模拟滤波器设计及运放选择

合集下载

模拟信号滤波器设计

模拟信号滤波器设计

模拟信号滤波器设计模拟信号在现代电子技术中占据着重要的地位,然而在很多应用场合中,模拟信号常常受到各种噪声或干扰的影响,这时就需要使用模拟信号滤波器来对信号进行处理,从而达到降噪或抗干扰的目的。

本文将介绍模拟信号滤波器设计的一些基本知识和方法。

一、模拟信号滤波器的分类根据滤波器的传输特性,模拟信号滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。

低通滤波器:可以让低于一定频率的信号通过,而对高于该频率的信号进行衰减,常用于滤除高频噪声或振荡。

高通滤波器:可以让高于一定频率的信号通过,而对低于该频率的信号进行衰减,常用于滤除低频噪声或直流分量。

带通滤波器:可以让一定范围内的频率信号通过,而对其他频率信号进行衰减,常用于保留一定频率范围内的信号。

带阻滤波器:可以让一定范围外的频率信号通过,而对该范围内的信号进行衰减,常用于滤除一定频率范围内的信号。

二、模拟信号滤波器的设计模拟信号滤波器的设计需要确定其传输特性和电路参数。

根据电路参数的不同,可以将模拟信号滤波器分为被动滤波器和有源滤波器。

被动滤波器指的是由电阻、电容和电感等被动元器件组成的滤波器,其缺点是带宽窄、增益小、稳定性差,适用于低频和中频信号的滤波。

有源滤波器指的是使用了运放等有源器件的滤波器,其优点是带宽宽、增益大、稳定性好,适用于高频信号的滤波。

有源滤波器的设计需要确定运放的电路结构和参数。

在具体的滤波器设计中,需要确定滤波器的截止频率、滤波器型号、电阻、电容、电感等电路元器件的值,以及电路的耦合方式和截止特性等。

还需要进行仿真和实验验证,以确保所设计的滤波器能够滤除目标噪声或干扰。

三、模拟信号滤波器的应用模拟信号滤波器在很多现代电子产品中都有广泛的应用,例如通信领域的信号处理、音频系统的去噪处理、传感器的信号处理等。

在工业自动化控制系统中,模拟信号滤波器也被广泛应用于模拟量的采集和处理中,以提高信号的稳定性和准确度。

有源低通滤波器的设计

有源低通滤波器的设计

有源低通滤波器的设计有源滤波器是一种使用有源元件(如运放)来构成的滤波器。

有源滤波器具有较低的输出阻抗和较高的增益,并且能够提供较大的增益和较低的失真。

有源低通滤波器是一种能够通过滤除高频信号而传递低频信号的滤波器。

它可以应用于音频信号处理、视频信号处理和通信系统中,用于去除噪音、改善信号品质等。

本文将介绍有源低通滤波器的设计原理和步骤,以供读者参考。

1.确定滤波器的截止频率:首先,根据需要滤除的高频信号范围,确定滤波器的截止频率。

截止频率是决定滤波器的性能的重要参数之一,它决定了滤波器在不同频率范围内的衰减特性。

2.选择合适的滤波器类型:根据应用场景和信号要求,选择合适的有源滤波器类型。

常见的有源滤波器类型包括巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。

不同的滤波器类型具有不同的性能和设计要求,需要根据具体情况选择。

3.设计滤波器的电路结构:根据选择的滤波器类型和截止频率,设计滤波器的电路结构。

有源低通滤波器通常由运放、电阻和电容组成。

根据电路结构设计电容和电阻的数值,以满足滤波器的要求。

4.计算反馈电阻和输入电阻:根据电路结构和信号要求,计算滤波器的反馈电阻和输入电阻的数值。

反馈电阻决定了滤波器的增益和频率响应,输入电阻影响了滤波器的输入阻抗和信噪比。

5.选择适当的运放:根据滤波器的增益要求和频率响应,选择合适的运放器件。

不同的运放器件具有不同的增益、带宽和失真等特性,需要根据具体要求选择。

6.绘制电路图并进行仿真:根据设计的滤波器电路结构和参数,绘制电路图,并进行仿真分析。

通过仿真可评估滤波器的性能,如增益、相位延迟和截止频率等。

7.电路实现和调试:根据仿真结果,实现电路并进行调试。

调试过程中需要注意电路的稳定性和可靠性,同时还需要进行频率响应测试和输出波形观察,以验证设计结果。

总结:有源低通滤波器是一种常见的滤波器类型,其设计步骤包括确定截止频率、选择滤波器类型、设计电路结构、计算反馈电阻和输入电阻、选择适当的运放器件、绘制电路图并进行仿真分析,最后实现电路和调试。

