不定积分概念与基本积分公式

合集下载

不定积分的基本公式和直接积分法

不定积分的基本公式和直接积分法

不定积分的基本公式和直接积分法不定积分,也叫原函数或不定积分,是微积分中的一个重要概念。

不定积分是指求函数的原函数的过程,也就是求解导数的逆运算。

在实际应用中,不定积分常用于求解曲线下的面积、确定概率密度函数等问题。

本文将介绍不定积分的基本公式和直接积分法。

不定积分的基本定义是,对函数F(x)求导得到f(x)。

式子可以写作F'(x) = f(x),其中F(x)称为f(x)的一个原函数。

不定积分的符号为∫f(x)dx,表示对函数f(x)求不定积分。

积分号∫放在被积函数前面,并将被积函数写在后面。

积分变量x在∫的上下限之间。

1.常函数的不定积分:∫c dx = cx + C,其中c和C是常数。

2.幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n不等于-1,并且C是常数。

3.正弦函数和余弦函数的不定积分:∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C4.指数函数的不定积分:∫e^x dx = e^x + C5.对数函数的不定积分:∫(1/x) dx = ln,x, + C,其中x不等于0这些基本公式是不定积分中常用的,掌握了这些公式可以在求解不定积分的过程中提供一定的指导。

另外,不定积分还可以通过直接积分法来求解。

直接积分法也叫换元积分法,是不定积分的常用方法之一、直接积分法的基本思想是通过适当的代换将被积函数化简为容易求解的形式。

常见的直接积分法有以下几种:1. 代入法:通过适当的代换将被积函数化简为容易求解的形式。

例如,将∫(2x + 3)^4 dx通过代入u = 2x + 3来化简。

2. 分部积分法:对一个积分式或一个积产品做分部积分,将其转化为不定积分的和或差的形式。

公式为∫u dv = uv - ∫v du。

3. 三角代换法:通过适当的三角代换将被积函数化简为容易求解的形式。

例如,将∫(x^2 - 1)^(3/2) dx通过代换x = cosθ来化简。

8.1 不定积分的概念与基本积分公式

8.1 不定积分的概念与基本积分公式

x4 ( 2) 2 dx ; x 1
1 1 1 ( 3) ( 3 x 3 )dx ; 2 x x 1 x
2
例5、求下列不定积分。
(1) a x e x dx ;
cos 2 x ( 2) dx . sin x cos x
练习:求 (1) tan 2 x dx ;
(1) [ f ( x ) g ( x )]dx f ( x )dx g ( x )dx . ( 2) kf ( x )dx k f ( x )dx .
( k 是常数 , 且 k 0)
例4、求下列不定积分。
(1) (a0 x n a1 x n 1 a n 1 x a n )dx ;
1 x x2 ( 2) dx . 2 x(1 x )
x 1, x 1 设 f ( x) , 求 f ( x )dx . 例 6、 2 x, x 1
练习:求 | x 1 | dx .
作 业
习题8-1:5(偶数题)
§8.2-1
换元(Substitution Rules) 积分法
( 2) 若 G ( x ) 也是 f ( x ) 的一个原函数 , 则 存在常数C , 使得 G ( x ) F ( x ) C .
F ( x ) 是 f ( x ) 的一个原函数
F ( x ) C C R为 f ( x ) 的原函数集合
函数 f ( x ) 在区间 I 上的全体原函数称为 定义2: f ( x ) 在 I 上的不定积分 , 记作
f ( x ) dx 的图形
y
积分曲线族在横 坐标为 x0 处的 切线互相平行 .
o
x0
x

不定积分的概念和计算方法

不定积分的概念和计算方法

不定积分的概念和计算方法不定积分是微积分中的一个重要概念,用于求解函数的原函数。

在这篇文章中,我们将讨论不定积分的定义、性质以及常见的计算方法。

一、不定积分的定义不定积分是求解函数的原函数的过程。

设函数f(x)在区间[a, b]上可积,F(x)是函数f(x)在区间[a, b]上的一个原函数。

则称函数F(x)在[a, b]上的不定积分为∫f(x)dx = F(x) + C,其中C为常数,称为积分常数。

不定积分的定义告诉我们,不定积分的结果是一个函数,它是原函数F(x)和一个常数C的和。

这个常数C的取值是不确定的,因此称之为积分常数。

二、不定积分的性质1. 线性性质:若f(x)和g(x)在区间[a, b]上可积,k为常数,则有∫[kf(x) + g(x)]dx = k∫f(x)dx + ∫g(x)dx。

