2018技能高考模拟题(数学部分)(可编辑修改word版)
(完整版)2018技能高考模拟题(数学部分)
2018技能高考模拟题(数学部分)―、选择题(本大题共6小题,每小题5分,共30分)1. 下列四个命题:(1)空集没有子集.(2)空集是任何集合的真子集(3)}0{=ϕ(4)任何集合必有两个或两个以上的子集.其中正确的有( )个A.0B. 1C.2D.32.下列函数:(l )2x y =,(2)3x y =,(3)x x y -+=11lg,(4)21131--=x y 其中奇函数有( )个A.3B.2C.1D.03.下列命题:(l )02sin 2cos >-,(2)若54sin =a ,则53cos =a . (3)在三角形ABC 中,若A A cos 3sin 2=,则角A 为30度角.其中正确的有()个A.3B. 2C.1D.04.下列说法:(1)两个相等的向量起点相同,则终点相同.(2)共线的单位向量相等.(3)不相等的向量一定不平行.(4)与零向量相等的向量一定是零向量.(5)共线向量一定在一条直线上.其 中正确的有( )个A.2B.3C.4D.55. 有点(3,4),(3-,4-),(1,1+3)(1-,31-),其中在直线013=+-y x 上的有()个A.1B.2C.3D.46.下列说法中:⑴数列{112-n }中负项有6项.(2)73为数列{12-n }中的项.(3)数列2.4.6.8可表示为{2. 4. 6.8}.其中正确的有()个A.0B.1C.2D.3二、填空题(本大题共4小题,每小题6分,共24分)1.若数列{n a }中,11++=n n n a a a 对任意正整数都成立,且216=a ,则5a = 。
n a = 。
2. 若a =(3,4),b =(2,1),且(a +xb ))(b a -⊥ = 。
3. 满足21sin ≥a 的角a 的集合为 。
4. 4.函数|3|log 21-=x y 的单调减区间为 。
三、解答题(本大题共3小题,每小题12分,共36分)1.(1)角a 的终边上一点P 的坐标为(t t 3,4-)(t 不为0),求a a cos sin 2+.(2)设2e ,2e 是两不共线的向量,若涵212ke +=,113e e +=,212e e -= 若三点A 、B 、D 共线,求k 的值.2.(1)求函数)62sin(3π-=x y 的单增区间. (2)说出函数)3tan(π-=x y 的周期和单调区间.3.(1)过点P (1-,1-)的直线与两坐标轴分别相交于A 、B 两点,若P 点为线段AB 的中点,求该直线的方程和倾斜角.(2)已知数列{n a }为等差数列,n S 为其前n 项和,且77=S ,1515=S . ①求n S .②若为数列的{nS n }前n 项和,求n T .。
高职高考数学模拟试卷
---精品文档欢迎来主页下载 2018高职高考数学模拟试卷120分钟。
小题,满分150分。
考试时间本试题卷共24注意事项:、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、1铅笔将试卷类型填涂在答题卡试室号、座位号填定在答题卡上。
用2B 相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴除”铅笔把答题纸上对应题目的答案标号用2B2、选择题每小题选出答案后,涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4、考生必须保持答题卡的整洁。
不能使用涂改液。
A试卷类型:75分)小题,每小题5分,共一、单项选择题(本大题共15在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
????5,44N?,3M?,0,1,23,)1.已知集合,,则下列结论正确的是( ????MM?NN?52,0,1?N?,3,4?MN?M D. C. A. B.log(x?1)2?x)f(的定义域是(2 、函数)x?2A B CD ),??(((??,0)1,2]2)21(,log2?log31a?0?”的(”是“)3.“aa A.必要非充分条件 B.充分非必要条件C.充分必要条件D.非充分非必要条件4. 下列等式正确的是( ) .7lg7?lg B. A. 1lg3?lg7?3lg3lg37?7lg D.C. 37lg3lg?3lg7?????????xcb??1,02,a?4,5x? ( ,).5. 设向量,,且满足与,垂直则cba?11? C. D. A.B. 2?2223x?1?2的解集是()6.不等式精品文档.欢迎来主页下载---精品文档11???? B. C.(-1,3) D.(1,3) A.?1,,1????33????.)x+y-5=0的直线方程是(7、过点A(2,3),且垂直于直线2 2x+y-7=0 x-y-1=0 D、x-2y+4=0 B、y -2 x +4=0 C、2A、). 函数的最大值是( 8. )?4sinxcosx(x?Rf(x) D. C. B.A. 8412k??),则9.已知角的值是(终边上的一点?cos,?4),P(3k41216 D.A.C.. B ?3?4?55?.)平移后的图象对应的函数为(的图象按向量10、函数,1)?a=(x2y?sin6??B、A、1)?y?sin(2y?sin(2x?)?1x?63??D、、C1y?sin(2x??x?)y)?1?sin(236n???a).已知数列a 的前项和,则( 11. ?Sn5nn1n?5141 D. C. A. B. 654230x,,xx,x,xxxxxx,则的均值为,均值为,,,12. 在样本若90805314254213xxxxx ). 均值( ,,,,54231 D. C. A. B. 90848085 22yx1??. )、双曲线则它到右焦点的距离(13上的一点到左焦点的距离是6,925??D、4或16 16 C、4 4 、A16 B、或3?a?aa?10,a?}{a)且中,,则有(.等差数列14 3125n2??3a???a???a2,?a?2d?3,d33,d2,d..B .C.DA 1111的样本数据,分组后组距与频数如下表:一个容量为15.40精品文档.的频率为()则样本在区间[60,100]A.0.6 B.0.7 C.0.8 D.0.9分,共25分)二、填空题(本大题共5小题,每小题5????*a.16. 已知等比数列且,则,满足9a?a?aa?0Nn?756nn?33|?|?2,|b|a??ba. ,且b和的夹角为,则17. 已知向量a4率概是偶数的个数,则这个数五从1,2,3,4,5个数中任取一18. 。