课程设计--二阶低通滤波器设计

课程设计--二阶低通滤波器设计

课程设计--二阶低通滤波器设计1. 理论基础二阶低通滤波器(second-order low-pass filter)属于电子滤波器的一种。

在电子信号处理中,低通滤波器(low-pass filter)是指可以滤掉高频部分,只保留信号中低频部分的滤波器。

二阶低通滤波器可以更加有效的滤掉高频部分,有更好的频率响应特性。

2. 实验目的设计一个二阶低通滤波器,学习和掌握滤波器的设计方法和理论基础。

3. 实验器材- 电阻器- 电容器- 运放(OPAMP)4. 实验步骤步骤1:选择设定滤波器的截止频率fc,以及质量因数Q值。

其实这两个参数是相互影响的,如果截止频率增大,Q值也需要增大;如果Q值增大,则截止频率也需要增大。

具体选择需要根据实际需求和设计条件来确定。

步骤2:根据所选择参数,计算出滤波器的电路参数,包括电容器和电阻器的阻值和电容值。

步骤3:按照电路图进行电路连接和布线。

步骤4:进行实验测试。

可以使用信号发生器输入测试信号,观察输出信号波形和频率响应特性。

5. 实验结果根据实际需要和设计条件,选择合适的截止频率和Q值,设计出二阶低通滤波器电路,进行实验测试。

观察输出信号波形和频率响应特性。

6. 实验注意事项- 实验时需要注意硬件电路的连接问题;- 工作电压选择和滤波器电路的工作范围匹配;- 实验测试时需要合理地选择信号频率和振幅,避免过高的信号幅值造成硬件模块损坏,或者信号失真等问题。

7. 实验拓展- 可以进行滤波器级数的增加,设计更高阶的滤波器电路;- 可以修改电路参数和工作电压,观察滤波器的频率响应曲线变化;- 可以将低通滤波器改成高通滤波器、带通滤波器和带阻滤波器等,进行不同类型滤波器的设计。