这个性质说明不定积分具有线性运算的特点。

2. 反向性质:若F(x)是f(x)的一个原函数,则F(x) + C也是f(x)的原函数,其中C为常数。

这个性质告诉我们,不定积分具有反向运算的特点。

3. 初等函数性质:初等函数的导函数可以通过不定积分求得。

例如,导函数为常数函数的函数,在不定积分中可以得到一个线性函数。

三、不定积分的计算方法计算不定积分的方法有很多种,下面介绍一些常见的方法:1. 基本积分法:根据导函数与原函数的关系,可以求出一些基本函数的不定积分。

例如,∫x^n dx = 1/(n+1)x^(n+1) + C,其中n为非负整数。

2. 分部积分法:对于乘积函数的不定积分,可以通过分部积分法进行求解。

分部积分法的公式为∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx,其中u(x)和v(x)为可导函数。

3. 代换法:对于一些复杂的函数,可以通过代换法进行不定积分的计算。

代换法的基本思想是用一个变量替换原函数中的某一部分,使得原函数的形式变得简单,然后再进行不定积分的计算。

数学分析 不定积分概念与基本积分公式

数学分析       不定积分概念与基本积分公式
1

xdx x1 C . 1
( 1)
启示 能否根据求导公式得出积分公式?
结论 既然积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.
基 (1) kdx kx C (k是常数);


(2)
xdx x1 C ( 1); 1
分 表
(3)

dx x

说明:
ln x x 0,
C;

dx x

ln
x

C
,
x 0, [ln( x)] 1 ( x) 1 ,
x
x


dx x

ln(

x
)

C
,


dx x

ln
|
x
|
C
,
简写为

dx x

ln
x

C.
(4)

1
1 x
2
dx

arctan
x

C;
(11) csc x cot xdx csc x C;
(12) e xdx e x C;
(13)

a
xdx

ax ln a

C;
(14) sinh xdx cosh x C;
(15) cosh xdx sinh x C;
例 求积分 x2 xdx.
(5)

1 dx arcsin x C; 1 x2
(6) cos xdx sin x C;
(7) sin xdx cos x C;

不定积分常用的16个基本公式

不定积分常用的16个基本公式

不定积分常用的16个基本公式近年来,随着数学研究的深入发展,不定积分及其应用在许多领域发挥着重要作用。

它不仅可以在数学方面发挥重要作用,而且可以在工程,物理,经济学等多个学科中得到应用。

不定积分可以根据它的定义和它的公式来求解,其中有16个主要的基本公式。

首先,不定积分的定义是什么?它是用来表示一个函数的增量的定义,就是说,它是一个函数f(x)的“梯形”,得到这个梯形的面积,可以用不定积分法来进行计算。

其中,有16个主要的基本公式,分别是:1)不定积分公式:intf(x)dx=f(x)+ c2)乘积公式:intu(x)v(x)dx=intu(x)dx intv(x)dx 3)反函数公式:int(1/U)dx=ln|U(x)|+c4)倍拆公式:int(f(x)+g(x))dx=intf(x)dx+intg(x)dx5)定积分公式:int_a^bf(x)dx=intf(x)dx|_a^b6)分部积分公式:intf(x)dx=f(x)intf(x)dx+c7)牛顿-洛克(N)公式:int_a^bf(x)dx=intf(x)dx|_a^b + (b-a) intf(x)dx|_a^b8)级数积分:int[f(x)+ fi(x)]dx= intf(x)dx+ intf (x)dx|_a^b9)变量变换:intu(x)dx= intu(u)du10)定积分变换:int_a^bf(x)dx= int_a^bf(u)du11)约瑟夫-马尔科夫(J-M)公式:intf(x)dx=intf(x)dx+f (x) intf(x)dx|_a^b12)奇拆公式:intf(x)dx=intf(x)dx+f(x) intf(x)dx|_a^b 13)展开与积分公式:intu(x)v(x)dx= intu(x)dx intv (x)dx+intv(x)dx intu(x)dx14)矩形公式:int_a^bf(x)dx=frac{f(a)+f(b)}{2} int_a^b1dx 15)双曲函数公式:intfrac{1}{u(x)}dx=intfrac{1}{u(x)}dx+c 16)椭圆曲线公式:intfrac{1}{u(x)v(x)}dx= intfrac{1}{u (x)}dx+ intfrac{1}{v(x)}dx上述16个基本公式,构成了不定积分的基础,是解决不定积分问题不可缺少的重要部分。

