律
主视图和俯视图 长对正 ;主视图和左视图 高平齐 ;
A.
B.
C.
D.
【解析】圆柱从上边看是一个圆,从正面看是一个正方 形,既可以堵住方形空洞,又可以堵住圆形空洞, 故选B.
考点五 由三视图确定立方体的个数
例5 由一些大小相同的小正方体组成的几何体三视图如 图所示,那么,组成这个几何体的小正方体的个数是( )
第5章 投影与视图 北师大版九年级数学上册综合复习及答案
![第5章 投影与视图 北师大版九年级数学上册综合复习及答案](https://img.taocdn.com/s3/m/ce2bcee5bdeb19e8b8f67c1cfad6195f302be830.png)
第五章投影与视图 2024--2025学年北师大版九年级数学上册专题一投影【知识聚焦】投影通常考查画图与计算两个方面:画图可根据投影的定义,利用平行投影中光线平行为已知条件;中心投影常利用两条直线相交确定光;计算常利用相似知识解决.1. 投影的相关概念物体在光线的照射下,在某个平面内形成的影子叫做投影. 这时,照射光线叫做投影线,影子(投影)所在的平面叫做投影面.2. 平行投影的概念由平行光线形成的投影是平行投影. (注意:平行投影的投影线都是平行的)3. 正投影的概念投影线垂直于投影面产生的投影叫做正投影. 在实际作图中,正投影被广泛应用,主要有线段、平面图形及立体图形.4. 中心投影的概念由同一点(点光) 发出的光线形成的投影叫做中心投影.(注意:中心投影的光是点光,它的光线相交于一点)5. 视点、视线和盲区的概念由同一点(点光)发出的光线形成的投影叫做中心投影.(注意:中心投影的光是点光,它的光线相交于一点)【典例精讲】题型1 平行投影的应用【例1】如图所示,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一段高度未知的电线杆 CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量;某一时刻,在太阳光照射下,旗杆落在围墙的影子 EF的长度为2米,落在地面上的影子BF的长度为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长度为5米. 依据这些数据,该小组的同学计算出了电线杆的高度.(1) 该小组的同学在这里利用的是投影的有关知识进行计算的.(2) 试计算出电线杆的高度,并写出计算过程.举一反三。
1. 如图所示,该小组发现8米高的旗杆DE 的影子 EF 落在了包含一圆弧形小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动. 小刚身高1.6米,测得其影长为2.4米,同时测得 EG的长为3米,HF 的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长度) 为2米,求小桥所在圆的半径.题型 2 中心投影的应用【例2】如图所示,不透明圆锥体 DEC 放在直线 BP 所在的水平面上且 BP 过圆锥底面的圆心,圆锥的高为23m,底面圆半径为2m,一点光位于点 A处,照射到圆锥体后,在水平面上留下的影长BE=4m.(1) 求∠ABC的度数;(2) 若∠ACP=2∠ABC, 求光A距水平面的高度.举一反三2. 小明现有一根2m长的竹竿,他想测出自家门口马路上一盏路灯的高度,但又不能直接测量,他采用了如下办法:①先走到路旁的一个地方,竖直放好竹竿,测量此时的影长为1m;②沿竹竿影子的方向向远处走了两根竹竿的长度4m,然后又竖直放好竹竿,测量此时竹竿的影子长正好为2m.小明说他可以计算出路灯的高度,他如何计算?题型3 盲区的实际应用问题【例3】如图所示,AB 表示一坡角为60°、高为2003米的山坡,一架距地面1000 米的飞机(点C)在山前飞行,此时从飞机看山顶A的俯角为30°.(1) 请在图中画出飞机向山后看的盲区的大小;(2) 求当飞机继续向高处飞多少米时向山后看无盲区?举一反三3. 如图所示,左边的楼高,AB=60m,右边的楼高CD=24m,且BC=30m,地面上的目标P 位于距C点 15m处.(1) 请画出从A 处能看到的地面上距离点 C 最近的点,这个点与点C之间的距离为多少?(2) 从A 处能看见目标P吗? 为什么?题型 4 几何知识型问题【例4】如图所示,已知一纸板ABCD的形状为正方形,其边长为10cm,AD,BC与投影面β平行,AB,CD与投影面β不平行,正方形在投影面β上的正投影为. A₁B₁C₁D₁,若∠ABB₁=45°,求正投影A₁B₁C₁D₁的面积.举一反三4. 如图所示,在Rt△ABC中,∠C=90°,在阳光的垂直照射下,点C 落在斜边AB上的点 D.(1) 试探究线段AC,AB和AD 之间的关系,并说明理由;(2) 线段BC,AB和BD之间也有类似的关系吗?专题二视图【知识聚焦】对同一个物体从不同方向看,可以得到不同的视图,画一个物体的三视图(主视图、俯视图、左视图)是有具体规定的.主视图、俯视图:长对正;主视图、左视图:高平齐;俯视图、左视图:宽相等.可简单记为口诀:主、俯长对正;主、左高平齐;俯、左宽相等.