中职对口升学-2018年高考数学考试卷-修改版
第二部分 数学班级: 学号: 姓名: 一、单项选择:(每小题5分,共40分)1.下列关系正确的是( ).A.}{{0}φ≥B.{2,3}1∉C.0}4- x {x 22=∉ D.0}x 3∣{x 0>∈ 2.不等式42)(f -=x x 定义域是( ).A.),2[+∞B. ),2-[+∞C.]2,∞-( D. ]2-,∞-( 3.下列函数中,在),1[+∞是减函数是( ).A.)1(log )(2-=x x fB.1)(2+=x x fC. xx f 1)(= D.x x f 2)(= 4.已知向量),(3-4=→a ,)34-(,=→b ,则向量a 与向量b 的关系是( ). A.平行向量 B.相反向量 C.垂直向量 D.无法确定5.)13sin(2y 函数+=x 的周期可能是( ). A. 2πB. π2C. 25π D.π3 6.圆36)-()(22=++=b y a x y 的圆心坐标是( ).A. )(b a ,B. )(b a -,-C.)(b a -,D.)(b a ,-7.下列说法不正确的是( ).A.不在同一条直线上的三点一定能确定一个平面。
B.若两条直线同时垂直于同一条直线,那么这两条直线可能是异面直线。
C.两条直线一定能够确定一个平面。
D.一条直线与一个平面垂直,则这条直线垂直该平面内任意一条直线。
8.在一个不透明的袋子中,有10个黑球,8个红球,2个蓝球,某人从中任意取出一个球,那么取中蓝球的概率是( ). A.21 B.101 C.52 D.61 二、 填空题:(每题6分,共30分)9.)(67-cos 的值是 。
10. 直线x+y+2=0与2x-y-2=0的交点为(a ,b ),那么a-b 的值为 。
11. 某班有男生30人,女生20人,如果选男、女各1人作为学生代表参加梧州技能比赛,共有 种方法。
12.如右下图的一块正方体木料,若边长为a ,平面BCC ’B ’内的一点P 是B ’C 和BC ’的交点,则四棱锥P-ABCD 的体积为 。
2018年职高高考数学模拟试卷七
2018年河南省普通高等学校对口招收中等职业学校毕业生模拟考试数学试题卷(七)考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题(每小题3分,共30分,每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1.设U=Z,A={x |x=2k+1,k ∈Z},则U C A 等于( )A.{x |x=2k-1,k ∈Z}B.{x |x=2k,k ∈Z}C.{2,4,6,8…}D. {0}2.若对任意实数x ∈R,不等式|x |≥ax 恒成立,则实数a 的取值范围是( )A. a ﹤-1B.|a |≦1C.|a |﹤1D.a ≥13.已知f(x)=a log (x-1)(a>0,a ≠1)是增函数,则当1<x<2时,则f(x)的取值范围是( )A. (-∞,0)B. (0,+∞)C. (-∞,1)D. (1,+∞)4.已知a=e lg ,b=10ln ,其中e 是自然对数的底数,则下列选项正确的是( )A. b>l>aB. a>l>bC. a>b>lD.1>b>a5.若23sin ,21cos ==βα,且a 和β在同一象限,则()βα+sin 的值为( ) A. 213- B. 23 C. 23- D. 21 6.在等比数列{n a }中,=3a 12,=5a 48,则=8a ( )A.384B.-384C.±384D.7687.已知a =(2,1),b =(3,x),若(2a -b )⊥b ,则x 的值是( )A.3B.-1C.-1或3D.-3或18.直线ax+by=4与4x+ay-1=0互相垂直,则a=( )A.4B.±1C.0D.不存在9.下列命题正确的是( )①直线L 与平面a 内的两条直线垂直,则L ⊥a②直线L 与平面a 所成的角为直角,则L ⊥a③直线L 与平面a 内两条相交直线垂直,则L ⊥a④直线L ⊥平面a,直线m ∥L,则m ⊥aA.①②③B.②③④C.①③④D.①②④10.在()103-x 的展开式中6x 的系数是( ) A.-27610C B.27410C C.-9610C D.9410C二、填空题(每小题3分,共24分)11.设集合M={-1,0,1),N(-1,1),则集合M 和集合N 的笑系是 .12.设f (x )为奇函数,且f (0)存在,则f (0)= .13.计算:212943⎪⎭⎫ ⎝⎛+-= . 14.已知a 是第三象限角,则ααsin tan - 0(填﹥或﹤). 15.2218+与2218-的等比中项是 . 16.已知M(3,-2),N(-5,-1),且MP = 21MN ,则P 点的坐标是 .17.若圆锥的母线长为5,圆锥的高为3,则圆锥的体积为 .18.若事件A 与事件A 互为对立事件,且P(A)=0.2,则P(A )= .三、计算题(每小题8分,共24分)19.已知在一个等比数列{n a }中,=+31a a 10,=+42a a -20,求:(1)数列第四项的值;(2)数列前五项的值.20.如图一,在△ABC中,顶点A、B、C所对的边分别为a、b、c,已知B=C,ab=643,△ABC的面积为163,求b.21.抛掷两颗骰子,求:(1)两颗骰子都为6点的概率(2)两颗骰子点数之和小于5的概率四、证明题(每小题6分,共12分)22.已知()()31sin ,21sin =-=+βαβα,求证:(1) βαβαsin cos 5cos sin =;(2) βαtan 5tan =.23.菱形ABCD 在平面a 上,PA ⊥a,求证:PC ⊥BD.五、综合题(10分)24.已知直线:2x-y+m=0过抛物线2y =4x 的焦点.(1)求m 的值,并写出直线L 的方程;(2)判断抛物线与直线L 是否有交点,如果有,求出交点坐标.。
(完整word版)2018年高职高考数学模拟试卷(一)