不定积分的概念及性质

不定积分的概念及性质

2 1
x
(2)
x
xdx
3
x 2 dx

2
5
x2

C
.
5
(3)

dx 2gx
1 2g

dx x
例5
1
1
1 1
x 2 C
2g 1 1
2
求下列不定积分:
2gx C . g
(1)
x 1 x

1
x
dx;(2)
x x
2 2
1 1
dx
则称F(x)为 f (x)的一个原函数.
例 因为(ln x) 1 ,故ln x 是 1 的一个原函数;
x
x
因为(x2) 2x,所以 x2 是2x 的一个原函数,但
(x2 1) (x2 2) (x2 3) 2x ,所以 2x 的原函 数不是惟一的.
原函数说明: 第一,原函数的存在问题:如果 f (x)在某区间连续, 那么它的原函数一定存在(将在下章加以说明).

解(1)
x 1 x

1 x
dx Nhomakorabeax
x x 1
1 x
dx
x
xdx xdx 1dx
1 dx x

2
5
x2

1
x2

x

1
2x2

C.
52
(2)
x2 x2
1dx 1

x
2 x2
1 1
2
dx

1
做被积表达式,C 叫做积分常数,“ ”叫做积分号.

第一节不定积分概念与基本积分公式(数学分析)(数学分析)

第一节不定积分概念与基本积分公式(数学分析)(数学分析)

∫ adx=ax+C, ∫
xα dx =
其 中 a是 常 数
∫ dx
= x +C
1 x α +1 + C . α +1
其 中 α 是 常 数 , 且 α ≠ −1.
12
1 3、 ∫ dx = ln x + C. x 特别有: ∫ ex dx = ex + C.
1 x 4、 ∫ a dx = a + C, 其中a > 0, 且a ≠ 1. ln a
若 F ( x )已 知 , f ( x )未 知 , 由 F ( x ) → f ( x ), 则 称 (3)式 为 求 导 运 算 , ' 称 f ( x )为 F ( x )的 导 数 。 若 f ( x )已 知 , F ( x )未 知 , 由 f ( x ) → F ( x ), 则 称 (3)式 为 积 分 运 算 , 称 F ( x )为 ' f ( x )的 原 函 数 。
7
思考题: 1、 如果函数f ( x)的定义域是若干个分离的区间,那么它的原函数彼此之 间是否仅相差一个常数? x2 , 可考虑函数 f ( x) = x, x ∈ (−∞, − 1) U (0, + ∞), 则 : F ( x) = 2 x2 , x ∈ (−∞, − 1) , 都是f ( x) = x 在 (−∞, − 1) U (0, + ∞)的原 G ( x) = 22 x + 1 , x ∈ (0, + ∞) 2 函数,它们之间的关系如何? 2、 设F ( x)是连续函数f在R上的原函数,问: 1 )、如果f ( x)是以T为周期的周期函数,那么F ( x)是否为周期函数? 考虑: ( x) = cos x + 1. f 2)、 如果f ( x)是偶函数,那么F ( x)是否为奇函数? 考虑: ( x) = cos x + 1. f

不定积分概念及公式

不定积分概念及公式

5.1 不定积分的概念一.原函数的概念定义1:设 f (x) 是定义在区间上的已知函数,若存在一个函数F(x) 对于该区间上的每一点都有: F (x) f (x) 或dF(x) f ( x) dx 。