有源滤波器设计范例

有源滤波器设计范例

有源滤波器设计范例有源滤波器是一种仪器或电路,通过放大合适频率的信号,削弱不需要的频率的信号。

它由被放大的信号源、滤波器和放大器组成。

有源滤波器常用于音频、通信和信号处理等领域。

下面我们将介绍一个有源滤波器的设计范例。

设计目标:设计一个低通滤波器,截止频率为1kHz,增益为20dB。

输入信号幅度为1V,输出信号幅度应保持一致。

设计步骤:1.确定滤波器的类型和截止频率,由于我们需要一个低通滤波器,因此需要选择适合的操作放大器模型。

选择一个高增益的运放模型,比如OPA7412.确定滤波器的放大倍数,根据增益的要求,我们选择放大20dB,即放大倍数为10。

3.计算滤波器的截止频率,根据设计目标,截止频率为1kHz。

根据低通滤波器的特性,我们可以选择使用一个RC电路来实现,其中R为电阻,C为电容。

4. 计算滤波器的电阻和电容值,根据截止频率的公式,截止频率fc=1/(2πRC)。

根据给定的截止频率和选择的电阻值,计算出需要的电容值。

5.确定滤波器电阻和电容的实际可选择值,根据常用的电阻和电容系列,选择最接近计算得出的值的标准值。

6.绘制滤波器电路图,将运放、电阻和电容按照设计要求连接起来。

根据电路图,选择合适的电阻和电容标准值。

7.测试和调整滤波器,将设计好的电路安装到实际的电路板上。

连接一个信号发生器作为输入信号源,通过示波器测量输出信号的幅度。

8.监测滤波器输出信号的幅度,根据设计目标,输出信号应与输入信号保持一致,即保持1V的幅度。

9.调整滤波器的增益,通过调节电阻或电容的值,使输出信号的幅度达到1V。

10.测试滤波器截止频率的准确性,使用频谱仪监测滤波器输出信号的频率特性。

确保滤波器截止频率符合设计要求。

11.优化滤波器设计,根据测试结果和实际需求,对滤波器电路进行调整和优化,以获得更好的性能。

总结:。

电路中的信号放大与滤波

电路中的信号放大与滤波

电路中的信号放大与滤波信号放大与滤波在电路中起着至关重要的作用。

本文将着重介绍信号放大与滤波的原理、应用以及相关电路设计。

一、信号放大的原理与应用信号放大是指通过电路将输入信号放大到所需幅度的过程。

它广泛应用于各种电子设备和系统中,如音频放大器、功率放大器、通信系统等。

在实际应用中,放大器的设计需要考虑增益、频率响应、输入输出阻抗等参数。

常见的信号放大器有运放放大器、分立元件放大器等。

运放放大器是一种非常常用的放大器,它具有高增益、低失真等特点。

运放放大器可通过外部元件调节放大倍数,同时还可以实现直流偏置、反馈控制等功能。

在实际应用中,信号放大器广泛应用于音频设备、测量仪器等领域。

例如,在音频放大器中,信号放大器可将低电平的音频信号放大以驱动扬声器,从而实现音频的放大和放大效果的优化。

二、滤波器的原理与应用滤波器是一种用于将特定频率范围内的信号通过、而抑制其他频率信号的电路。

滤波器在电子设备和通信系统中起着重要的作用。

滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型。

它们通过对不同频率分量的衰减来实现信号的滤波。

低通滤波器常用于抑制高频噪声,使得低频信号能够通过。

高通滤波器则用于抑制低频信号,使得高频信号能够通过。

带通滤波器则能够选择特定频率范围内的信号通过,而带阻滤波器则是抑制特定频率范围的信号。

滤波器广泛应用于各种通信系统、音频设备、图像处理等领域。

例如,在无线通信系统中,滤波器可用于抑制多径传播引起的干扰,提高系统性能和信号质量。

三、电路设计实例为了更好地理解信号放大与滤波的原理,下面以一个实际的电路设计为例进行说明。

假设我们需要设计一个音频放大器,实现对音频信号的放大和优化。

首先,我们选择一个合适的运放放大器作为信号放大的核心部件。

在设计中,需要确定合适的反馈电阻和输入电阻,以实现所需的增益和阻抗匹配。

其次,我们需要设计一个低通滤波器,以抑制高频噪声,确保放大后的音频信号质量。

运放如何选型

运放如何选型

运放参数解释及常用运放选型集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。

本文以NE5532为例,分别对各指标作简单解释。

下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。

极限参数主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下:直流指标运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。

NE5532的直流指标如下:输入失调电压Vos输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。

输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。

输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。

输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。

对于精密运放,输入失调电压一般在1mV以下。

输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。

所以对于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。

这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。

一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。

输入偏置电流Ios输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。

模拟滤波器

模拟滤波器

信号 输出
滤波网络举例:
R
C
Vin
C Vout Vin
R Vout
C
Vin L
Vout Vin C
L Vout
低通 网络
高通 网络
带阻 网络
带通 网络
二、时域滤波
利用时间序列过滤的网络,称之为时域滤波, 数学模型:
y(t) h(t) f (t)
f (t)in
a0
a1
a2
aN 1
相加
横向滤波器
二、模拟滤波和数字滤波含义:
模拟滤波器: 如果构成滤波器的电子器件是模拟元件,则
称这种滤波器为模拟滤波器。
模拟滤波器
无源滤波器:无源元件(R、L、C) 有源滤波器:含有源器件(运放等)
无源滤波器器件
数字滤波器:
如果构成滤波器的电子器件是数字元件或数 字信号处理器。或利用计算机对离散信号直接 处理都称数字滤波器。 1.集成数字滤波器
一、网络函数一般式:
H
s
P( s ) amsm am1sm1 a1s a0 Q( s ) bnsn bn1sn1 b1s b0
其中:a和b都是实系数。
网络的传递函 数
二、零点和极点
零点:P(s)=0的根就称为H(s)的零点。
极点:Q(s)=0的根就称为H(s)的极点。
因此: H
模拟滤波器原理与技术
丁士圻 编著
学习目的:
1、更加清晰地理解滤波器技术; 2、滤波器网络分析方法; 3、掌握三种典型的滤波器的原理和特点; 4、给出滤波器所要求的技术指标,能够设计
模拟滤波器的传输函数; 5、有源滤波器的设计方法和应注意的问题; 6、典型模拟滤波器集成芯片的使用方法; 7、其他滤波器的原理。