试卷类型:A2018年高职高考第一次模拟考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的,答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}2,A a =,{}4B =,且{}1,2,4A B =U 则a =( )A .4B .3C .2D .12.函数0.2log (1)x -的定义域为( )A (1,2)B ](1,2C []1,2D )1,2⎡⎣3.已知,a b 是实数,则“0a =”是“()30a b -=”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .非充分非必要条件4.不等式2560x x --≤的解集是( )A . {}23x x -≤≤B .{}61x x -≤≤C . {}16x x -≤≤D .{}16x x x ≥≤或5.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)6.函数cos 2y x ⎛⎫=- ⎪⎝⎭π在区间,43ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .3 C .2 D .127.已知向量a r =(3,1),b r =(-2,1),则2a b -r r =( )。
2018年高职高考数学模拟试卷(一)
试卷类型:A2018年高职高考第一次模拟考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的,答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}2,A a =,{}4B =,且{}1,2,4A B =U 则a =( )A .4B .3C .2D .12.函数0.2log (1)x -的定义域为( )A (1,2)B ](1,2C []1,2D )1,2⎡⎣3.已知,a b 是实数,则“0a =”是“()30a b -=”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .非充分非必要条件4.不等式2560x x --≤的解集是( )A . {}23x x -≤≤B .{}61x x -≤≤C . {}16x x -≤≤D .{}16x x x ≥≤或5.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)6.函数cos 2y x ⎛⎫=- ⎪⎝⎭π在区间,43ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .3 C .2 D .127.已知向量a r =(3,1),b r =(-2,1),则2a b -r r =( )。
2018高职高考数学模拟试卷
2018 高职高考数学模拟试卷本试题卷共 24 小题,满分 150 分。
考试时间 120 分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填定在答题卡上。
用 2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴除”2、选择题每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4、考生必须保持答题卡的整洁。
不能使用涂改液。
试卷类型: A一、单项选择题(本大题共15 小题,每小题 5 分,共 75 分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
1.已知集合M0,1,2,3,4, N3,4,5,则下列结论正确的是()A.M NB. N MC.M N3,4D. MN0,1,2,52、函数f ( x)log 2 ( x 1)的定义域是()2 xA(,0) B (1,2)C(1,2] D( 2,)3.“0 a 1”是“log a2 log a3”的()A. 必要非充分条件B. 充分非必要条件C.充分必要条件D.非充分非必要条件4.下列等式正确的是 () .A.lg 7lg31B.7lg 7 lglg 3 3C. lg37lg3D.lg3 77lg3lg 75.设向量 a4,5 , b1,0 , c2, x,且满足 a b 与 c 垂直,则x().A.2B.1C.1D.2 226. 不等式 3x 1 2 的解集是()1 , B.1,C.(- 1,3) D.( 1, 3)A.11337、过点 A (2,3),且垂直于直线 2x+y-5=0 的直线方程是().A 、 x-2y+4=0B 、y -2 x +4=0C 、2x-y-1=0D 、 2x+y-7=08. 函数 f ( x) 4sin x cos x ( x R) 的最大值是 ().A. 1B. 2C.4D.89.已知角终边上的一点 P(3, 4), cosk,则 k 的值是()4A .16B .12C . 4D . 35510、函数 ysin 2x 的图象按向量 a= (6 ,1) 平移后的图象对应的函数为().A 、 y sin(2 x) 1 B 、 ysin(2 x) 136C 、 ysin(2 x) 1D 、 ysin(2 x) 16n311. 已知数列 a n 的前 n 项和 S n,则 a 5 ().n 1A.1 B. 1C. 4D.542305612. 在样本 x 1 ,x 2 ,x 3 ,x 4 ,x 5 若 x 1 , x 2 , x 3 的均值为 80 , x 4 , x 5 均值为 90 ,则x 1 , x 2 , x 3 , x 4 , x 5 均值 ().A. 80B.84C. 85D.9013、双曲线x 2y 21 上的一点到左焦点的距离是6,则它到右焦点的距离().25 9A 、16B 、4 或 16C 、4D 、 4 或 1614.等差数列 { a n } 中, a 5 10, 且 a 1 a 2 a 3 3 ,则有()A .a2, d 3a 1 2, d 3 C .a 3, d 2D .a 3, d21 B . 1115. 一个容量为 40 的样本数据,分组后组距与频数如下表:组距 [30,40)[40,50) [50,60)[60,70)[70,80)[80,90) [90,100]频数2336 11105则样本在区间 [60 ,100] 的频率为() A.0.6 B.0.7 C.0.8D.0.9二、填空题(本大题共 5 小题,每小题 5 分,共 25 分)16. 已知等比数列 a n ,满足 a n 0 nN *且 a 5 a 7 9,则 a 6.17. 已知向量 a 和 b 的夹角为3,且 | a | 2,| b | 3 ,则 a b.418. 从 1 , 2 , 3 , 4 , 5 五个数中 任取 一个 数, 则这 个数 是偶 数的 概率 是 。