则:F(x)为f(x)的一个原函数。

例:(x3) 3x2,则:x3是3x2的一个原函数,另外由于(x31) 3x2,(x31) 3x2,(x33) 3x2,。

即:x31,x31, x3 3 , 。

等等也都是3x2的原函数。

即:x3 C ( C常数)全为3x2的原函数。

所以,有下面定理。

定理:一个函数 f (x) ,若有一个原函数F(x) ,则必有无穷多个。

而这写原函数只相差一个常数。

F(x) C是f(x) 的全体原函数。

例:设e x cosx是 f (x) 的原函数,求: f (x)。

解:由原函数概念可知,若e x cosx是f (x) 的原函数则有(e x cosx) e x sin x f (x) ,所以 f(x) (e x sin x) =e x cosx 二.不定积分的定义定义2。

设函数F(x)为函数 f (x)的一个原函数,则f(x) 的全部原函数F(x) C ( C为任意常数)称为函数 f (x) 的不定积分。

记作: f (x)dx。

即: f (x)dx F(x) C 。

f (x) :被积函数, f ( x)dx :被积表达式,x :积分变量,:积分号, C :积分常数。

存在原函数的函数为:可积函数。

求已知函数的不定积分,只要求出它的一个原函数,再加一个 C (任意常数)。

例:求积分3x 2dx解:( x3) 3x2∴ 3x2dx x 3 C例:求积分cosxdx解:(sin x) cos x∴ cosdx sin x C例:求积分e x dx解:(e x) e x∴ e x dx e x C例:求积分1dxx1 1 15) 2dx ( ) d ;6) dx ( ) d x1解:( ln x) ,(x 0)x 11[ln( x)] 1 ( 1) 1 ,(x 0) xx 1dx ln x Cx不定积分 (互逆)求导数。

不定积分24个基本公式

不定积分24个基本公式

不定积分24个基本公式一、原函数不定积分的概念原函数的定义:如果区间I上,可导函数F(x)的导函数为f'(x),即对任一x∈I都有 F'(x)=f(x) 或 dF(x)=f(x) dx 那么函数F(x)就称为f(x)(或 f(x) dx)在区间 I 内的一个原函数。

原函数存在定理:如果函数f(x)在区间 I 上连续,那么在区间 I 上存在可导函数F(x),使对任一x∈I都有 F'(x)=f(x).简单地说:连续函数一定有原函数。

不定积分的定义:在区间 I 上,函数f(x)的带有任意常数项的的原函数称为f(x)( f(x)dx ) 在区间 I 上的不定积分,记作∫ f(x)dx . 其中记号∫ 称为积分号,f(x)称为被积函数 f(x)dx 称为被积表达式,x 称为积分变量。

二、基本积分公式三、不定积分的性质设函数f(x)及g(x)的原函数存在,则∫ [ f(x) ± g(x)]dx= ∫ f(x) dx ± ∫ g(x) dx 。

记:合拢的加减积分可以分开加减积分2. 设函数f(x)及g(x)的原函数存在,k为非零常数,则∫ k f(x) dx=k ∫ f(x) dx记者:非零常数乘以积分,可以把常数拿出来,乘以不定积分。

四、第一类换元积分法设f(u)具有原函数,u=φ(x)可导,则有换元公式:也叫做凑微分法五、第二类换元积分法设x=ψ(t)是单调的可导函数,并且ψ'(t)≠0,又设f[ψ(t)]ψ'(t)具有原函数,则有换元公式是x=ψ(x)的反函数。

三种常见的换元公式(注:利用三角形理解去记)利用第二种换元积分法解出的常见的积分公式:六、分部积分法设函数u=u(x)及v=v(x)具有连续导数,则两个函数乘积的导数公式为 (uv)'=u'v+uv',移项,得: u v'=(u v)'-u' v对这个等式两边求积分∫ u v' dx=u v- ∫ u' v dx 称为分部积分公式按零件的集成顺序集成:反对力量指的是三,意思是从后面集成容易,先集成那个。

不定积分的概念与基本性质

不定积分的概念与基本性质

不定积分的概念与基本性质在微积分中,积分是一个重要的概念和工具。

它可以看作是微分的逆运算,用于求解函数的原函数。

在不定积分中,我们将讨论不定积分的概念以及其一些基本性质。

一、不定积分的概念不定积分,又称为反导数,表示对一个函数进行积分得到的结果。

设函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上的不定积分可以表示为∫f(x)dx。

二、基本性质1. 线性性质:对于任意常数C,以及可积函数f(x)和g(x),有以下公式:(1)∫[f(x)+g(x)]dx = ∫f(x)dx + ∫g(x)dx(2)∫k·f(x)dx = k·∫f(x)dx这意味着我们可以将一个复杂的函数拆分成多个简单函数的和或差的形式进行积分计算。

