快速巧解分数应用题
分数应用题的解题方法

分数应用题的解题方法1、引言在数学学习中,分数应用题是经常出现的题型之一。
解答这类题目需要掌握一定的解题方法和技巧。
本文将为大家介绍几种常见的解题方法,以帮助大家更好地解决分数应用题。
2、换算法在分数应用题中,经常需要将一个分数表达成另一种形式,这就需要用到换算法。
换算法的基本原理是乘以一个合适的分式,使得原分数的分母变化为所需的分母。
例如,将分数$\frac{2}{3}$转换成分母为6的分数,我们可以乘以$\frac{6}{2}$,得到$\frac{2}{3}\times\frac{6}{2}=\frac{12}{6}$,即$\frac{2}{3}=\frac{12}{6}$。
通过换算法,我们可以灵活地将分数转换为需要的形式,便于进行计算和分析。
3、化简法有时,分数应用题给出的分数较为复杂,需要进行化简才能得到准确的结果。
化简法是一种常见的解题方法。
化简法的关键在于找到分子和分母的最大公约数,并将分子分母同时除以最大公约数,从而将分数化简为最简形式。
例如,将分数$\frac{15}{25}$化简为最简形式,我们可以找到15和25的最大公约数为5,然后将分子分母同时除以5,得到$\frac{15}{25}=\frac{3}{5}$。
通过化简法,我们可以得到最简分数,便于进行计算和比较。
4、分数的加减法在分数应用题中,经常需要进行分数的加减运算。
分数的加减法需要找到相同的分母,然后按照相同的分母进行计算。
具体步骤如下:(1)找到两个分数的最小公倍数,作为相同的分母;(2)将分子按照相同的分母进行放大或缩小;(3)按照相同的分母进行分子的加减运算;(4)化简得到最简分数形式。
例如,计算$\frac{2}{3}+\frac{1}{4}$:(1)相同的分母为12,即$\frac{2}{3}\times\frac{4}{4}=\frac{8}{12}$,$\frac{1}{4}\times\frac{3}{3}=\frac{3}{12}$;(2)按照相同的分母进行计算,$\frac{8}{12}+\frac{3}{12}=\frac{11}{12}$;(3)化简得到最简分数形式,$\frac{11}{12}$。
六个技巧解决小学六年级数学难题——分数应用题

六个技巧解决小学六年级数学难题——分数应用题——分数应用题分数应用题是小学数学应用题中的重点难点,由于抽象程度比较高,很多孩子都难以把握,致使失分率也比较高。
其实,分数应用题的解题是有规律可循的,家长在辅导孩子时,就要教孩子抓住规律,得出解题方法。
总的来说,帮助孩子攻克分数应用题,家长从以下六个解题技巧入手。
一、字斟句酌分数应用题很多时候容易产生“歧义”,所以家长要特别提醒孩子在审题时抓住关键句,找准比较的对象。
分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点。
比如:汽车在公路上行驶,先把速度提高20%,再把速度降低20%,现在的速度是原来的百分之几?分析:设定原来的速度为100%,提高20%后为120%,当再次降低时,是在120%的基础上降低,此时的20%是120%×0.2=24%。
所以降低后是120%-24%=96%。
二、抓不变量有些分数应用题数量变化多,分析难度大,不易列式计算。
但是,仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的不变量。
对于这类分数应用题,家长辅导孩子解答时,要专注“不变量”,以静制动,使问题迎刃而解。
比如:有两桶水,第一桶水的重量是第二桶水的6倍,从第一桶取出12千克水加入第二桶,这时第一桶水的重量是第二桶的4倍,问第一桶原来有水多少千克?分析:两桶水的总重量总是不变的,但又未知,我们把它看作单位“1”的量。
则“取前”第一桶占两桶水总重量的1/(1+6)=1/7,“取后”第一桶占两桶水总重量的1/(1+4)=1/5。
第一桶取前取后差12千克占两桶总重量的1/5-1/7=2/35,故两桶水总重量为12÷2/35=210(千克),由此可求出原来第一桶水的重量为:210÷1/7=30(千克)三、找准单位“1”的量不管是简单分数应用题还是复杂的分数应用题,题中都有关键句,关键句中都有单位“1”的量,准确找出单位“1”的量是解答分数应用题的前提条件。
六年级数学上应用题分数技巧与方法

六年级数学上应用题分数技巧与方法一、分数应用题的解题方法1. 找单位“1”的量。
在审题时,首先要把问题中涉及的量与分率对应起来,看题目中有几个量,每个量所占的分率是多少,并确定出单位“1”的量。
2. 确定解题方法。
如果题目中单位“1”的量是未知的,就采用除法,进而转化为乘法运算;如果题目中单位“1”的量是已知的,就采用乘法运算。
3. 对应解题。
根据数量关系,把具体数量与分率对应起来,列出算式并计算。
二、分数应用题的解题步骤1. 读懂题意,确定解题方法。
在解答分数应用题时,首先要认真审题,弄清题目中涉及的量和分率,然后根据数量关系列出算式并计算。
2. 找准量与分率的对应关系。
在分数应用题中,量与分率对应是解题的关键。
要分清每个量所占的分率,进而确定出单位“1”的量。
3. 掌握基本数量关系式。
在分数应用题中,常用的数量关系式有:单位“1”的量×分率=部分量等。
4. 逐步解答。
在解答分数应用题时,要按照题目所给的条件,逐步解答。
一般可采用综合算式或分步计算的方法进行解答。
5. 检验答案。
在解答分数应用题时,要检验答案是否正确。
可以采用逆向思维或代入法进行检验。
三、分数应用题的练习方法1. 专项训练。
可以针对某一类型的分数应用题进行专项训练,如工程问题、行程问题等。
通过专项训练,可以加深对某一类型题目的理解和掌握。
2. 多做练习。
熟能生巧,多做练习是提高分数应用题解题能力的有效方法。
可以通过练习册、习题集等途径进行练习。
3. 归纳总结。
在练习过程中,要注意归纳总结解题方法,形成自己的解题思路和技巧。
同时,也可以借鉴他人的经验和技巧,不断提高自己的解题能力。
4. 注重思路。
在练习过程中,不要只关注答案是否正确,更要注重解题思路是否清晰、合理。
只有掌握了正确的解题思路,才能真正提高分数应用题的解题能力。
如何巧解分数应用题