2018年职高高考数学模拟试卷五
2018年河南省普通高等学校对口招收中等职业学校毕业生模拟考试数学试题卷(一)考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题(每小题3分,共30分,每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1. 集合M={(x,y)|xy ≤0,x ∈R ,y ∈R}的意义是( )A. 第二、第四象限内的点B. 第二象限内的点C. 第四象限内的点D. 不在第一、第三象限内的点2. 若|m-5|= 5-m ,则m 的取值是( )A. m ﹥5B. m ≥5C. m ﹤5D. m ≤53. 函数y=x 24-的定义域是( )A.[2,+∞)B.(-∞,2]C.[0,2]D.(-∞,+∞)4. 计算()2123-⎥⎦⎤⎢⎣⎡-的结果是( ) A.3 B.33 C.-3 D.3 5. 若m =2ln ,n =5ln ,则n m e +2的值是( )A.2B.5C.20D.106. 等差数列{n a }的通项公式是n a =-3n+2,,则公差d 是( )A.-4B.-3C.3D.47. 若a =(2,1),且b =(x,-2),则a ⊥b ,那么|b |等于( ) A.2 B.2 C.11 D.58. 椭圆1422=+y m x 的焦距是2,则m 的值是( ) A. 5 B. 5或8 C. 3或 5 D. 209. 垂直于同一个平面的两个平面( )A.互相垂直B.互相平行C.相交D.前三种情况都有可能10.()62-x 的展开式中2x 的系数是( )A. 96B. -240C. -96D. 240二、填空题(每小题3分,共24分)11.若集合A={1,a},B={2,2a },且A ∩B={2},则A ∪B= .12.函数y=2x +2x+3的值域是 .13.若 ()[]0lg log log 37=x ,则x= .14.函数f(x)=5sin(x+6π)+12cos(x+6π)的最小值是 .15.等比数列{n a }中,若24,63412=-=-a a a a ,则3S = .16.若向量a =(1,-3)与向量b =(2,m)平行,则m= .17.AB是圆0的直径,0是圆心,C是圆0上一点,PC与圆0所在平面垂直,则二面角A--的大小为 .BPC18.有10件产品,其中有2件是次品,不能放回地取出3件,则这三件都是正品的概率是 .三、计算题(每小题8分,共24分)19.解关于x的不等式2a-2(a+1)x+4﹥0(a﹥0).20.已知等差数列{a}的前n项和为n S,对任意n∈*N,且1S=3,3a=7n(1)求数列{a}的通项;n(2)求{a}的前n项和n S.n21.在一个10人小组中,有6名男生、4名女生,现从他们中任选2名参加演讲比赛,求:(1)恰好全是女生的概率;(2)至少有1名男生的概率.四、证明题(每小题6分,共12分)22.已知在△ABC 中,角A 、B 、C 所对的边为a ,b ,c ,满足B c C b A a cos cos cos 2+=,求证:∠A=60°23.已知βαβα⊥⊥=⋂PD PC AB ,,,垂足分别为C 、D ,求证:CD AB ⊥.五、综合题(10分) 24. 已知直线L 经过点(3-,4),且它的倾斜角是直线23+=x y 的倾斜角的2倍;(1)求直线L 的方程;求出直线L 与圆()16122=-+y x 的两个交点A 、B 的坐标,以及A 、B 两点间的距离. 鞠躬尽瘁,死而后已。
2018年高职高中高考数学模拟试卷习题
2018高职高考数学模拟试卷本试题卷共24小题,满分150分。
考试时间120分钟。
注意事项:1、答卷前,考生务必用黑色笔迹的钢笔或署名笔将自己的姓名和考生号、试室号、座位号填定在答题卡上。
用2B铅笔将试卷种类填涂在答题卡相应地点上。
将条形码横贴在答题卡右上角“条形码粘贴除”2、选择题每题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号。
3、非选择题用黑色笔迹的署名笔或钢笔将答案写在答题纸上。
4、考生一定保持答题卡的整齐。
不可以使用涂改液。
试卷种类:A一、单项选择题(本大题共15小题,每题5分,共75分)在每题列出的四个备选答案中,只有一个是切合题目要求的。
错涂、多涂或未涂均无分。
1.已知会合M0,1,2,3,4,N3,4,5,则以下结论正确的选项是()A.M N B.N MC.M N3,4 D.MN0,1,2,52、函数f(x)log2(x1)的定义域是()2xA(,0)B(1,2)C(1,2]D(2,3.“0a1”是“log a2log a3”的()A.必需非充足条件B.充足非必需条件C.充足必D.非充足非需条件必需条件4 .以下等式正确的选项是().A.l g7lg317lg7B.lglg33C.lg37lg3D.lg377lg3lg75 .r r1,0r2,x,且知足ab与c垂直,则x().设向量a 4,5,b,cA.2 B.1C.1D.2 226.不等式3x 1 2的解集是(),B.1,C.(-1,3) D.(1,3)A.117、过点A(2,3),且垂直于直线2x+y-5=0的直线方程是().A、x-2y+4=0B、y-2x+4=0C、2x-y-1=0D、2x+y-7=08.函数f(x)4sinxcosx(xR)的最大值是(.A.1B.2C.4D.89.已知角终边上的一点P(3,4),cosk,则k的值是()4A.16B.12C.4D.3 55r10、函数y,1)平移后的图象对应的函数为().sin2x的图象按向量a=(A 、ysin(2x1B、ysin(2x)1 36C 、ysin(2x1D、ysin(2x)1 631 1.