其次是:看得见,画实线;看不见,画虚线.有了三视图,我们既可以由几何体画出其三视图,也可以由物体的三种视图还原几何体的形状,从而求出几何体的表面积和体积.【典例精讲】题型1 物体三视图【例1】如图所示是一个螺母的示意图,它的俯视图是 ( )举一反三1. 如图所示的几何体的俯视图是 ( )题型 2 组合体识别型应用问题【例2】图中的三视图所对应的几何体是( )举一反三2. 如图所示的几何体的三视图是 ( )题型3 截面三视图识别型应用问题【例3】如图所示,一个正方体被截去四个角后得到一个几何体,它的俯视图是 ( )举一反三3. 如图所示是一个正方体截去一角后得到的几何体,它的主视图是( )题型4 三视图与几何体求解型应用问题【例4】如图是某几何体的三视图,则该几何体的体积是( )A.183B.543C.1083D.2163举一反三4. 如图所示是某几何体的三视图,根据图中数据,该几何体的体积为( )A. 60πB. 70πC. 90πD. 160π题型5 组合体计数型应用问题【例5】如图所示是由一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的个数是 ( )A. 9个B. 8个C. 7个D. 6个举一反三5. 如图所示是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.题型6 规律探究思想型问题【例6】(1)如图1是用积木摆放的一组图案,观察图案并探索:第五个图案中共有块积木,第n个图案中共有块积木.(2)一样大小的小立方体,如图2所示那样,堆放在房间一角,若按此规律一共垒了十层,这十层中看不见的木块共有多少个?举一反三6. 如图1是棱长为a的小正方体,图2和图3是由这样的小正方体摆放而成的几何体. 按照这样的方法继续摆放,自上而下分别叫第1层、第2层……第n层.(1) 用含n的代数式表示第n层的小正方体的个数;(2) 求第10层小正方体的个数.。
5.2+视图(1)+课件++2024—2025学年北师大版数学九年级上册
![5.2+视图(1)+课件++2024—2025学年北师大版数学九年级上册](https://img.taocdn.com/s3/m/c32cca2430b765ce0508763231126edb6f1a76cb.png)
①主视图? ②左视图? ③俯视图?
·
单二击、此常处见编几辑何母体版标的题三样视的题三样视式图
自我尝试1
画出如图所示物体的主视图、 左视图、俯视图.
主视图
左视图
俯视图
单二击、此常处见编几辑何母体版标的题三样视式图
自我尝试2
单二击、此常处见编几辑何母体版标的题三样视式图
自我尝试2
单三击、此归处纳编小辑结母版标题样式
投影与视图的关系: 用正投影的方法绘制的物体在投影面上的图形,
称为物体的视图.
三个正投影
三视图(主视图、左视图、俯视图)
细节:看得见部分的轮廓线要画成实线, 特别留意圆锥的俯视图.
单四击、此反处馈编评辑价母版标题样式
1.下列立体图形中,主视图为矩形的是( C )
4.如图是由一个长方体和一个圆锥组成的 几何体,请你画出它的三视图.
主视图
左视图
俯视图
单四击、此反处馈编评辑价母版标题样式
5.根据下列主视图和俯视图,找出对应的物体.
(1)==>B; (2)==>A; (3)==>D; (4)==>C.
A.
B.
C.
D.
单四击、此反处馈编评辑价母版标题样式
2.将两个圆盘、一个茶叶桶、一个篮球模型和一个蒙古包模型 按如图所示的方式摆放在一起,其主视图是( D )
单四击、此反处馈编评辑价母版标题样式
3.如图,下面的几何体由一个正方体和两个圆柱体组成, 则它的左视图是( D )
A.
B.
C.
D.
单四击、此反处馈编评辑价母版标题样式
第五章 投影与视图
5.2 视图(1)
单一击、此温处故编知辑新母版标题样式
北师大版九年级上册数学《视图》投影与视图研讨说课复习课件
![北师大版九年级上册数学《视图》投影与视图研讨说课复习课件](https://img.taocdn.com/s3/m/1b730a2b777f5acfa1c7aa00b52acfc789eb9f9b.png)
新课进行时
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
新课进行时
试一试 你能画出下面这个几何体的三视图吗?
正视图
左视图
俯视图
新课进行时
同步练习
请画出下面几何图形对应的三视图.
主视图
左视图
(1)
俯视图
主视图
左视图
(2)
俯视图
4
知识小结
知识小结
判断复杂的几何体的视图
较复杂图形的 三视图
画图
随堂演练
3.如下图几何体,请画出这个物体的三视图.
左 视 图
正视图
俯视图
6
课后作业
课后作业
1、完成教材相应习题; 2、完成同步练习册相应习题。
文本
文本
文本
文本
第五章 投影与视图
5.2 视图
第2课时
北师大版 九年级数学上册
课件
目录
CONTENTS
1 新课目标 3 新课进行时
2 情景导学 4 知识小结
新课进行时
(3)请完成下表.