如何巧解分数应用题一、总量不变例1:某校五年级一班学生参加大扫除的人数是未参加的41,后来又有2个同学参加,这时参加的人数是未参加人数的31,该班有学生多少人?分析解答:这班学生分为两部分:参加大扫除和未参加大扫除的。
后来又有两个同学参加,现在参加大扫除人数和未参加大扫除人数都在变化,而五年级总人数没变。
把五年级总人数看作单位“1”,原来参加大扫除占单位“1”的1÷(1+4)=51,现在参加大扫除占单位“1”的1÷(1+3)=41,所以2个同学占单位“1”的(41-51)=201。
全班学生就是 2÷201=40(人)。
二、部分量不变例2:有科技书和文艺书360本,其中科技书占总数的91,现在又买来一些科技书,此时科技书占总数的61。
又买来多少本科技书?分析解答:由于又买进一些科技书,科技书的数量增加了,两种书的总数也随着增加,只有文艺书的数量未变,可以先求出文艺书的数量:360×(1-91)=320(本).根据现在科技书占总数的61,知道文艺书占新总数的(1-61)=65,可以求出新的总数:320÷65=384(本),最后求出又买来科技书本数:384-360=24(本)。
三、差量不变例3:苹果比雪梨多240千克,苹果和雪梨都卖出100千克后,雪梨是苹果的107,苹果和雪梨原来各有多少千克? 分析解答:苹果和雪梨相差240千克,两种量都减少100千克后,它们的差是保持不变的,仍然相差240千克,这个数量占现在苹果的1-107=103,因此,把现在的苹果看作单位“1”,用240÷103=800(千克),求出现在苹果的数量,用800+100=900(千克)就可求出原来苹果的数量,最后用900-240=660(千克)就可求出原来雪梨的数量。
总而言之,同学们若能注意数量之间的变化,善于抓住不变量。
解答时把单位“1”往不变量上统一,往往可以很快找到解题的途径,所以“变中抓不变”的思想是一种重要的思考问题的方法。
分数除法应用题的解题技巧

分数除法应用题的解题技巧
1. 嘿呀,大家注意啦!找单位“1”可是关键哦!比如这道题:小明吃了一堆苹果的四分之一,这“一堆苹果”不就是单位“1”嘛!你可别找错了呀!
2. 哇塞,看到分数除法应用题,先想想等量关系式呀!就像“速度×时间=路程”这样的,一旦找到等量关系,解题就容易多啦!比如:小红每分钟走50 米,10 分钟走了多远?不就是有了等量关系嘛!
3. 哎呀呀,把除法转化成乘法有时候超好用的呀!例如:五分之一除以三分之二,不就可以变成五分之一乘二分之三嘛,这样是不是简单多了?
4. 嘿,要学会画图呀!把题目中的关系用图表示出来,那可就清晰明了。
比如:有 10 个苹果,分了一半给别人,画个图立马就清楚啦!
5. 哈哈,有些题目里隐藏的条件可要找出来哦!就像那道题,说小明比小红高 10 厘米,这里面不就藏着信息嘛,能帮助你解题呀!
6. 哇哦,一定要看清题目中的陷阱呀!有时候一个小细节就能决定对错呢。
比如题目说“提高了”和“提高到”那可完全不一样呀!
7. 哟呵,做完题检查一下很有必要呀!万一粗心算错了呢。
你想想,要是因为粗心丢分,那多可惜呀!
8. 嘿,有时候可以从问题入手倒着推呀!比如问你一共多少个,那你就想想根据哪些信息可以求出总数呀!
9. 哈哈,分数除法应用题其实并不难呀,只要掌握了这些技巧,还怕解不出来题吗?大家加油哦!
我的观点:掌握好这些解题技巧,分数除法应用题就能轻松拿下!。
分数乘除法应用题解题步骤与技巧