已知数列a n 的前n项和S n,则a5().n1A.1B.1C.4D.43052在样本x1,x2,x3,x4,x5若x1,x2,x3的均值为80,x4,x5均值为90,则x1,x2,x3,x4,x5均值().A.80B.84 C.85D.9013、双曲线x2y21上的一点到左焦点的距离是6,则它到右焦点的距离().259A、16B、4或16C、4D、4或1614.等差数列{a n}中,a510,且a1a2a33,则有()A.a12,d3B.a12,d3C.a13,d2D.a13,d15.一个容量为40的样本数据,分组后组距与频数以下表:组距[30,40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]频数233611105则样本在区间[60,100]的频次为()二、填空题(本大题共5小题,每题5分,共25分)1 6.已知等比数列a n,知足a n0nN*且a5a79,则a6.1 7.已知向量a和b的夹角为3,且|a|2,|b|3,则ab. 418.从1,2,3,4,5五个数中任取一个数,则这个数是偶数的概率是。
技能高考之数学模拟试卷及答案改
3 2
,
T3
9 2
,求公比
q
.(6
分)
31. 本小题满分 13分
(Ⅰ)设直线l1 : x 2 y 4 0 与两坐标轴分别交于点 A 、 B ,求以线段 AB 为直径
的圆的一般方程;(6 分)
(Ⅱ)已知直线l 与直线 x 2 y 5 0 平行,且与圆 x2 y2 6x 4 y 8 0 相切, 求 l 的方程.(7 分)
由 T3
9 得:b b b
2
123
9,即b b q
2
11
3,②
①②两式相除得 q2 1q
1 2
,解得
q
1或q
1 2
.........3 分 .........3 分
31.解:(Ⅰ)由于直线l1 : x 2 y 4 0 与两坐标轴分别交于点 A 、 B ,
得 A( 4, 0) , B 0,2 .
.........2 分
29. 解:(Ⅰ)
tan 420 cos 94t5an 855
27.
3
36 cm
24.D 28. 1
2
sin 720 180 30 cos(1080 180 60 ) tan(720 180 45 )
tan 60 cos 1080 180 45
.........2 分
sin 30 cos 60 tan 45 tan 60 cos 45
,
所以圆心为 3, 2 ,半径为 r 5 ,
.........2 分
又因为直线 x
2y
5
0 的斜率为
1 2
,而直线l
与直线
x
2y
5
0 平行,
得直线l 的斜率为
(完整版)2018对口高考数学试卷及答案(可编辑修改word版)
江苏省2018年普通高校对口单招文化统考数学试卷—、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、狳黑)1.设集合M={1, 3}, N={a+2, 5},若MPlN={3},则a 的值为A. -1B. 1C. 3D. 52.若实系数一元二次方程x2+mx + n = 0的一个根为1-z ,则另一个根的三角形式为. n . . 7T rr, 3苁..3苁、A. cos——I sin —B. V 2 (cos——+ zsin——)4 4 4 4C. y[2 (cos— + z sin —)D. x/2[cos(-—) + i sin(-—)]4 4 4 43.在等差数列{aj中,若a3, a2016是方程x2-2x-2018 = 0的两根,则3* *3a⑽的值为1A. -B. 1C. 3D. 934.已知命题P:(1101)2=(13) 10和命题q:A • 1=1(A为逻辑变量),则下列命题中为真命题的是A. ~tiB. p AqC. pVqD.-*pAq5.用1, 2, 3, 4, 5这五个数字,可以组成没有重复数字的三位偶数的个数是A. 18B. 24C. 36D. 486.在长方体ABCD-^CiDi中,AB=BC=2,AA I=2A/6,则对角线BD:与底面ABCD所成的角是— B. — C.—6 4 38.若过点P (-1,3)和点Q(1, 7)的直线&与直线mx + (3m - 7)y + 5 = 0平行,则m的值为人2 C. 69.设向量a=(cos2^, -), b= (4,6)、若sin(^--0 =-:则|25a-Z?| 的值为3 、A. -B. 3C. 4D. 5510.若函数/(x) = x2-bx+c满足/(I + x) = /(I - x),且 / ⑼=5,则f(b x)与/(O 的大小关系是A- /(dO</(C x) B. /(y)>/(c x) c. /«/)</(c x) D. /(//)>/(c x)二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a=(-l, 2, 4),b=(3, rn, -2),若a • b=l,则实数m= 。
2018高职高考数学模拟考试题和参考答案解析一
2017年高职高考数学模拟试题数 学本试卷共4页,24小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共15小题,每小题5分,满分75分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{1,1},{0,1,2},M N =-=则MN =( )A .{0 } B.{1 } C.{0,1,2 } D.{-1,0,1,2 } 2、函数y=的定义域为( ).(2,2).[2,2].(,2).(2,)A B C D ---∞-+∞3、设a ,b ,是任意实数,且a<b,则下列式子正确的是( )22..1.lg()0.22a b b A a b B C a b D a><-><4、()sin30︒-=( )11...22A B C D -5、=(2,4),=(4,3),+=a b a b 若向量则( ).(6,7).(2,1).(2,1).(7,6)A B C D --6、下列函数为奇函数的是( ) ..lg .sin .cos xA y eB y xC y xD y x ====7、设函数21,1()2,1x x f x x x⎧+≤⎪=⎨>⎪⎩,则f(f(—1))=( )A .