几何体 主视图
左视图 俯视图
新课进行时
正方体展示图
圆柱体展示图
新课进行时
锥体展示图
新课进行时
练一练
找出图中每一物品所对应的主视图.
新课进行时
例2 如图,红线表示嵌在玻璃正方体内的一根铁丝,请 画出该正方体的三视图.
主视图
左视图
俯视图
4
知识小结
知识小结
概念
从某一角度观察物体在正投影下的 像称为该物体的一个视图
5 随堂演练
6 课后作业
1
新课目标
九年级数学上册第五章投影与视图1投影教学课件(新版)北师大版
![九年级数学上册第五章投影与视图1投影教学课件(新版)北师大版](https://img.taocdn.com/s3/m/91b3f2c5f8c75fbfc77db2de.png)
数学 九年级上册 北师大版
第五章 投影与视图
5.1 投影
根据你学习的知识,完成下面题目:A处是一个点光源, BC是一个木板,请在墙上画出BC留下的影子。
挑战你的记忆力
①面对黑板站立,你的同位在你的面前拿一本书,让它 的正面对着自己的眼睛,当书本由远到近移动时,自己 看到的黑板上的范围如何变化?如图,同位合作,每个 同学都体验一下.
某校墙边有甲、乙两根木杆.(1) 某一时刻甲木杆在阳 光下的影子如下图所示,你能画出此时乙木杆的影子吗?
(2)当乙木杆移动到什么位置时,其影子刚 好不落在墙的影子(用线段表示)
太阳光线
木杆
墙
3、如图(l),小明站在残墙前,小亮在残墙后面活动, 又不被小明看见,请你在俯视图(2)中画出小亮的活 动区域.
这两幅图片有什 么共同的特点?
物体在光线的照射下, 会在地面和墙壁上留下 它的影子,这就是投影 ( projection )现象.
在我国的北方地区,一天中物体影子是如何变化的? 一天中,从早晨到晚上影子的变化可以从两个方面来 考虑: (1)从影子的长短来考虑; (2)从影子的方向上来考虑。
②如果书本位置固定,观察者前后移动,你看到的黑板 上的范围又如何变化呢?如图同位合作,每个同学都体 验一下。
眼睛的位置称为“视点”,由视点发出的线称为 “视线”,看不见的部分称为“盲区”。如图书本在 位置1时,“视 点”是指点A,“视线”是指AB与AC, “盲区”分别是指E区阴影部分。
回答下列两个问题。 1、用“视点”“视线”“盲区”的观念解释:在开 始的活动中,为什么书本固定,观察者离书本越近, 看见的黑板的范围就越小呢? 2、坐在后排的小明被前排的小刚的头挡住看不见黑 板,小明心中不悦,半开玩笑的说:“小刚,你的头 比黑板还大,黑板都被你挡住了,我一点也看不见!” 小明的这种说法正确吗?为什么?
2023年北师大版九年级上册数学第五章投影与视图第一节第2课时平行投影与正投影
![2023年北师大版九年级上册数学第五章投影与视图第一节第2课时平行投影与正投影](https://img.taocdn.com/s3/m/b481be337dd184254b35eefdc8d376eeaeaa1785.png)
基础巩固
能力提升
培优作业
-7-
第2课时 平行投影与正投影
7.[教材P130例2改编]某广告墙PQ旁有两根直立 的木杆AB和CD,在某一时刻的太阳光下,木杆 CD的影子刚好不落在广告墙PQ上. (1)请在图中画出此时的太阳光线 CE及木杆AB的影子BF; (2)若AB=4.5米,CD=3米,CD到PQ的距离DQ的 长为2米,求此时木杆AB的影长.
第2课时 平行投影与正投影
第2课时 平行投影与正投影
限时:10分钟
知识点1 平行投影 1.下列投影中,是平行投影的是( B ) A.路灯下行人的影子 B.太阳光下楼房的影子 C.台灯下书本的影子 D.在手电筒照射下纸片的影子
基基础础巩巩固固
能力提升
培优作业
-2-
第2课时 平行投影与正投影
2.下列四幅图中,能表示两棵树在同一时刻太阳 光下的影子是( C )
基基础础巩巩固固
能力提升
培优作业
-3-
第2课时 平行投影与正投影
3.在平行投影下,矩形的投影不可能是( A )
基基础础巩巩固固
能力提升
培优作业
-4-
第2课时 平行投影与正投影
知识点2 正投影 4.由四个相同小立方体拼成的几何体如图所示, 当光线由上向下垂直照射时,该几何体在水平投影 面上的正投影是( A )
基础巩固
能力提升
培培优优作作业业
-8-
第2课时 平行投影与正投影
解:(1)图略. (2)设木杆AB的影长BF为x米.在同一时刻的太阳 光下,物高与影长成比例, 得4x.5 = 32,解得x=3. 答:此时木杆AB的影长是3米.