分数乘除法应用题解题步骤与技巧分数百分数应用题是五、六年级数学中的重点和难点,也是进一步学习初中数学的重要基础。
但是有相当多的学生遇到分数应用题就感到困难。
以下是小编整理的关于分数乘除法应用题解题步骤与技巧,希望大家认真阅读!解答分数应用题的步骤概括的说是:一找、二转、三画、四列、五算、六查这六个环节。
一找:找单位“1”的量。
找单位“1”的量是解答分数应用题的前提,靠“是”谁、“比”谁、“占”谁,“相当于”谁就把谁看做单位“1”的量,靠生搬硬套仅能解决一部分分数应用题。
例如:*的2/5比乙多3/8米,比乙就把乙看作单位“1”是错误的,正确的是要分析2/5是谁的,就把谁看作单位“1”。
分析应用题句子中的分率是分谁就把谁看作单位“1”是最可靠的找单位“1”的方法。
二转:转化单位“1”在分数应用题中,如果题中只有一个单位“1”,那么再难也难不到哪里去了。
只有一个单位“1”的题,可以直接进入下一步,画线段图。
如果题中有多个单位“1”就需要先转化单位“1”再画线段图。
转化单位“1”也是有技巧的,例如:*是乙的3/5可以转化成乙是*的5/3、*比乙少2/5、乙比*多2/3、*是*乙之和的3/8等13种不同的情况,在单位“1”统一后,才能进行下一步,画线段图来解答。
三画:画线段图很多复杂的分数应用题,不画线段图是无法找到数量、分率之间的关系的。
只有学会画线段图,才能找到解答分数应用题的钥匙。
要把线段图画的准,应先画应用题中含有分率的句子,再画既有分率又有数量的句子,第三画含有数量的句子,最后画问题。
把分率画在线段的上方、数量画在线段的下方,可以避免学生把分率和数量相加,也方便清晰的找到数量和分率的对应关系。
四列:看图列式画完线段图,要学会看图,根据分数应用题数量关系列式。
单位“1”的量×所求问题的对应分率=所求问题对应量÷对应分率=单位“1”的量对应量÷单位“1”的量=对应分率五算:准确计算六查:认真检查把计算结果代入到原题中,能够推导回去或者用不同的解题方法得到同一个结果,可以验*,这道题解答正确。
分数除法的应用题解题技巧

分数除法的应用题解题技巧
1. 嘿,遇到分数除法的应用题不要慌!先找到关键信息呀!比如说,小明有 2/3 个苹果,要分给 4 个人,那每个人分到多少呀?这不就是求平均
数嘛,先搞清楚总数和份数,问题就迎刃而解啦!
2. 哇塞,要注意单位“1”哦!就像小红有一堆糖果,这堆糖果就是单位“1”。
如果告诉你她分出去了 1/4,那剩下多少不就好算了嘛!比如她有12 颗糖果,分出去多少颗是不是一下就知道啦?
3. 哎呀呀,分数除法里画图很重要呀!像小李要把一块蛋糕的 3/5 平均分
给 3 个朋友,你画个图,一目了然,是不是瞬间清楚怎么算了!
4. 嘿,别忘了等量关系式哦!就好像说小王跑了一段路的 2/3 是 10 千米,那这段路全长多少?找到那个等量关系呀,这种题就难不倒你啦!
5. 哇哦,约分和约分后的处理也很关键呀!比如计算 4/8 除以 2,约分后就简单很多啦,最后结果一下子就出来了,是不是很神奇?
6. 哈哈,把复杂的问题简单化呀!像小张有一堆书,其中 3/8 是故事书,
故事书有15 本,那这堆书一共有多少本?别想得太复杂,一步一步来就行!
7. 哎哟喂,有时候要转换一下思路哦!就好比小赵要把一块地的 4/5 种上
蔬菜,那没种蔬菜的占多少?换个角度想,是不是一下子就清楚啦?
8. 呀,仔细审题很重要的呀!如果题目说小芳把1/2 个蛋糕平均分成4 份,你可别看成整个蛋糕啦,那可就闹笑话啦!
9. 嘿嘿,掌握了这些技巧,分数除法应用题就不难啦!遇到问题多想想这些方法呀,肯定没问题的!
我的观点结论就是:只要你用心去掌握这些解题技巧,分数除法应用题绝对不再是难题!。
指导小学生解决分数应用题的技巧

指导小学生解决分数应用题的技巧
分数是小学数学中的基础知识之一,也是较为复杂的数学概念之一。
小学生面对分数应用题时,有时会感到头疼。
然而,只要使用正确的方法和技巧,小学生便能够迅速地解决分数应用题。
以下是指导小学生解决分数应用题的技巧:
1.将分数化为相同的分母
在计算分数的加减乘除应用题时,通常需要将分数化为相同的分母。
例如,计算
1/2+2/3,首先需要将分数化为相同的分母,可以将1/2化为3/6,将2/3化为4/6,然后就可以将它们相加为7/6。
2.使用分数乘法
在计算带分数相乘时,可以先将带分数转换为假分数,然后再进行乘法。
例如,计算2 1/2*3 2/3,可以将2 1/2转换为5/2,将3 2/3转换为11/3,然后将它们相乘为
(5/2)*(11/3) = 55/6,最后将结果化为带分数为9 1/6。
3.使用分数的倒数
在涉及到分数的除法时,可以使用分数的倒数来解决问题。
例如,计算2/3÷1/4,可以将1/4转换为4/1,然后将2/3乘以4/1,得到结果为8/3。
4.将分数转换为百分数
有时候需要将分数转换为百分数,例如,将2/5转换为百分数,可以将分数的分子乘以100,再除以分母,得到百分数为40%。
5.注意分数的大小
在分数的比较中,需要注意分母的大小。
分母越大的分数,它的值越小。
例如,1/2和1/3相比,1/2比1/3大,因为1/2的分母2比1/3的分母3大。
总之,小学生在解决分数应用题时,要首先理解问题,并将问题转换为相应的数学运算,掌握分数的运算法则和性质,特别是将分数化为相同的分母等技巧,才能准确地解决问题。
分数应用题解题技巧