-1B .-2C .1 D. 2 8、 “3x>”是“5x >”的( )A.充分非必要条件B.必要非充分条件C.充分必要条件D.非充分非必要条件 9、若向量a ,b 满足|a+b|=|a-b|,则必有( ).0.0.||||.0A a B b C a b D a b ====10、若直线l 过点(1, 4),且斜率k=3,则直线l 的方程为( ).310.310.10.10A x yB x yC x yD x y --=-+=--=-+=11、对任意x R ∈,下列式子恒成立的是( )22121.210.|1|0.10.log (1)02xA x xB xCD x ⎛⎫ ⎪⎝⎭⎛⎫-+>->+>+> ⎪⎝⎭12a +a =( ).2.4.24.24A B C D ---或或13、抛物线28yx =-的准线方程是( ).2.2.2.2A x B x C y D y ==-==-14、已知x 是1210,,,x x x 的平均值,1a 为123456,,,,,x x x x x x 的平均值,2a 为78910,,,x x x x 的平均值,则x =( )121212122332....552a a a a a a A B C a a D ++++15)( ).0.45.0.55.0.65.0.75A B C D二、填空题:本大题共5小题,每小题5分,满分25分.16、函数()3sin 4f x x =的最小正周期为__________17、不等式2280x x -->的解集为________18、若sin θ=35,tan θ< 0,则cos θ=_________ 19、已知等差数列{}n a 满足3285,30,a a a =+=则n a =_______20、设袋子内装有大小相同,颜色分别为红,白,黑的球共100个,其中红球35个,从袋子内任取1个球,若取出白球的概率为0.25,择取黑球的概率为____________三、解答题:本大题共4小题,第21~23题各12分,第24题14分,满分50分.解答须写出文字说明、证明过程和演算步骤. 21.(本小题满分12分),,,3(1)(2)cos B ABC a b c ABC C a π∆∆∠∠∠=∠=已知是中,A 、B 、C 的对边,b=1,c 求的值;求的值.22.(本小题满分12分){}{}(){}(){}21-12n n n =132n 6n+3(n=2,3,)b 1b 2b n S n n n n n n a a a a a =+-⋅⋅⋅已知数列的首项,数列的通项公式b =+n :证明数列是等比数列.求数列的前项和.23.(本小题满分12分)2212x=19A B AB C F (3,0)F (3,0)4D C D C D C xoy y +=-在平面直角坐标系中,直线与圆x 交于两点,,记以为直径的圆为,以点和为焦点,短半轴为的椭圆为。
2018浙江高职考数学模拟卷(宁波)
宁波市2018年高等职业技术教育招生考试模拟试卷《数学》本试卷共三大题。
全卷共4页。
满分150分,考试时间120分钟.注意事项:1.所有试题均需在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷和草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上.3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上.4.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.一、选择题(本大题共20小题, 1-12小题每小题2分, 13-20小题每小题3分,共48分)在每小题列出的四个备选答案中,只有一个是符合题目要求的. 错涂、多涂或未涂均无分.1.已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则B A =( ▲ )A .)3,1(-B .)0,1(-C .)2,0(D .)3,2(2.已知b a >,则下列不等式正确的是( ▲ )A .22b a >B .ba 11< C .21->-b a D .||||b a > 3.已知4.04.0=a ,4.02.1=b ,4.0log 2=c ,则c b a ,,的大小关系为( ▲ )A .c a b <<B .c b a <<C .a b c <<D .a c b <<4.函数2)1lg()(--=x x x f 的定义域为( ▲ ) A .),1(+∞B .),2(+∞C .),2()2,1(+∞⋃D .)2,1( 5.已知函数⎩⎨⎧>≤=)0(log )0(3)(2x x x x f x ,那么)]41([f f 的值为( ▲ ) A.9 B.91 C.9- D.91- 6.已知点)1,0(A ,)2,3(B ,向量)3,4(--=AC ,则向量=BC ( ▲ )A .)4,7(--B .)4,7(C .)4,1(-D .)4,1(7.直线233+-=x y 的倾斜角为( ▲ ) A . 30 B . 150 C . 60 D .1208.已知双曲线的标准方程为63222=-y x ,下列说法正确的是( ▲ )A .焦点是)5,0()50(-,, B .离心率是3C .渐近线方程是x y 36±= D .实轴长是3 9.抛物线y x 42-=上一点P 到焦点的距离为4,则它的纵坐标为( ▲ )A .-4B .-3C .-2D .-110.圆0422=-+++by ax y x 的圆心是)1,2(-,则该圆的半径是( ▲ )A .9B .5C .3D 11.在等比数列}{n a 中,n S 是该数列的前n 项和,若333a S =,则q =( ▲ )A .1B .21-C .1或21-D .21 12.不等式0121≤+-x x 的解集为( ▲ ) A .]1,21(- B .),1[)21,(+∞⋃--∞ C .]1,21[- D .),1[]21,(+∞⋃--∞ 13.在ABC ∆中,1=AB ,3=AC , 60=B ,则=C cos ( ▲ )A .65-B .65 C .633- D .63314cos )22ββ-=,则sin β的值为( ▲ ) A .33-B .31-C .92D .97- 15.