2. 保号性质:若在[a,b]上,有f(x)≥0,则∫f(x)dx≥0。

这个性质告诉我们,如果函数在某个区间上始终保持非负,则其在该区间上的积分也将非负。

3. 常数项性质:若函数f(x)在[a,b]上可积,且F(x)是f(x)的一个原函数,则对于任意常数C,有∫f(x)dx=F(x)+C。

这个性质表明,不定积分的结果存在无穷多个,只相差一个常数项。

4. 换元法则:设函数f(u)在区间[a,b]上可积,且u=g(x)是可导函数,且导函数g'(x)连续,则有以下公式:∫f(g(x))g'(x)dx = F(g(x)) + C其中,F(u)是f(u)的一个原函数。

换元法则为我们提供了一种通过变量代换简化计算的方法。

5. 分部积分:若函数u(x)和v(x)在区间[a,b]上可导,且连续,则有以下公式:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx这个公式将一个积分变为了另一个积分和一个乘积的形式,通常用于解决无法直接积分的情况。

三、结论通过本文的论述,我们了解了不定积分的概念和基本性质。

不定积分是对函数进行积分的逆运算,可以求解函数的原函数。

数学分析不定积分概念与基本积分公式

数学分析不定积分概念与基本积分公式

(1) kdx kx C (k是常数);
(2) xdx x1 C ( 1); dx 1
(3) x ln x C;
(4)
1
1 x
2 dx
arctan
x
C;
(5)
1 dx arcsin x C; 1 x2
(6) cos xdx sin x C;
(7) sin xdx cos x C; 第13页/共25页
tan
x
C
.
例9 求积分
tan2 xdx
解 tan2 xdx (sec2 x 1)dx tan x x C
被积函数进行恒等变形,再使用基本积分公式.
第18页/共25页
小结
原函数与不定积分的概念 基本积分公式 不定积分的性质 求微分与求积分的互逆关系
F( x) f ( x)
f ( x)dx F ( x) C
若函数f ( x)在区间I上连续,
则在I上存在原函数,即存在可导函数F ( x),使
F ( x) f ( x),x I .
注 (i) 连续函数一定有原函数;
(ii) 任一函数的原函数(若存在)有无穷多;
cR
(F( x) C) f ( x).
(iii)函数的两个原函数间相差一个常数;
若F ( x) f ( x), ( x) f ( x),则 [F( x) ( x)] f ( x) f ( x) 0 F( x) ( x) C.
称F为f 在区间I上的一个原函数.
第2页/共25页
例如
因tan x sec2 x, tan x 是 sec2 x 的一个原函数.

1 x
1 x2
,
1 x

1 x2

精品课件-不定积分概念与基本积分公式

精品课件-不定积分概念与基本积分公式

特别地 dxxC, 0dx C
cos xdx d sin x sinxC
x n d x d( 1 xn1) 1 xn1 C
n 1
n 1
12
F (x)f(x),
f(x)dxF(x)C ( C 为任意常数 )
二、基本积分表
利用逆向思维
(1) kdx kxC ( k 为常数)
上的不定积分, 记作 f(x)dx, 其中 — 积分号; f (x) — 被积函数;
x— 积分变量; f (x)dx — 被积表达式.
若 F (x)f(x),则
例如,
f(x)dxF(x)C ( C 为任意常数 )
exdx ex C
x2dx
1 3
x3
C
C 称为积分常数 不可丢 !
( F ( x ) G ( x ) ) f ( x ) f ( x ) 0 , x I ,
故 F (x ) G (x ) C ,x I.
注:若一个函数有原函数,则其原函数不唯一,且任两个原函数
相差一个常数.
6
定义 2. f (x) 在区间 I 上的原函数全体称为 f (x)在I
定理1 若函 f(x数 )在区 I上 间 连 , 则续 f(x)在I上
存在原函数 .
(下章证明)
初等函数在定义区间上连续
初等函数在定义区间上有原函数
5
定理2 设 F ( x ) 是 f ( x ) 在区间I上的一个原函数,则 (i) F(x)C是 f ( x ) 在区间I上的原函数,其中C为任意常数; (ii) f ( x )在I上的任两个原函数相差一个常数.
引例: 一个质量为 m 的质点, 在变力 FAsint的作