基础巩固
能力提升
培培优优作作业业
2024年北师大版九年级上册数学第五章投影与视图第1节投影第2课时平行投影与正投影
![2024年北师大版九年级上册数学第五章投影与视图第1节投影第2课时平行投影与正投影](https://img.taocdn.com/s3/m/490a8505ac02de80d4d8d15abe23482fb4da02c4.png)
2
3
4
5
6
7
8
9
10
)
11
9. 【新考向·数学文化】 公元前6世纪,古希腊学者泰勒斯用
图①的方法巧测金字塔的高度.如图②,小明仿照这个方
法,测量圆锥形小山包的高度,已知圆锥的底面周长为
62.8 m.他先在小山包旁边立起一根木棒,当木棒影子长度
等于木棒高度时,测得小山包影子 AB 长为23 m(直线 AB
1
2
3
4
5
6
7
8
9
10
11
知识点2
正投影
4. 下列说法正确的是(
C
)
A. 正投影可能是平行投影也可能是中心投影
B. 物体在灯光下产生的投影可能是物体的正投影
C. 物体在太阳光下产生的投影是物体的平行投影
D. 电灯的光源距离投影面较远的投影就是平行投影
1
2
3
4
5
6
7
8
9
10
11
5. 把一个正六棱柱如图放置,一束水平方向的平行光线照射
.×.
地上的影长=0.6+1.8=2.4(m),那么你的身高就是
=
.
1.6(m).”小明哈哈大笑:“照你这么说,我与你一
样矮啦!”小明在小亮耳边说了几句,小亮就恍然
大悟.你知道小亮错在哪吗?小明的身高为多少呢?
1
2
3
4
5
6
7
8
9
10
11
解:知道.小亮错在认为墙上的影长和地上的影长之和为小明
北师 九年级上册
第五章
1
第2课时
投影与视图
投影
第五章 投影与视图 复习课课件 北师大版九年级上册数学(19张PPT)
![第五章 投影与视图 复习课课件 北师大版九年级上册数学(19张PPT)](https://img.taocdn.com/s3/m/8d2fbb5303020740be1e650e52ea551810a6c931.png)
预习导学
激趣导入
在这个信息技术发达的时代,多媒体教室已成为必不可少 的教学工具,而构成多媒体教室最主要的设备就是投影仪.多媒 体液晶投影仪是整个多媒体演示教室中最重要的也是最昂贵的 设备,它连接着计算机系统、所有视频输出系统及数字视频展 示台,把视频、数字信号输出显现在大屏幕上.
预习导学
预习导学
预习导学
3.由两个物体及其投影确定光源的方法:过每一物体的顶端 与其投影的顶端作直线,若这两条直线 平行 ,则光源是太 阳光源(平行光线);若这两条直线 相交 ,则光源是点光源, 交点 即为点光源所在的位置.
预习导学
4.视图 (1)视图的概念:从正面看到的视图叫 主 视图,反映了 物体的 长 和 高 ;从上面看到的视图叫 俯 视图,反 映了物体的 长 和 宽 ;从左边看到的视图叫 左 视图, 反映了物体的 高 和 宽 . (2)画视图应注意的问题:主视图与俯视图要 长 对正, 主视图与左视图要 高 平齐,左视图与俯视图要 宽 相等.
合作探究
中心投影 2.圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后, 在地面上形成了阴影(如图).已知桌面的直径1.2米,桌面距离地 面1米.若灯泡距离地面3米,则地面上阴影部分的面积为( B ) A.0.36π平方米 B.0.81π平方米 C.究
方法归纳交流 在灯光下,离点光源近的物体它的影子短, 离点光源远的物体它的影子长,当白炽灯向上移时,阴影会逐 渐变小;常用图形相似构建比例关系求解相关问题.
核心梳理 1.平行投影. (1)平行投影的概念:物体在光线照射下,会在地面或墙壁 上留下它的影子,这就是 投影 ;太阳光线可看作平行的, 像这样的光线照射到物体上,所形成的投影即为 平行 投影.
预习导学
(2)平行投影的性质:在太阳光下,不同物体在同一时刻, 物体、太阳光与其影子组成的三角形是 相似 的,即物体的 物高与影长成 正 比例,物体与影子上的对应点的连线互相 平行 ;在不同时刻,同一物体的影长的方向和大小均 在改 变 ,一天中物体在阳光下的影子的变化方向是西→ 西北 → 北 → 东北 →东,其长度是上午越来越 短 ,正午 最短,下午越来越 长 .