硬件设计常用知识点有哪些

硬件设计常用知识点有哪些

硬件设计常用知识点有哪些硬件设计是指基于硬件平台的电子产品设计,涉及到多个学科领域。

在进行硬件设计时,掌握一些常用的知识点是非常重要的。

本文将介绍一些硬件设计中常用的知识点,帮助读者对硬件设计有更深入的了解。

一、电路理论与分析1.电路基础知识:掌握电流、电压、电阻等基本概念,了解欧姆定律、基尔霍夫定律等基本规律。

2.模拟电路设计:学习模拟信号的放大、滤波等基本原理与技术,理解放大器、运放、滤波器等模块的设计方法。

3.数字电路设计:了解数字信号的运算、编码、解码等基本原理,熟悉逻辑门电路的设计与布局。

二、电子元器件与器件选择1.常见电子元器件:了解常用的电阻、电容、电感、二极管、三极管等基本元器件的特性与使用方法。

2.模拟电路器件选择:根据设计需求选择合适的运放、放大器、滤波器等器件。

3.数字电路器件选择:选用适合的逻辑门、触发器、计数器等器件实现数字电路功能。

三、信号处理与调节1.模拟信号处理:了解采样、滤波、放大、调幅、调频等模拟信号处理技术,掌握模拟信号调节电路的设计与优化方法。

2.数字信号处理:掌握数字信号的滤波、放大、编码、解码等技术,了解数字信号处理器(DSP)的原理与应用。

四、接口与通信技术1.串行接口:熟悉UART、SPI、I2C等串行通信协议,能够设计并实现串行接口电路。

2.并行接口:了解并行接口原理与设计方法,掌握总线接口设计技术。

3.通信协议:学习TCP/IP、CAN、RS485等通信协议,了解网络通信与工业总线技术。

五、射频与无线通信1.射频系统设计:了解射频电路基本原理,掌握射频功率放大、滤波、调制等技术,了解天线的设计与优化。

2.无线通信技术:学习蓝牙、Wi-Fi、LoRa等无线通信技术,了解无线通信模块的选用与设计。

六、电源与供电电路1.稳压技术:熟悉线性稳压与开关稳压的原理与设计方法,掌握电源管理芯片的选型与使用。

2.供电电路设计:了解电源管理、电池管理、充电保护等供电电路的设计与优化。

运放的使用及滤波器设计

运放的使用及滤波器设计

运放的使用及滤波器设计运算放大器(Operational Amplifier,简称Op-Amp)是一种非常常见的电子元器件,常用于放大电压信号和作为各种信号处理电路的基础建设模块。

在本文中,我们将介绍运放的使用和滤波器设计。

一、运放的基本原理及使用1.运放的基本原理2.运放的引脚及使用方法一个典型的运放有八个引脚,包括非反相输入端(+)、反相输入端(-)、输出端、电源正极、电源负极等。

根据需要,我们可以将信号输入到非反相输入端或反相输入端,然后通过输出端输出放大后的信号。

通常,我们需要给运放提供两个电源电压,一个是正极供电,一个是负极供电。

正常工作时,两个电源电压的差值应该在一定范围内,如±5V。

3.运放的使用运放常用于放大电压信号或作为信号处理电路的关键组件。

它可以用于音频放大器、滤波器、信号源和控制系统等各种应用。

滤波器是一种能够选择性地通过或抑制特定频率组成的信号的电路。

根据其特性,滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

1.低通滤波器低通滤波器(Low-Pass Filter)可以通过低频信号而阻止高频信号。

在低通滤波器中,希望通过的信号频率被称为截止频率。

常见的低通滤波器电路有RC低通滤波器和RLC低通滤波器等。

2.高通滤波器高通滤波器(High-Pass Filter)可以通过高频信号而阻止低频信号。

在高通滤波器中,希望通过的信号频率被称为截止频率。

常见的高通滤波器电路有RC高通滤波器和RLC高通滤波器等。

3.带通滤波器带通滤波器(Band-Pass Filter)可以通过一段特定频率范围的信号而阻止其他频率的信号。

在带通滤波器中,希望通过的信号频率范围被称为通带。

常见的带通滤波器电路有LC带通滤波器和RLC带通滤波器等。

4.带阻滤波器带阻滤波器(Band-Stop Filter)可以通过除一段特定频率范围的信号而传输其他频率的信号。

在带阻滤波器中,希望阻止的信号频率范围被称为阻带。

滤波器的设计及参数值在线计算

滤波器的设计及参数值在线计算

一、低通滤波器的设计及参数值在线计算图1所示是一个低通通滤波器,它的截止频率如下公式所示:公式1图1图2是实用的低通滤波器电路,它使用通用运算放大器(运放)接成单电源供电模式,简单易行。