数学分析8.1不定积分概念与基本积分公式

数学分析8.1不定积分概念与基本积分公式
1、F+C也是f在I上的原函数,其中C为任意常量函数;
2、f在I上的任意两个原函数之间,只可能相差一个常数.
证:1、依题意F’=f,则当C为常量函数时,(F+C)’=F’=f,得证.
2、设F,G是f在I上的任意两个原函数,则有(F-G)’=F’-G’=f-f=0.
根据拉格朗日中值定理推得:F-G≡C, C为常量函数.
[∫f(x)dx]’=[F(x)+C]’=f(x);d∫f(x)dx=d[F(x)+C]=f(x)dx.
不定积分的几何意义:若F是f的一个原函数,则称y=F(x)的图象为f的一条积分曲线.所以f的不定积分在几何上表示f的某一积分曲线沿纵轴方向任意平移所得一切积分曲线组成的曲线族。显然,在每一条积分曲线上横坐标相同的点处作切线,则这些切线互相平行。
7、∫cosaxdx= sinax+C (a≠0);8、∫sinaxdx=- cosax+C (a≠0);
9、∫sec2xdx=tanx+C;10、∫csc2xdx=-cotx+C;11、∫secx·tanxdx=secx+C;
12、∫cscx·cotxdx=-cscx+C;13、∫ =arcsinx+C=-arccosx+C1;
(2)∫(x- )2dx=∫(x2- + )dx=∫x2dx-∫2x dx+∫ dx= - x +ln|x|+C.
(3)∫ = ∫x- dx= x +C= +C.
(4)∫(2x-3x)2dx=∫(22x-2·6x+32x)dx=∫4xdx-2∫6xdx +∫9xdx= -2· + +C.
(5)∫( +sinx)dx= ∫ dx+∫sinxdx= arcsinx-cosx+C.

不定积分的性质与基本积分公式

不定积分的性质与基本积分公式

不定积分的性质与基本积分公式不定积分是微积分中一个重要的概念,用于求解给定函数的原函数。

在实际应用中,不定积分可以用于求解曲线的长度、曲线下的面积、物体的质心等问题。

本文将介绍不定积分的性质和基本积分公式。

1.不定积分的定义不定积分是对函数进行积分运算的过程。

设函数f(x)在区间[a, b]上可导。

称满足F′(x) = f(x)的函数F(x)为f(x)在区间[a, b]上的一个原函数。

记为F(x) = ∫f(x)dx + C,其中C为常数。

这里的F(x)就是f(x)的一个原函数,符号∫f(x)dx称为不定积分。

2.不定积分的运算性质(1)线性性质:若F(x)和G(x)都是f(x)在区间[a,b]上的原函数,则c1F(x)+c2G(x)也是f(x)在区间[a,b]上的原函数,其中c1和c2为常数。

(2)积分和导数的关系:若F(x)是f(x)在区间[a,b]上的一个原函数,则F(x)+C也是f(x)的一个原函数,其中C为常数。

即:(F(x)+C)'=F'(x)=f(x)。

(3)换元法则:设u = g(x)是一个可导函数,f(u)在区间[a, b]上连续,且f(g(x))g′(x)在[a, b]上连续,则∫f(g(x))g′(x)dx =∫f(u)du。

(4)分部积分法则:设u = u(x)和v = v(x)是可导函数,且u′(x)和v′(x)在[a, b]上连续,则∫u′(x)v(x)dx = u(x)v(x) -∫v′(x)u(x)dx。

(1)常数函数:∫kdx = kx + C,其中C为常数。

(2)幂函数:∫x^ndx = (x^(n+1))/(n+1) + C,其中C为常数,n≠-1(3)指数函数:∫e^xdx = e^x + C,其中C为常数。

(4)三角函数:∫sinxdx = -cosx + C,∫cosxdx = sinx + C,∫sec^2xdx = tanx + C,其中C为常数。

高等数学(第三版)课件:不定积分的概念与性质

高等数学(第三版)课件:不定积分的概念与性质
解 (3x 2sin x)dx 3xdx 2 sin xdx 3x 2 (cos x) C
ln 3
3x 2cos x C.
ln 3
例8 求 x (x1)2dx.