已知直线l 过圆010122222=+-+y y x 的圆心,且与直线01=++y x 垂直,则l 的方程是( ▲ )A .02=-+y xB .02=+-y xC .03=-+y xD .03=+-y x 16.已知n m ,表示两条不同直线,α表示平面,下列说法正确的是( ▲ )A .若αm //,αn //,则n m //B .若αn αm ⊂⊥,,则nm ⊥ C .若n m αm ⊥⊥,,则αn //D .若αm //,n m ⊥,则αn ⊥17.已知二次函数()2f x ax bx c =++,若()()()067f f f =<,则()f x 在( ▲ ) A .(),0-∞上是增函数 B .()0,+∞上是增函数C .(),3-∞上是增函数D .()3,+∞上是增函数18.若数列}{n a 满足:⎩⎨⎧>-≤≤=1,110,2n n n n n a a a a a ,且761=a ,则=2018a ( ▲ ) A .73 B .75 C .76 D .710 19. 4位同学各自在周六、周日两天中任选一天参加公益活动 ,则周六、周日都有同学参加公益活动的概率是( ▲ )A .81B .83C .85D .8720.若双曲线)0,0(1:C 2222>>=-b a by a x 的一条渐近线被圆4)222=+-y x (截得的弦长为2,则双曲线的离心率为( ▲ )A .2B .3C .2D .332 二、填空题(本大题共7小题,每题4分,共28分)21.若1sin()7πα-=,α是第二象限角,则tan α= ▲ . 22.设数列}{n a 的前n 项和为n S ,已知21=a ,31=--n n a a ,若57=n S ,则=n ▲ .23.函数1)1(2)1(2-++-=x m x m y 的图象与x 轴只有一个交点,则m = ▲ .24.圆锥的轴截面是一边长为4cm 的正三角形,则圆锥的体积是 ▲ .25. 8822108)1()1()1(32-++-+-+=-x a x a x a a x )(,则=++++8210a a a a ▲ . 26. 椭圆1522=+my x 的离心率是510,则m 的值是 ▲ . 27.当)2,1(∈x 时,不等式042<++mx x 恒成立,则m 的取值范围是 ▲ .三、解答题(本大题共9小题,共74分)解答时应写出必要的文字说明、证明过程或演算步骤.28.(本题满分6分)计算:2ln 213435512log 2)063sin(!3P )064.0(--++-+-e . 29.(本题满分7分)三角形ABC 的面积为3316,6=a ,角B 、A 、C 成等差数列,求三角形ABC 的周长.30.(本题满分8分)已知n xx )12(-的展开式中二项式系数最大的项是第5项,问展开式中是否含有常数项.31.(本题满分8分)已知等差数列}{n a 的公差不为零,53=a ,且571,,a a a 成等比数列.(1)求数列}{n a 的通项公式;(2)求19531a a a a ++++ .32.(本题满分8分)43cos 3)3sin(cos )(2+-+=x πx x x f ,(1)求)(x f 的最小正周期; (2))(x f 在区间]2,0[π上的最大值与最小值.33.(本题满分8分)直线l 过点)1,1(-A 与已知直线062:1=-+y x l 相交于点B ,且5||=AB ,求直线l 的方程.34.(本题满分9分)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米,现以O 点为原点,OM 所在的直线为x 轴建立直角坐标系.(1)求出这条抛物线的函数解析式;(2)若要搭建一个矩形支撑架CB DC AD --,使C 、D 在抛物线上,A 、B 点在地面上,则这个支撑架总长的最大值是多少?35.(本题满分10分)如图(1),ABC ∆是等腰直角三角形,4==BC AC ,E 、F 分别为AC 、AB 的中点,将AEF ∆沿EF 折起,使'A 在平面BCEF 上的射影O 恰为EC 的中点,得到图(2).(1)求F A '与平面EC A '所成的角; (2)求三棱锥BC A F '-的体积.36.(本题满分10分)已知椭圆C :)0(12222>>=+b a by a x,斜率为1的直线与椭圆交于A 、B 两点,以AB 为底边作等腰三角形,顶点为)2,3(-P .(1)求椭圆的标准方程;(2)求PAB ∆的面积. O A'C B F E FE C B 第36题图y 第34题图。
2018年高职高考数学模拟试卷(二)
试卷类型:A2018年高职高考第二次模拟考试数 学 试 题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的,答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、选择题:本大题共15小题,每小题5分,满分75分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}{}0,1,2,3,3A B x x ==->-则A B I =( )A .{}0,1B .{}0,1,2C .{}2,3D .{}0,1,2,32.命题甲:030=α,命题乙:21sin =α,则命题甲是命题乙成立的( ) A .充要条件 B 充分不必要条件C .既不充分也不必要条件D 必要不充分条件3.函数y =( )A.(),1-∞ B.()1,10 C.(]1,+∞ D.[)1,+∞4.函数9()f x x x =+在区间()0,+∞内的最小值是 ( ) A .5 B .4 C .3 D .65.下列函数既是奇函数又是增函数的是( )。