分数应用题解题方法一、解题技巧:一抓,二找,三确定,四对应。
1.一抓:抓住关键句----含有分率的句子(不带单位的分数)2.二找:找准单位1的量:单位1一般都是在“的”前面,或是在“比、是、占、相当于”的后面。
看分率是谁的几分之几,谁就是单位1的量。
3.三确定:确定单位1是已知还是未知,单位1已知用乘法计算,单位1未知用除法或方程计算。
4.四对应:找出相对于的数量与分率。
乘法:单位1×对应分率=对应数量除法:对应数量÷对应分率=单位1二、解题方法:借助线段图帮助我们来分析数量关系,画图时先画单位1的量。
第一类:乘法一条公路:男生:女生:第二类:除法一条公路:男生:女生:三、分数应用题主要讨论的是以下三者之间的关系。
1.分率:表示一个数是另一个数的几分之几。
2.标准量:我们把单位1的量称为标准量。
3.比较量:我们把同标准量比较的量称之为比较量,也叫分率对应的数量。
四、分数应用题的分类。
第一类:已知两个数量,比较它们之间的倍数关系,应该用除法计算。
A求分率即就是求一个数是另一个数的几分之几。
(五下)基本关系式:比较量÷标准量=分率(几分之几)学校的果园里有梨树15棵,桃树20棵。
梨树是桃树的几分之几?B求一个数比另一个数多几分之几。
(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。
桃树比梨树多几分之几?C秋一个数比另一个数少几分之几。
(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。
梨树比桃树少几分之几?第二类:单位1已知,用乘法计算。
A求一个数的几分之几是多少。
(五下)把已知数量看多单位1,就是求它的几分之几是多少,它反映的是部分与整体之间的关系。
基本关系式:单位1的量×对应分率=对应数量1.一条公路全长1200米,已经修了全长的13,修了多少米?2.一支钢笔单价是30元,圆珠笔的单价是钢笔的16。
分数应用题的方法和技巧

分数应用题的方法和技巧
在解答分数应用题时,以下是一些常用的方法和技巧:
1. 确定未知数:首先明确问题中的未知数,并用一个变量来表示。
例如,如果问题涉及到某个人的年龄,可以用x来表示这个人的年龄。
2. 变量的分数表达式:根据问题描述,将变量表示为一个分数表达式。
例如,如果问题中提到某个人年龄的1/3等于15岁,则可以表示为x/3 = 15。
3. 解方程:将问题转化为一个方程,并求解这个方程来得到未知数的值。
在上述例子中,通过乘以3,可以得到x = 45。
4. 确认答案的合理性:将未知数的值代入原方程中,确认答案的合理性。
在上述例子中,将x = 45代入x/3 = 15,可以验证
等式成立。
5. 注意化简:在解题过程中,可能需要对分数进行化简。
例如,将2/4简化为1/2,便于计算。
6. 注意单位转换:问题中可能涉及到单位的转换。
在解题过程中,需要注意将单位转换为一致的形式,以便计算。
7. 图形辅助:对于某些问题,可以用图形进行辅助。
例如,在解决比例问题时,可以用图形表示比例关系,帮助理解和解决问题。
8. 相关知识点:对于一些特定的类型的分数应用题,掌握相关的数学知识点会有帮助。
例如,理解分数的基本运算法则、比例关系的性质等。
以上是一些常用的方法和技巧,希望对解答分数应用题有所帮助。
巧找标准量 妙解分数应用题

巧找标准量妙解分数应用题分数在我们的学习中起着重要的作用,它可以帮助我们分析发现各种问题,并解决这些问题。
解决分数应用题也是一项重要的学习内容,需要学生们具备良好的思维能力、推理能力和计算能力,因而,如何能够有效地解决分数应用题是每个学生都需要思考的问题。
在解决分数应用题时,巧找标准量是十分有效的一种方法。
最基础的方法就是去寻找分数的最低公分母,也就是说,我们要将多个分数转换为最低公分母的分数,这样能够帮助我们更加快速方便地看清问题的核心。
比如,有一道题目:3/4 + 2/6 = ?这时,我们可以将3/4和2/6变成最低公分母的分数,即9/12 + 4/12 = 13/12,就可以轻松地求出答案。
另一种情况是当我们需要解决更加复杂的问题时,我们可以利用标准量法,将分数转换成它们能够比较的数值。
比如,我们有一道题目:2/3 + 3/5 = ?我们可以将2/3和3/5都转换为15/15,这样就可以很快地求出答案: 15/15 + 15/15 = 30/15。
另外,学生们还可以通过应用其他的数学技巧,如拆分法、代入法等,来解决分数应用题。
拆分法是指将一个复杂的句子拆分成几个简单的句子,然后从中求得答案,从而达到解决问题的目的。
例如,我们有这样一道题目:3/4 + 1/3 - 2/5 = ?我们可以将这个句子拆分成两个句子:3/4 + 1/3 = 7/12,7/12 - 2/5 = 17/30,即答案为17/30。
代入法是指将某一分数的分子或分母代入到另一个分数中,以解决问题。
比如,有一个题目:3/8 + 2/a = 1/6我们可以将3/8的分子代入到2/a的分母中,即2/24 = 1/6,求得a=24,即答案为2/24。
当然,解决分数应用题还需要学生们掌握一定的数学概念,包括等比数列、比例、最大公约数,这些概念它们都可以帮助我们解决分数应用题中的各种疑难问题。
总之,在解决分数应用题时,巧找标准量的方法是十分有效的,我们可以利用它来轻松解决一些复杂的问题,也可以利用它来熟练掌握一些基本的数学概念,从而提高我们解决分数应用题的能力。
分数除法应用题小窍门