x
(x1)2
5
x2
(
x
1)
2dx
(
x
5 2
2
x
3 2
x
1 2
)dx
5
3
1
x 2dx 2 x 2dx x 2dx
1 x 2dx arctan x C.
例3

1dx. x
解 当x 0时,有(ln x)' 1 . x
1dx x
ln
x
C
(x 0)
当x 0时,有ln(x)' 1 (x)' 1 (1) 1 ,
x
x
x

1dx x
ln(
x)
C.
ln x 当x 0,
ln x ln( x)
当x 0,
[f (x) g(x)]dx f (x)dx g(x)dx
性质2可以推广到有限多个函数的情形,即
[
f
(x)
1
f
(x)
2
f (x)]dx n
f
(x)dx
1
f
(x)dx
2
f
(x)dx
n
例6 求 (2x3 5 x2 4x 3)dx. 解 (2x3 5 x2 4x 3)dx
2 x3dx 5 x2dx 4xdx 3dx
2 x3dx 5 x2dx 4 xdx 3 dx
1 2
x4
5 3
x3
2
x2

数学分析(第81节不定积分概念与基本积分公式)

数学分析(第81节不定积分概念与基本积分公式)

详细描述
直接积分法基于不定积分的定义,通 过凑微分、变量替换等方式将不定积 分转化为定积分,从而求得原函数。
换元积分法
总结词
换元积分法是通过引入新的变量 来简化不定积分的方法。
详细描述
换元积分法通过引入新的变量, 将复杂的不定积分转化为简单的 不定积分,从而方便求解。常用 的换元方法有三角换元和倒代换
THANKS FOR WATCHING
感谢您的观看
公式示例
对于不定积分 $int x sin x dx$,分部积分法得到原函数 $x cos x - int cos x dx$。
03
不定积分的应用
解决实际问题
物理问题
不定积分在解决物理问题中有着 广泛的应用,如求变速运动的位 移、速度和加速度,以及求解热
传导方程等。
工程问题
在工程领域中,不定积分常被用于 解决各种实际问题,如求解流体动 力学中的压力分布、求解弹性力学 中的应力分布等。
直接积分法
利用基本初等函数的积分 公式和性质进行计算。
换元积分法
通过引入中间变量进行换 元,将复杂函数的不定积 分转化为简单函数的不定 积分。
分部积分法
将两个函数的乘积进行不 定积分,转化为分别对两 个函数进行不定积分后再 相减。
不定积分的几何意义
水平切线
不定积分表示函数图像上 方的面积,其几何意义是 曲线下的面积。
斜率
不定积分表示曲线在某一 点的切线的斜率,即该点 的导数值。
速度与加速度
不定积分可用于描述物理 中的速度和加速度,以及 工程中的流量和压力等实 际问题。
02
基本积分公式
直接积分法
总结词
公式示例
直接积分法是最基本的积分方法,通 过将不定积分转化为定积分来求解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v0t

x0
2019年12月9日6时41分
12
上一页 下一页 主 页 返回 退机出动 目录 上页 下页 返回 结束
二、基本积分表
由基本求导公式可得以下基本积分公式:
1. 0dx C.
2. 1dx dx x C. 3. xdx x1 C ( 1, x 0).
— 积分变量;


— 被积函数;
(P185)
— 被积表达式.
( C 为任意常数 )
C 称为积分常数 不可丢 !
若 F ( x) 是 f ( x) 的一个原函数, 则由定理 8.2,
f ( x) d x F( x) C C R .
2019年12月9日6时41分
6
上一页 下一页 主 页 返回 退机出动 目录 上页 下页 返回 结束
一、 原函数与不定积分的概念
引例: 一个质量为 m 的质点, 在变力
下沿直线运动 , 试求质点的运动速度
根据牛顿第二定律, 加速度
因此问题转化为: 已知 v(t) A sin t , 求 v(t) ? m
定义 1 . 若在区间 I 上定义的两个函数 F (x) 及 f (x)
满足
则称 F (x) 为f (x)
f (x)dx
f (x)dx
(见p177(3,4)
(2) F(x) dx F(x) C 或 d F(x) F(x) C
(见p181#1)
2019年12月9日6时41分
8
上一页 下一页 主 页 返回 退出
不定积分的几何意义:
的原函数的图形称为 的积分曲线 .
f (x) dx 的图形
o
x
2019年12月9日6时41分
10
上一页 下一页 主 页 返回 退出
例2. 质点在距地面 处以初速 垂直上抛 , 不计阻 力, 求它的运动规律.
解: 取质点运动轨迹为坐标轴, 原点在地面, 指向朝上 ,
质点抛出时刻为
此时质点位置为 初速为
设时刻 t 质点所在位置为