第5章 投影与视图-小结与复习 北师大版九年级数学上册课件(共22张PPT)
![第5章 投影与视图-小结与复习 北师大版九年级数学上册课件(共22张PPT)](https://img.taocdn.com/s3/m/c7f4670ea55177232f60ddccda38376bae1fe016.png)
(3) 中心投影: 手电筒、路灯和台灯的光线可以看成是从一点发出 的,像这样的光线照射物体所形成的投影称为中心 投影,如下图:
(4) 平行投影与中心投影的区别与联系:
平行投影 中心投影
区别
投影线互相平行, 形成平行投影
投影线发自一点, 形成中心投影
联系
都是物体在光线的 照射下,在某个平 面上形成的图形. (即都是投影)
2. 正投影 (1) 概念:投影线垂直于投影面产生的投影叫做正投影. (2) 性质:当物体的某个面平行于投影面时,这个面的 正投影与这个面的形状、大小完全相同.
Aห้องสมุดไป่ตู้ D′
F′ A′ D′
B′ C′ AD BC
F A
E H
D
G′
GB C
B′ C′
3. 三视图:(1) 三视图的概念
主视图
左
正面
视
图
俯视图
2. 如图是一根电线杆在一天中不同时刻的影子图,试按
其一天中发生的先后顺序排列,正确的是
( D)
A. ①②③④
B. ②①③④
C. ④①③②
D. ④③①②
北 东
北 东
北 东
北 东
①
②
③
④
3. 某数学兴趣小组用一块正方形木板在阳光下做投影 实验,这块正方形木板在地面上形成的投影可能是 _正__方__形__、__菱__形___(写出符合题意的两个图形即可).
主视图 左视图 高
长
宽
宽 俯视图
将三个投影面展开在一个平面内,得到该物体的三视图.
(2)三视图的画法:
主视图 左视图
①确定主视图的位置,画出主视图;
高
②在主视图正下方画出俯视图,注
新北师大版九年级数学上册:第五章 投影与视图同步练习(超详细,经典,含答案)
![新北师大版九年级数学上册:第五章 投影与视图同步练习(超详细,经典,含答案)](https://img.taocdn.com/s3/m/ab017233caaedd3383c4d3dc.png)
第五章投影与视图1投影第1课时投影、中心投影01基础题知识点1投影、中心投影的概念1.下列现象不属于投影的是(D)A.皮影B.树影C.手影D.素描画2.下列各种现象属于中心投影现象的是(B)A.上午人走在路上的影子B.晚上人走在路灯下的影子C.中午用来乘凉的树影D.早上升旗时地面上旗杆的影子知识点2影子或光源的确定3.下列四幅图中,灯光与影子的位置合理的是(B)4.(教材P144复习题T1变式)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,其中,粗线分别表示三人的影子.(1)画出图中灯泡所在的位置;(2)在图中画出小明的身高.解:(1)如图所示:O即为灯泡的位置.(2)如图所示:EF即为小明的身高.知识点3中心投影条件下物体与其投影之间的转化5.(教材P145复习题T3变式)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向下移时,圆形阴影的大小变化情况是(A)A.越来越小B.越来越大C.大小不变D.不能确定02中档题6.小红和小花在路灯下的影子一样长,则她们的身高关系是(D)A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定7.如图,位似图形由三角尺与其灯光照射下的中心投影组成,位似比为2∶5,且三角尺的一边长为8 cm,则投影三角形的对应边长为(B)A .8 cmB .20 cmC .3.2 cmD .10 cm8.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,将她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是(C)9.如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A 点沿AO 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?解:∵∠MAC =∠MOP =90°,∠AMC =∠OMP , ∴△MAC ∽△MOP. ∴MA MO =AC OP , 即MA 20+MA =1.68. ∴MA =5米.同理△NBD ∽△NOP ,可求得NB =1.5 米. 则MA -NB =5-1.5=3.5(米). ∴小明的身影变短了,短了3.5米.第2课时 平行投影01 基础题 知识点1 平行投影1.下列各组投影是平行投影的是(A)2.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是(D)3.学校里旗杆的影子整个白天的变化情况是(B)A .不变B .先变短后变长C .一直在变短D .一直在变长 4.【动手操作】如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明(AB)落在地面上的影长为BC =2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度.解:(1)影子EG 如图所示. (2)∵DG ∥AC , ∴∠ACB =∠DGE.又∵∠ABC =∠DEG =90°, ∴Rt △ABC ∽△Rt △DEG. ∴AB DE =BC EG ,即1.6DE =2.416. 解得DE =323.∴旗杆DE 的高度为323m.知识点2 正投影5.如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是(D)6.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小相同(填“相同”“不一定相同”或“不相同”). 02 中档题7.下列说法错误的是(B)A .太阳的光线所形成的投影是平行投影B .在一天的不同时刻,同一棵树所形成的影子的长度不可能一样C .在一天中,不论太阳怎样变化,两棵相邻的树的影子都是平行的或在一条直线上D .影子的长短不仅和太阳的位置有关,还和事物本身的长度有关8.【易错】太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是(A)A .与窗户全等的矩形B .平行四边形C .比窗户略小的矩形D .比窗户略大的矩形9.