分数除法应用题小窍门
在解决分数除法的应用题时,可以采用以下小窍门:
1. 将问题转化为分数除法的形式:将问题中的关系描述清楚,明确被除数、除数和商之间的关系。
2. 化简分数:将分数连分子分母都约分到最简形式,这样可以避免繁复的计算。
3. 将除法转化为乘法:将分数除法问题转化为相应的乘法问题,这样可以简化计算过程。
例如,a ÷ b 可以转化为 a × (1/b)。
4. 分数的乘法:对于带分数相乘或分数乘法问题,可以将其转化为分数乘法计算,然后再进行约分。
5. 注意单位的换算:有些应用题中可能会涉及单位换算,例如将米转换为厘米、升转换为毫升等。
在进行计算时要注意单位的换算关系。
6. 注意问题中的条件限制:有些应用题中可能会有一些条件限制,例如除数不能为零、商必须是正整数等。
在解题时要将这些条件限制考虑进去,避免出现非法解或不符合实际情况的解。
分数应用题解题技巧

一条1公路,已经修了4/7
公路长度×4/7=已修长度
另外,分数应用题中有一个“量率对应”的明显特点,对一 个单位“1”来说,每个分率都对应着一个具体的数量,而每一个 具体的数量,也同样对应着一个分率,因此,正确地确定“量率 对应”是解题的关键。比如:
一本书有240页,小兰已经看了全1书的 2 ,已经看了多少页?
应的分率转化成相当于整体的几分之几,再进行解答。比如:
1
3
一本书有240页,小兰第一天看了全书的 ,第二天看了余下的 ,
4
5
剩下的第三天看完。她第三天看了多少页?
分析:这道题目中,小兰第一天看的页数与第二天看的页数这两个分 率的单位"1"是不一样的。我们可以先将第二天看的页数转化成看了 全书的几分之几,然后再进行解答。当然,这道题还有其它解法。
2
一本书有240页,小兰已经看了全书的 ,还剩下多少页没
有看?
3
分析:这道题目中,已看的分率是已知条件,而问题是求未看的页数。
我率们是2可(1以- 根)据,“再已根看据页“数单+位未1看的页量数×对=总应页分数率”=对知应道量未”看求部出分未的看对的应页分 数。3
三、学会分率的正确转化。
1、分数与比的转化
240(11)(13) 45
2 4011411453
在解答分数应用题或有关比的应用题时,我们还要学会根据分 数与比的关系,灵活地将分数转化成比或将比转化成分数,从而 降低解题的难度。比如:
六(1)有52人,男生与女生人数的比是6:7。男、女生各有 多少人?
分析:这道题目,我们可以采用“按比例分配”的方法来解。也可以 根据男、女生人数的比先求出男、女生人数各占总人数的几分之几, 再求出52人的几分之几是多少。
分数应用题解的技巧

分数应用题解的技巧解答分数应用题要做到“四个善于”(这里的方法其实也是一种思路)分数应用题变化多端,但我们只要仔细审题,掌握一定的解题技巧,便能迎刃而解.一、善于对应.在解答分数(百分数)应用题时,找不准数量之间的对应关系是造成错误的重要原因.因而,要正确解答分数应用题首先要善于找出数量之间的对应关系.如:某工厂有工人1350人,其中男工人占,男工人比女工人多多少人?根据题意,可找出下列对应关系:二、善于比较.有意识地进行题组比较,能使我们分清分数应用题的结构特征,清晰分数应用题的解题思路.如:(1)水果店运来苹果2000千克,比运来的梨多,梨有多少千克?(2)水果店运来苹果2000千克,运来的梨比苹果多,梨有多少千克?比较两道题,就会发现:一是单位“1”不同.(1)题中的单位“1”是梨的数量(未知);(2)题中的单位“1”是苹果的数量(已知).二是数量2000千克对应的分率不同.(1)题中2000千克对应的分率是;(2)题中2000千克对应的分率是“1”.三是类型不同.(1)题是“已知一个数的几分之几是多少,求这个数”,用方程或除法解答;(2)题是“求一个数的几分之几是多少”,用乘法解答.四是列式与计算结果不同.三、善于假设.遇到某些难以解答的分数应用题,我们不妨合理假设具体条件,使抽象的数量关系具体化.如:水结成冰时,体积增加.冰化成水时,体积减少几分之几?我们可先假设水有11立方米,求出水结成冰后的体积是12立方米,再求出冰化成水后体积减少几分之几:即.四、善于沟通.对相类似的知识进行联想沟通,能使我们解题时融会贯通,举一反三.如:(1)小明去买早点,包里的钱单买油条可买10根,单买包子可买5个.他买了2根油条后,还可买几个包子?(2)一块木料单做椅子可把10把,单做桌子可做5张.李师傅先用这块木料做了2把椅子,还可做几张桌子?如果我们把这一类题与工程问题进行沟通,就会很快找到解题思路.分数应用题是小学教学中的难点之一,它主要有三种类型:1.已知两个数,求一个数是另一个数的几分之几;2.已知一个数,求它的几分之几;3.已知一个数的几分之几是多少,求这个数。
分数乘除法应用题的解题技巧和策略