dx v(t)
(运动速度)
2019年12月9日6时41分
14
上一页 下一页 主 页 返回 退出
三、不定积分的性质(不定积分的线性运算法则)

(x) F(x) C0 (C0 为某个常数)
即 (x) F(x) C0 属于函数族 F(x) C .
2019年12月9日6时41分
5
上一页 下一页 主 页 返回 退机出动 目录 上页 下页 返回 结束
定义 2. 在区间 I 上的原函数全体称为
上的不定积分, 记作
其中
— 积分号;
y
的所有积分曲线组成 的平行曲线族.
o
x0
x
2019年12月9日6时41分
9
上一页 下一页 主 页 返回 退出
例1 设曲线通过点( 1 , 2 ) , 且其上任一点处的切线
斜率等于该点横坐标的两倍, ) , 故有
(1, 2)
因此所求曲线为 y x2 1
由v(0) v0 , 得C1 v0 , 故
v(t) gt v0
再求


x x x(t)
x0 x(0)
o
x(t)
(g t v0 )d t


1 2
g
t
2
v0t
C2
由x(0) x0 , 得C2 x0 , 于是所求运动规律为
x(t)


1 2
g
t
2

在区间 I 上的一个原函数 .
如引例中, A sin t 的原函数有 A cos t, A cos t 3,
m
m
m
2019年12月9日6时41分
3
上一页 下一页 主 页 返回 退机出动 目录 上页 下页 返回 结束
问题: 1. 在什么条件下, 一个函数的原函数存在 ? 2. 若原函数存在, 它如何表示 ?
定理1. 存在原函数 .
(p224,Th9.10,下章证明)
初等函数在定义区间上连续
初等函数在定义区间上有原函数
2019年12月9日6时41分
4
上一页 下一页 主 页 返回 退机出动 目录 上页 下页 返回 结束
定理 2. 原函数都在函数族
证: 1)
( C 为任意常数 ) 内 . 即
又知
[(x) F(x)] (x) F(x) f (x) f (x) 0
为方便起见, 我们记
( C 为任意常数 )
例如,
exdx ex C
x2dx
1 3
x3

C
sin xdx cos x C
2019年12月9日6时41分
7
上一页 下一页 主 页 返回 退出
从不定积分定义可知:
(1)
d dx


f (x)d x
f (x)
或 d
1
4. 1xdx ln | x | C.
5. exdx ex C. 6. a xdx a x C .
ln a
2019年12月9日6时41分
13
上一页 下一页 主 页 返回 退出
7. cos xdx sin x C.
8. sin xdx cos x C. 9. sec2 xdx tan x C.
10. csc2 xdx cot x C.
11. sec x tan xdx sec x C.
12. csc x cot xdx csc x C.
13.
dx arcsin x C arccos x C. 1 x2
dx
14. 1 x2 arctan x C arccot x C.
dt
再由此求 x(t)
d2 x d t2

dv dt

g
(加速度)
先由此求 v(t)
x x x(t)
x0 x(0) o
2019年12月9日6时41分
11
上一页 下一页 主 页 返回 退机出动 目录 上页 下页 返回 结束
先求 由

v(t) ( g) d t gt C1
不定积分
微分法: F(x) ( ? ) 互逆运算
积分法: ( ? ) f (x)
2019年12月9日6时41分
1
上一页 下一页 主 页 返回 退出
第一节
第八章
不定积分的概念与性质
一、 原函数与不定积分的概念 二、 基本积分表 三、不定积分的性质
2019年12月9日6时41分
2
上一页 下一页 主 页 返回 退机出动 目录 上页 下页 返回 结束
相关文档
最新文档