(教材P132习题T1变式)一天下午小红先参加了校运动会女子100 m 比赛,过一段时间又参加了女子400 m 比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是(A)A .乙照片是参加100 m 的B .甲照片是参加100 m 的C .乙照片是参加400 m 的D .无法判断甲、乙两张照片10.(百色中考)如图,长方体的一个底面ABCD 在投影面P 上,M ,N 分别是侧棱BF ,CG 的中点,矩形EFGH 与矩形EMNH 的投影都是矩形ABCD ,设它们的面积分别是S 1,S 2,S ,则S 1,S 2,S 的关系是S 1=S <S 2.(用“=”“>”或“<”连起来)11.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1 m 的竹竿的影长为0.4 m ,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2 m ,一级台阶高为0.3 m ,如图所示.若此时落在地面上的影长为4.4 m ,求树的高度.解:设树高为h m ,由题意,得 4.4+0.2h -0.3=0.41, 则0.4(h -0.3)=4.6, 解得h =11.8.答:树的高度为11.8 m.2 视图第1课时 简单几何体的三视图01 基础题知识点1 圆柱、圆锥、球的三视图1.(桂林中考)如图所示的几何体的主视图是(C)2.下列几何体中,其左视图为三角形的是(D)3.下列立体图形中,俯视图不是圆的是(B)4.如图是一个圆台,它的主视图是(B)5.(泰州中考)下列几何体中,主视图与俯视图不相同的是(B)6.(安徽中考)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是(D)7.(营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成的,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是(A)8.将图中的实物与它的主视图用线连接起来.9.一个圆锥和一个圆柱如图放置,说出下面①②两组视图分别是什么视图.解:①是俯视图;②是主视图.知识点2画简单几何体的三视图10.(教材P137习题T1变式)画出图中所示物体的主视图、左视图和俯视图.解:如图所示:易错点判断圆锥的俯视图时忽视中心点11.如图所示的几何体的俯视图是(D)02中档题12.(安徽中考)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为(B)13.将如图所示的Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是(A)14.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是(D)15.如图,茶杯的左视图是(C)16.(菏泽中考)如图是两个等直径圆柱构成的“T”形管道,其左视图是(B)17.(益阳中考)如图,空心卷筒纸的高度为12 cm ,外径(直径)为10 cm ,内径为4 cm ,在比例尺为1∶4的三视图中,其主视图的面积是(D)A.21π4 cm 2 B.21π16cm 2 C .30 cm 2 D .7.5 cm 218.(泰州中考)如图所示的几何体,它的左视图与俯视图都正确的是(D)03 综合题19.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图所示:第2课时直棱柱的三视图01基础题知识点1直棱柱的三视图1.(娄底中考)如图,正三棱柱的主视图为(B)2.(丽水中考)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(B)A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.(泰安中考)下面四个几何体:其中,俯视图是四边形的几何体有(B)A.1个B.2个C.3个D.4个4.(德州中考)图甲是某零件的直观图,则它的主视图为(箭头方向为主视方向)(A)5.一个几何体如图所示,则该几何体的三视图正确的是(D)6.请将六棱柱的三视图名称填在相应的横线上.(1)俯视图;(2)主视图;(3)左视图.知识点2直棱柱的三视图的画法7.画出如图所示几何体的三视图.解:如图:易错点判断视图时忽视被遮挡部分的轮廓线8.(潍坊中考)如图所示的几何体的左视图是(C)02中档题9.(陕西中考)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(B)10.(沈阳和平区期末)从一个边长为3 cm的大立方体中挖去一个边长为1 cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是(C)11.(太原期末)一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是(A)12.(济宁中考)三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为6cm.13.下面几何体的三种视图有无错误?如果有,请改正.解:主视图有错误,左视图无错误,俯视图有错误,正确画法如图所示.14.两个四棱柱的底面均为等腰梯形,它们的俯视图分别如图所示,画出它们的主视图和左视图.(1) (2)解:如图所示:03 综合题 15.如图1是由两个长方体所组成的立体图形,图2中的长方体是图1中的两个长方体的另一种摆放形式,图①②③是从不同的方向看图1所得的平面图形.(1)填空:图①是主视图得到的平面图形,图②是俯视图得到的平面图形,图③是左视图得到的平面图形; (2)请根据各图中所给的信息(单位:cm),计算出图1中上面的小长方体的体积.解:由图可得⎩⎪⎨⎪⎧x =y +2,x +y =12.解得⎩⎪⎨⎪⎧x =7,y =5. 小长方体的体积为5×3×2=30(cm 3).所以图1中上面的小长方体的体积为30 cm 3.第3课时由视图描述几何体01基础题知识点1由三视图还原几何体1.(云南中考)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是(D)A.三棱柱B.三棱锥C.圆柱D.圆锥2.(泰安中考)如图是下列哪个几何体的主视图与俯视图(C)3.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是(C)A.圆柱B.圆锥C.球D.正方体4.