分数乘除法应用题的解题技巧和策略分数的乘除法是数学中一个常见而且重要的运算方式,在学习和掌握分数的乘除法应用题时,学生常常会遇到一些难题和困惑。
为了帮助学生更好地理解和掌握分数的乘除法应用题,本文将介绍一些解题技巧和策略,希望能够对学生的学习有所帮助。
解题技巧一:化简分数在解决分数的乘除法应用题时,经常需要对分数进行化简,化简后的分数更加直观,方便计算。
化简分数的方法是找出分子和分母的最大公因数,然后将分子和分母都除以最大公因数。
对于分数3/9,最大公因数是3,所以可以化简为1/3。
化简后的分数可以减少计算误差,提高解题效率。
解题技巧二:找出分数的乘法和除法规律分数的乘法规律是分子相乘得到新的分子,分母相乘得到新的分母,然后将得到的新分子和新分母组合在一起即可。
计算1/2乘以3/4,得到的结果是1*3/2*4=3/8。
而分数的除法规律是将除数取倒数,然后进行乘法运算。
计算1/2除以3/4,得到的结果是1/2乘以4/3=4/6=2/3。
掌握了分数的乘法和除法规律,可以更加轻松地解决分数的乘除法应用题。
解题技巧三:建立分数乘除法应用题的数学模型解决数学问题最重要的一步是建立数学模型,构建出问题的数学表达式。
对于分数的乘除法应用题,可以根据题目中所涉及的物品数量、单位价格、运算关系等要素,建立出适当的数学模型,然后通过计算模型中的相关数据得到最终答案。
建立数学模型可以帮助学生更好地理解问题,并且避免在解题过程中迷失方向。
解题技巧四:将问题分解为小步骤有些较为复杂的分数乘除法应用题,可以将问题分解为一系列小步骤,逐步解决每个小问题,然后将结果组合在一起得到最终答案。
这样做可以使解题过程更加有条不紊,避免出错,提高解题效率。
解题技巧五:举一反三,巩固基础知识通过解决分数的乘除法应用题,可以举一反三,巩固和提高一些基础的分数运算知识。
在解题过程中,如果发现自己对分数的基本运算规律不够熟悉,可以暂时放下题目,回过头来温习和复习分数的基本运算规律,这样可以帮助提高解题的能力和水平。
分数的应用题六种解法

分数的应用题六种解法分数是数学中常见的表示比例和部分的方式,它在生活中的应用也非常广泛。
今天,我将为大家介绍六种解决分数应用题的方法。
一、画图法画图法是一种直观的解题方法。
以某个具体的例子来说明。
假设小明有2/3的巧克力,小红有1/4的巧克力,他们想将巧克力平均分配。
我们可以画两个巧克力盒,并按比例将巧克力分配给小明和小红。
这样,他们就可以直观地理解分配的过程。
二、找最小公倍数解决一些关于分数的应用题时,我们需要找到最小公倍数。
例如,小明每天按照1/5的速度走路,小红按照1/3的速度走路,他们同时从同一个地方出发,问多少天后他们会在同一个地方相遇。
我们可以找到1/5和1/3的最小公倍数,即15。
因此,他们将在15天后相遇。
三、转化为整数运算有些分数应用题可以转化为整数运算来解决。
例如,小明用1/2小时完成作业,小红用1/3小时完成同样的作业,问他们两人一起完成这个作业需要多长时间。
我们可以将1/2和1/3转化为分母的最小公倍数,即6。
因此,他们一起完成这个作业需要1/6小时。
四、比较大小在比较大小的应用题中,我们需要将两个或多个分数进行比较。
例如,小明用2/5的时间做数学题,用1/4的时间做英语题,问他用了更多的时间做数学题还是英语题。
我们可以将2/5和1/4的分母取相同的最小公倍数,即20。
然后比较分子的大小,即2和5,得出结论小明用了更多的时间做数学题。
五、分数的加减运算在分数的加减运算中,我们需要将分母相同的分数进行运算。
例如,小明走了3/5的路程,小红走了2/5的路程,问他们总共走了多少路程。
我们可以将3/5和2/5的分母取相同的最小公倍数,即5。
然后将分子相加,得到答案5/5,即1。
因此,他们总共走了1个路程。
六、分数的乘除运算在分数的乘除运算中,我们需要将分子进行运算,再将分母进行运算。
例如,小明用2/3小时做完一个作业,小红用3/4小时做同样的作业,问小红完成这个作业需要多长时间。
6年级分数应用题解题技巧

6年级分数应用题解题技巧一、找准单位“1”1. 技巧一般来说,“是”“比”“占”后面的量就是单位“1”。
例如:“男生人数是女生人数的公式”,这里女生人数就是单位“1”;“甲数比乙数多公式”,乙数是单位“1”。
2. 题目解析例:某工厂去年生产零件1200个,今年生产的零件数比去年多公式,今年生产零件多少个?解析:这里“比”字后面是去年生产的零件数,所以去年生产的零件数1200个就是单位“1”。
今年生产的零件数是在去年的基础上多公式,那么今年生产的零件数就是去年的公式倍。
计算:公式(个)二、画线段图辅助理解1. 技巧用一条线段表示单位“1”,根据题目中的数量关系,将其他量用线段表示出来。
例如,对于“甲是乙的公式”,先画表示乙的线段,再将其平均分成3份,取其中2份表示甲。
2. 题目解析例:水果店里苹果和梨一共有300千克,苹果的重量是梨的公式,苹果和梨各有多少千克?解析:先画表示梨重量的线段,把它看作单位“1”。
再根据苹果重量是梨的公式,画出表示苹果重量的线段。
从图中可以看出,苹果和梨的总重量对应的份数是公式份。
计算:梨的重量为公式(千克),苹果的重量为公式千克。
三、根据分数的意义解题1. 技巧理解分数表示的是把单位“1”平均分成若干份,表示这样一份或几份的数。
例如,公式表示把单位“1”平均分成5份,取其中的3份。
2. 题目解析例:把一根绳子剪成两段,第一段长公式米,第二段占全长的公式,哪段绳子长?解析:根据分数的意义,第二段占全长的公式,那么第一段就占全长的公式。
因为公式,所以第二段绳子长。
四、利用方程解题1. 技巧设单位“1”的量为公式,根据题目中的数量关系列出方程求解。
2. 题目解析例:一个数的公式比这个数的公式多10,这个数是多少?解析:设这个数为公式。
根据题意可列出方程:公式。
通分得到公式,即公式。
解得公式。
分数应用题解题技巧及口诀