A 、 x y 1-=B 、 x y 3=C 、x y 2log =D 、 2x y =6.设0,0x y >>,01a a >≠且 ,则正确的是( )A .()y x xy aa = B.()log log log a a a x y x y +=+ C .xy x y a a a =⋅ D.log log log a a a xy x y =⋅7.在等差数列}{n a 中, 若630a =, 则39a +a = ( )A . 20B . 40C . 60D . 808.已知角α的终边过点(1,A ,则sin α=( )A.2-B.12-C.12D.2 9.已知平面向量AC 与CB 的垂直,且AC =(k,1),CB =(2,6),则k 的值为( ) A. -31 B. 31 C. -3 D. 3 10.直线012=++y x 和圆9)1()2(22=-+-y x 的位置关系为( )A 、相离B 、相切C 、直线过圆心D 、直线与圆相交但不过圆心11.方程13922=-+-k y k x 表示焦点在x 轴上的椭圆,则k 满足( ) A .()6,3 B .()9,3 C . ()9,∞- D .()6,∞-则样本在区间]100,60[的频率为( )A .0.6B .0.7C .0.8D .0.913.函数sin(2)cos(2)44y x x ππ=++的周期是( ) A.π B. 2π C. 2π D. 4π14.样本12345,,,,x x x x x 中123,,x x x 的平均分是90,45,x x 的平均分是100,则样本均值是( )A.93B.94C. 95D.9615.若抛物线()022>=p px y 过点M(4,4) ,则点M 到准线的距离d=( )A 、 5B 、 4C 、 6D 、7二、填空题:本大题共5小题,每小题5分,满分25分.16.不等式5x 32-≥的解集为_____________。
技能高考之数学模拟试卷18及答案
30.解:(Ⅰ) an = 3n- 1 ;S n= 12(3 n - 1)
(Ⅱ)由于 a = (2,n) , b = (1,0) , c = (n,1) ,因此 ar + b = (2,n) + (1,0 )= (3,n ),
2ar - c = 2(2,n)- (n,1)= (4- n,2n - 1), 又 a b与2a - c 平 行 , 得
24.B 28. 54
1 sin2 α cos2 α
3
2sin(2π α) cos(7π α)
cos4 α sin2 α cos2 α
1 sin2 α cos2 α
3
2sin α cosα
(cos2 α sin2 α) cos2 α
1 tan2 α 1 2tanα 1 9 1 2 3 13
3
tan2 α 1 3
(Ⅲ)由于圆心 C(2,- 1)到直线 l 的距离为 d
215 2
2 r ,因此直线 l 与圆 C 相
切
模拟题十八答案
四、选择题 (本大题共 6 小题,每小题 5 分,共 30分)
19.C
20.A
21.C
22.B
23.C
五、填空题 (本大题共 4 小题,每小题 5 分,共 20分)
25. 6 26. 2, 1 U 1,0 U 1,
六、解答题 (本大题共 3 小题,共 40分)
27. 20 ;16
29. 解:(Ⅰ)因为 tan(5π α) 3 ,所以 tan α 3 ,因此
91 5
(Ⅱ) 1 cos 1 cos
1 cos + tan cos + 1-co2s
1 cos
=
1 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 3 7 2n -1 2 0 1 8 技 能 高 考 模 拟 题 ( 数 学 部 分 )
―、选择题(本大题共 6 小题,每小题 5 分,共 30 分)
1. 下列四个命题:(1)空集没有子集.(2)空集是任何集合的真子集(3)
= {0}
(4) 任何集合必有两个或两个以上的子集.其中正确的有( )个
A.0
B. 1
C.2
D.3 2.下列函数:(l ) y = x 2 ,(2) y = x 3 ,(3) y = lg 1+ x
,(4) y =
1 - 1
其中奇函数有(
)个
1- x 3x -1 2
A.3
B.2
C.1
D.0
3. 下列命题:(l ) cos 2 - sin 2 > 0 ,(2)若sin a = 4
,则cos a = 3
. (3)在三角
5
5
形 ABC 中,若 2 sin A = ,则角 A 为 30 度角.其中正确的有()个
A.3
B. 2
C.1
D.0
4. 下列说法:(1)两个相等的向量起点相同,则终点相同.(2)共线的单位向
量相等.(3)不相等的向量一定不平行.(4)与零向量相等的向量一定是零向量.
(5) 共线向量一定在一条直线上.其 中正确的有( )个
A.2
B.3
C.4
D.5
5. 有 点( ,4),( - , - 4 ),(1,1+ )( -1,1- ),其中在直
线 3x - y +1 = 0 上的有()个
A.1
B.2
C.3
D.4
6.下列说法中:⑴数列{ 2n -11}中负项有 6 项.(2) 3 为数列{ }中的项.
(3)数列 2.4.6.8 可表示为{2. 4. 6.8}.其中正确的有()个
A.0
B.1
C.2
D.3
二、填空题(本大题共 4 小题,每小题 6 分,共 24 分)
3cos A 3 3
) 1.若数列{ a }中,
a
=
a n 对任意正整数都成立,且a = 1
,则a n
n +1
a n +1
6
2
5
=。
a n =。
2. 若a =(3,4), b =(2,1),且( a + xb ) ⊥ (a - b )
3. 满足sin a ≥ 1
的角a 的集合为。
2
= 。
4. 4.函数 y = log 1 | x - 3 | 的单调减区间为。
2
三、解答题(本大题共 3 小题,每小题 12 分,共 36 分)
1.(1)角a 的终边上一点 P 的坐标为( 4t ,-3t )( t 不为 0),求2 sin a + cos a . (2)设e 2 , e 2 是两不共线的向量,若涵 AB = 2e 1 + ke 2 , CB = e 1 + 3e 1 ,
CD = 2e 1 - e 2
若三点 A 、B 、D 共线,求k 的值.
2.(1)求函数 y = 3sin(2x -
的单增区间.
6 (2)说出函数 y = tan(x - 3
) 的周期和单调区间.
3.(1)过点 P ( -1, -1)的直线与两坐标轴分别相交于 A 、B 两点,若 P 点为线段 AB 的中点,求该直线的方程和倾斜角.
(2)已知数列{ a n }为等差数列, S n 为其前n 项和,且S 7 = 7 , S 15 = 15 .
①求S .②若为数列的{ S n
}前n 项和,求T . n n
n。