(襄阳中考)一个几何体的三视图如图所示,则这个几何体是(C)知识点2由几何体的三视图求其面积或体积5.(临沂中考)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是(C)A.12 cm2B.(12+π)cm2C.6π cm2D.8π cm26.(通辽中考)如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是(C)A.18π B.24πC.27π D.42π7.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是24cm3.8.如图是一个几何体的主视图、左视图和俯视图.(1)写出这个几何体的名称;(2)若已知主视图的高为10 cm,俯视图的三边长都为4 cm,求这个几何体的侧面积.解:(1)三棱柱.(2)这个几何体的侧面积为10×4×3=120(cm2).02中档题9.(河北中考)图中三视图对应的几何体是(C)10.(广元中考)如图是由几个相同小正方体组成的立体的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是(B)11.(巴彦淖尔中考)如图是一个几何体的三视图,则这个几何体的表面积是(A)A.60π+48 B.68π+48C.48π+48 D.36π+4812.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)A.60π B.70π C.90π D.160π13.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中画出一种该几何体的主视图,且使该主视图是轴对称图形.解:如图所示.(答案不唯一)14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm.∴菱形的边长为(42)2+(32)2=52(cm).∴棱柱的侧面积为52×8×4=80(cm 2).由三视图判断小立方体的个数【方法指导】 在三视图中,通过主视图、俯视图可以确定组合图形的列数,通过俯视图、左视图可以确定组合图形的行数,通过主视图、左视图可以确定行与列中的最高层数,从而确定小正方体的个数. 类型1 个数确定1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块的个数是(B)A .7B .8C .9D .102.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是4.类型2 个数不确定3.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则这个几何体最多由9个小正方体组成,最少由7个小正方体组成.回顾与思考(五)投影与视图01分点突破知识点1中心投影与平行投影1.下列结论正确的有(B)①同一时刻,同一公园内的物体在阳光照射下,影子的方向是相同的;②物体在任何光线照射下影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在点光源照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个2.把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是(B)3.(贺州中考)小明拿一个等边三角形木框在阳光下玩耍,发现等边三角形木框在地面上形成的投影不可能是(B) 4.如图,两幅图片中竹竿的影子是在太阳光下形成的,还是在灯光下形成的?请你画出两图中小树的影子.解:如图所示.知识点2由几何体判断三视图5.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是(C)6.(赤峰中考)如图是一个空心圆柱体,其俯视图是(D)7.(柳州中考)如图,这是一个机械模具,则它的主视图是(C)知识点3由三视图还原几何体8.(贵阳中考)如图是一个几何体的主视图和俯视图,则这个几何体是(A)A.三棱柱B.正方体C.三棱锥D.长方体9.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是6__cm2.02易错题集训10.一元硬币放在太阳光下,它在平整的地面上的投影不可能是(D)A.线段B.圆C.椭圆D.正方形11.如图所示几何体的左视图是(C)03中考题型演练12.(大连中考)一个几何体的三视图如图所示,则这个几何体是(C)A.圆柱B.圆锥C.三棱柱D.长方体13.(娄底中考)如图的几何体中,主视图是中心对称图形的是(C)14.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是(B)15.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(C)16.图中三视图对应的几何体是(C)17.一个几何体的三视图如图所示,则该几何体的表面积为(D)A.4π B.3πC.2π+4 D.3π+48.。
九年级数学上册第五章投影与视图1投影第1课时中心投影上课pptx课件新版北师大版
![九年级数学上册第五章投影与视图1投影第1课时中心投影上课pptx课件新版北师大版](https://img.taocdn.com/s3/m/7430608a3086bceb19e8b8f67c1cfad6185fe903.png)
1 投影
中心投影
北师版九年级上册
新课导入
皮影
人和骆驼的影子 手
窗框的影子
影
探究新知
物体在光线的照射下,会在地面或其他平
面上留下它的影子,这就是投影现象.
影子所在的平面称为投影面.
做一做
取一些长短不等的小棒和三角形、矩形纸 片,用手电筒(或台灯)等去照射这些小棒和 纸片,观察它们的影子.
1.在下图中,一个广告牌挡住了路灯的灯泡 (1)确定图中路灯灯泡所在的位置;
o
随堂练习
1.在下图中,一个广告牌挡住了路灯的灯泡 (2)在图中画出表示小赵身高的线段.
o
随堂练习
2. 两棵小树在一盏路灯下的影子如图所示 (1)确定该路灯灯泡的位置
o
(2)画出图中表示婷婷影长的线段.
o
课堂小结
由同一点(点光源)发出的 光线形成的投影叫做中心投影.
做一做
(1)固定手电筒(或台灯),改变小棒或纸片的摆 放的位置和方向,它们的影子分别发生了什么变化?
做一做
(2)固定小棒或纸片,改变手电筒(或台灯)的摆 放位置和方向,它们的影子发生了什么变化?
手电筒、路灯和台灯的光线可以看成是从一个
点出发的,这样的光线形成的投影称为中心投影.