分数应用题解题技巧及口诀
1. 哎呀呀,遇到分数应用题先别慌!咱要找关键量呀!就像找宝藏一样,找到了关键量,问题就好解决啦!比如说,有一道题说小明吃了一堆苹果的$\frac{1}{3}$,那这“$\frac{1}{3}$”就是个关键呀,咱得围绕它来解题呀!明白不?
2. 嘿!遇到那种问整体是多少的,就得用除法啦!这就好比是要把一块大饼还原成整个的呀!比如题目说知道了部分是多少,又知道占整体的几分之几,那赶紧用部分除以所占比例,整体不就出来啦!能懂不?
3. 哇塞,有的时候可以画图呀!把分数的关系用图表示出来,一下子就清楚啦,就跟地图让人看懂路线一样呢!像有个题是说甲占乙的几分之几,那画个图,甲乙的关系不就明明白白啦!是不是很神奇呀?
4. 记住咯,看到增加或减少的分数,得小心啦!可不能马虎哟!这就像是走钢丝,得步步谨慎!比如说题目说某东西增加了$\frac{1}{4}$,那咱就得把原来的看作单位“1”,然后再计算呀!对不?
5. 哈哈,分数应用题里的单位“1”很重要呀!就像游戏里的老大一样!一
旦确定了单位“1”,就像找到了方向啦!比如人家问你某东西占谁的几分
之几,那赶紧找到那个“1”呀!这不难吧?
6. 哎呀呀,咱还得学会灵活转化呀!分数可以变来变去的呢,就像孙悟空七十二变一样!例如知道了甲是乙的几分之几,那乙是甲的几分之几不也就可以算出来啦!是不是很有意思呀?
我的观点结论:只要掌握了这些技巧和口诀,分数应用题就没那么可怕啦,咱都能轻松应对!。
(完整word版)用倒推法巧解分数应用题

用倒推法巧解分数应用题如东县曹埠镇曹埠小学六年级王翀宇(226402)最近我们学习了分数应用题, 通过学习, 我发现了有些分数应用题, 我们可以用倒推的方法, 也就是按照题目中叙述过程的相反顺序来思考、分析, 从而比较顺利地求出了结果。
例如: 一只猴子在山上摘桃子吃。
第一天吃了一棵树上桃子数的1/10, 以后两天分别吃了当天这棵树上剩下桃子数的1/5.1/3。
这样, 这棵树上还留下48个桃子。
这棵树上原有多少个桃子?我想:从已知条件的最后结果出发, 倒推过去思考。
由猴子在第三天吃剩下桃子数的1/3后, 树上还有48个桃子这个条件出发, 可以知道, 猴子吃了2天后树上的桃子数为:48÷(1-1/3)=72(个)同理推出, 猴子第一天吃了以后树上的桃子数为:72÷(1-1/5)=90(个)树上原有的桃子数为:90÷(1-1/10)=100(个)答: 这棵树上原有桃子100个。
比如: 小明看一本书, 第一天看了这本书的1/2还多6页, 第二天看了余下的1/3, 这时还剩下42页。
这本书一共有多少页?我是这样想的:由第二天看了余下的1/3后, 还剩42页, 可知:余下的页为: 42÷(1-1/3)=63(页)全书页数的1/2为: 63+6=69(页)全书的页数为: 69÷1/2=138(页)解: 42÷(1-1/3)=63(页)(63+6)÷(1-1/2)=138(页)答: 这本书一共有138页。
还有这样一题: 白兔、黑兔各采蘑菇若干千克, 白兔拿出1/5给黑兔, 黑兔再拿出现有蘑菇的1/4给白兔, 这时它们都有蘑菇18千克。
它们原来各采蘑菇多少千克?这道题我是这样想的:从题目中的最后一个条件去想, 黑兔拿出现有蘑菇的1/4后还剩18千克, 那么它在未拿出之前应有蘑菇是:18÷(1-1/4)=24(千克)。
这也就是说, 黑兔拿出了24-18=6(千克)蘑菇给白兔, 白兔在得到黑兔蘑菇之前应有蘑菇是: 18-6=12(千克)。
分数应用题的解题技巧