例1 确定图中路灯灯泡所在的位置.
当他当们他离们路离灯路灯的距离相等时,他们的距影离子不一样相长等.时 的距离相等时
(2)高矮不同的两个人在这盏路灯下的影子有可 能一样长吗?请实际试一试,并与同伴交流.
(2)高矮不同的两个人在这盏路灯下的影子有可能一样长.
一个人在路灯下走动时影子的长度与他到灯 杆的距离有什么关系? 答:当人走近灯杆的位置.
o
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章投影与视图
第1题
下列几何体中,主视图和俯视图都为矩形的是( )
第2题
图5-3-1是一个空心圆柱体,其主视图正确的是( )
图5-3-1
第3题
三本相同的书本叠成如图5-3-2所示的几何体,它的主视图是( )
图5-3-2
第4题
下列四幅图中,表示两棵小树在同一时刻阳光下的影子的可能是( )
第5题
“横看成岭侧成峰”从数学的角度解释为( )
A.从不同的方向观察同一建筑物时,看到的图形不一样
B.从同一方向观察同一建筑物时,看到的图形不一样
C.从同一方向观察不同的建筑物时,看到的图形一样
D.以上答案都不对
第6题
图5-3-3是一个几何体的三视图,则该几何体的展开图可以是( )
图5-3-3
第7题
图5-3-4是某几何体的三视图,根据图中数据知该几何体的体积为( )
图5-3-4
A.60π
B.70π
C.90π
D.160π
第8题
图5-3-5是由一些相同的小正方体构成的几何体的三视图,则构成这个几何体的小正方体的个数是( )
图5-3-5
A.3
B.4
C.5
D.6
第9题
如图5-3-6,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B处时,人影的长度( )
图5-3-6
A.变长了1.5米
B.变短了1.5米
C.变长了3.5米
D.变短了3.5米第10题
如图5-3-7,礼盒上下底面为全等的正六边形,其主视图与左视图均由矩形构成,主视图中大矩形各边长已在图中标出,左视图中包含两个全等的矩形,如果用彩色胶带如图包扎礼盒,则所需胶带长度至少为( )
图5-3-7
A.320 cm
B.395.24 cm
C.431.76 cm
D.480 cm
第11题
从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5-3-8所示的零件,则这个零件的表面积是________.
图5-3-8
第12题
一天下午小红先参加了校运动会女子200 m比赛,过一段时间又参加了女子400 m 比赛,图5-3-9是摄影师在同一位置拍摄的两张照片,那么________照片是参加400 m比赛时照的.(填“甲”或“乙”)
图5-3-9
第13题
图5-3-10是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由________个小正方体搭成的.
图5-3-10
第14题
如图5-3-11,小芳和爸爸正在散步,爸爸身高1.8 m,他在地面上的影长为2.1 m.若小芳比他爸爸矮0.3 m,则她的影长为________m.
图5-3-11
第15题
由若干个相同的小正方体组合而成的一个几何体的三视图如图5-3-12所示,则组成这个几何体的小正方体的个数是________.
第16题
三棱柱的三视图如图5-3-13所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为______cm.
图5-3-13
第17题
一个长方体的三视图如图5-3-14所示,若其俯视图为正方形,则这个长方体的表面积为________.
图5-3-14
第18题
如图5-3-15,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要________个小立方体,王亮所搭几何体的表面积为________.
图5-3-15
第19题
(8分)如图5-3-16所示的是甲、乙两根木杆在同一时刻的影子.
(1)请在图中画出形成木杆影子的光线,并指出它们是平行投影还是中心投影;
(2)若是路灯的光线,请找出路灯灯泡的位置;
(3)请画出图中木杆丙的影子.
图5-3-16
第20题
(8分)在一个宁静的夜晚,月光清明,身高为1.65 m的李红在人民广场玩儿.张芳测得李红的影长为1 m,并立即测得小树的影长为1.5 m,如图5-3-17,请你估算小树的高为多少米.(精确到0.1 m)
图5-3-17
第21题
(10分)小明同学为了测出学校旗杆的高度,设计了如下三种方案:方案一:如图5-3-18①,BO=5 m,OD=2 m,CD=1.6 m;方案二:如图5-3-18②,CD=1 m,FD=0.45 m,EB=1.8 m;方案三:如图5-3-18③,BD=12 m,EF=0.2 m,GF=0.6 m.
图5-3-18
(1)说明其中运用的主要知识;
(2)分别计算出旗杆的高度.
第22题
(10分)(1)如图5-3-19①所示的是一个组合体,图5-3-19②是它的两种视图,在横线上填写出两种视图的名称:
图5-3-19
(2)根据两种视图中的尺寸(单位:cm),计算这个组合体的表面积.(π取3.14)
第23题
(10分)如图5-3-20所示,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗户距地面的距离OD=0.8 m,窗高CD=1.2 m,并测得OE=0.8 m,OF=3 m,求围墙AB的高度.
图5-3-20。