分数应用题的解题技巧1. 嘿,大家知道吗,找单位“1”可是分数应用题的关键哦!比如说,“甲班人数是乙班的三分之二”,那这里的单位“1”不就是乙班嘛!这就像在一个大谜团中找到关键线索一样重要,能让我们快速理清思路,难道不是吗?2. 哇塞,遇到分数应用题时,咱得学会量率对应呀!就像有一堆苹果,知道了部分苹果占总数的几分之几,那就能找到对应的数量啊。
比如知道有三分之一的苹果是红色的,有 6 个红色苹果,这不就能求出苹果总数了嘛,神奇吧!3. 嘿呀,转换单位“1”也是很厉害的一招呢!举个例子,“甲比乙多二分之一”,如果把乙看成单位“1”,那么甲就是一又二分之一呀。
就好像给问题变了个魔法,一下子就找到解决办法啦,是不是很妙?4. 哎呀,要善于抓住不变量哦!像有一道题,男生走了几人后,男女生人数比例变了,但总人数不变呀。
这就如同在混乱中找到了那个一直稳稳的坚守者,能帮我们搞定难题呀,对不对?5. 嘿嘿,画线段图可太有用啦!比如“小明的钱比小红多三分之一”,就可以用线段图画出来,一下子就直观了。
这就像给问题拍了一张清晰的照片,让我们看得明明白白的,你说好不好?6. 哇哦,学会比例知识也能助我们一臂之力呢!像有个题说三个人的工作量之比是 2:3:4,那分配东西不就简单啦。
这好比给问题安上了翅膀,让它不再难倒我们呀,是不是呀?7. 哈哈,用方程来解分数应用题也是不错的选择哟!比如说“一个数的三分之一比它的四分之一多5”,设这个数为 x,列方程就能轻松搞定啦。
就像有了一把万能钥匙,能开各种难题之锁呢,很酷吧!8. 哟呵,千万别小瞧假设法呀!假设一些情况,能让问题变得清晰起来。
比如“鸡兔同笼”的问题,假设全是鸡或全是兔,不就可以算了嘛。
这跟在黑暗中点燃一盏灯一样,能照亮我们解题的路呢,厉害吧!9. 咱得记住,多练习才能把这些技巧掌握得牢牢的呀!只有不断实践,才能在分数应用题的海洋中畅游无阻呀!大家加油哦!我的观点结论:分数应用题的解题技巧有很多,只要我们善于运用这些技巧,多思考多练习,就一定能把分数应用题拿下!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
快速巧解“比一个数多
(少)几分之几”的分数应用题
分数应用题是小学高年级数学课本上的重难点,内容繁杂深奥,学生掌握起来有一定的困难。
学生在解答“比一个数多(少)几分之几”的分数应用题时,就容易出错。
该加的地方用减,该乘的地方却用了除。
对于此类“顽症”,我在教学时就进行了一定的探索,偶有所得,谨记录下来供大家参考。
首先请大家来看这样一道题目:
学校有20个足球,足球比篮球多1/4,篮球有多少个?
按照正常的解题思路,我们首先要读题,分析,由“足球比篮球多1/4”知道“足球比篮球多的球个数是篮球的1/4,”从而确定篮球的个数是单位“1”,并据此画出线段图:
由图上始能看出“20个”对应的分率是(1+1/4),明白篮球的
(1+1/4)倍是20个,再根据“已知一个数的几分之几是多少,求这个数”用除法来计算,最终确定此题的解法是20÷(1+1/4)。
此一过程较为复杂,学生既要通过分析题目找出单位“1”,又要通过画图来找数字所对应的分率,还要确定用乘还是用除。
学生稍有不慎,就会差之毫厘,失之千里。
我就曾因为我的学生解题错误率过高而深深焦虑过。
后来,经过一段时期的思索,我发现了以下的一些规律:
(1)“比”字后面的一般就是单位“1”;
(2)所求问题如果是单位“1”,就用除法(根据几分之几对应的数÷几分之几=单位“1”的数);如果是求几分之几对应的数则用乘法(根据单位“1”的数×几分之几=几分之几对应的数)。
(3)凡是多、提高、增加……几分之几的都是用“1”加几分之几,凡是少、降低、节约……几分之几的都是用“1”减几分之几。
学生掌握了如上的几条规律,就可使错误率大大地降低,而且也可大大提高运算速度。
如下面的一道题:
某校今年植树300棵,去年比今年少1/5,去年植树多少棵?
首先我们一眼看到“比”字后面的是“今年”,可以确定今年的植树量是单位“1”,再看所求的问题,很明显不是求单位“1”(问的是去年的植树量),而是求几分之几对应的数,故而确定用乘法进行计算,又看到“去年比今年少.1/5”即可确定去年植树量所对应的分率是1—1/5。
综合上面就可很快列出本题的算式:300×(1—1/5)
你看这种解题方法是不是快速而准确呢?不信自己试着解答一下下面这四小题:
(1)停车场有18辆大客车,小汽车比大客车多1/6。
小汽车有多少辆?[18×(1+1/6)]
(2)停车场有18辆大客车,大客车比小汽车少1/7。
小汽车有多少辆?[18÷(1—1/7)]
(3)停车场有21辆小汽车,大客车比小汽车少1/7。
大客车有多少辆?[21×(1—1/7)]
(4)停车场有21辆小汽车,小汽车比大客车多1/6。
大客车有多少辆?[21÷(1+1/6)]
当然,以上规律只能是帮助学生快速解题,而不是放之四海皆准的真理。
如对下面的这一道题目,滥用上面的规律就很容易犯错。
五年级有男生15人,女生比男生少5/1,全班有学生多少人?
对于这一道题目,如果我们照搬上面的规律,就会得出15×(1—1/5)=12(人)这样一个错误的结论。
究其原因,是因为所求的问题虽然不是单位“1”(男生人数),但也不是几分之几对应的数(女生人数),而是男女生的总人数。
所以我们在教学同学们解题时,应该首先切实地让他们领会题意,而不是生硬地一开始就将上面的规律灌输给他们。
学生在理解了此类题目之后,教师再将规律传授
给他们,这样才有助于他们快速解题。
需知道规律只是帮助学生快速解题的一个助手,而不是为“懒汉”服务的。
另:当题目中的分率是百分数时,以上的三条规律同样适用。