图中C2为足够大的电容器,所谓足够大是指C2和R2的时间常数要远小于R1和C1的时间常数,图中为10U。

该电路通带内的电压放大倍数为R1/R2,若R1=R2则放大倍数为1。

该电路截止频率有R1,C1的时间常数决定,满足公式1。

图2下图是当R1=R2=15915Ω(不是标准电阻值,可参考这里找出最接近的电阻),C1=10nF(算得频率是1k)的pspice仿真结果。

这时增益=1,输出二分之一根号二即0.707V就是截至频率点,图上可以看出是1kHz图3输入C1,R1的值计算频率F:输入C1,频率F的值计算电阻R1:低通滤波器的设计及参数值在线计算:/lowpass.htm二、有源带通滤波器的设计及参数值在线计算图1所示是一个多路负反馈二阶有源带通滤波器,它使用单个通用运算放大器(通用运放)接成单电源供电模式,易于实现。

它的上限截止频率和下限截止频率可以非常近,具有非常很强的频率选择性。

令C1=C2=C,Req是R1和R2并联的值。

品质因数Q等于中心频率除以带宽,Q = fC/BW。

由式可以看出可以通过让R3的值远大于Req来获得大的Q值Q值越大,频率选择性越好,带宽越小。

反之则反。

令中心频率为fc,则计算公式如下:其中关于本有源带通滤波器电路的详细论述及PSPICE仿真结果请访问:有源带通滤波器借助本工具软件,您可以:输入增益GAIN,带宽BW,中心频率F,电容值C,计算有源带通滤波器电阻值R1,R2,R3:输入电路元件值C,R1,R2,R3,计算有源带通滤波器增益GAIN,品质因数Q,中心频率Fc:有源带通滤波器的设计及参数值在线计算: /nbpf.htm三、高通滤波器的设计及参数值在线计算图1所示是一个高通通滤波器,它的截止频率如下公式所示:公式1图1图2是实用的高通滤波器电路,它使用通用运算放大器(运放)接成单电源供电模式,简单易行。

二阶有源低通滤波器的设计

二阶有源低通滤波器的设计

二阶有源低通滤波器的设计该电路由一个差分放大器和一个低通滤波器组成。

差分放大器用于放大输入信号,低通滤波器则用于实现滤波功能。

下面是二阶有源低通滤波器的设计步骤:1.确定滤波器的性能要求:包括截止频率、通带增益、阻带衰减等参数。

根据实际需要选择合适的数值。

2.选择运放:根据设计要求选择合适的运放,一般常用的运放有理想运放、运放OP07等。

3.计算电阻的值:通过滤波器的通带增益和截止频率来计算电阻的值。

通常情况下,第二级和第三级的电阻值要与第一级的电阻值相等。

4.计算电容的值:根据截止频率来计算电容的值。

一般来说,选择合适的电容值可以使得电路的性能更好。

可以根据实际情况来调整电容值。

5.计算放大倍数:根据通带增益来计算放大倍数。

根据放大倍数来选择合适的运放。

6.绘制电路图:根据上述计算结果和所选择的运放,绘制出滤波器的电路图。

7.进行电路模拟:使用电路模拟软件进行仿真,比较仿真结果与设计要求是否一致。

如果有误差,调整电阻或电容的数值进行优化。

8.组装电路:根据电路图,将电路进行组装。

选择合适的电阻和电容进行焊接。

9.测试电路:将输入信号接入电路,并使用示波器来测量输出信号。

检查输出信号的频率特性和增益特性是否满足设计要求。

10.进行调整:如果测试结果不满足要求,可以通过调整电阻和电容的数值来优化电路性能。

总结:二阶有源低通滤波器的设计是一个系统的工程,需要充分考虑滤波器的性能要求和电路参数的选择。

在设计过程中,可以使用电路模拟软件进行仿真,同时进行实际电路的测试,以确保滤波器的性能达到预期目标。

《运放滤波器》课件

《运放滤波器》课件

运放滤波器电路分析
运放滤波器基本结 构:输入端、输出 端、反馈端、电源 端
运放滤波器类型: 低通滤波器、高通 滤波器、带通滤波 器、带阻滤波器
运放滤波器参数: 增益、带宽、截止 频率、相位裕度、 稳定性
运放滤波器应用: 信号处理、通信系 统、电源系统、仪 器仪表等
运放滤波器性能 指标
运放滤波器频率响应

运放滤波器在音 频信号处理中的 应用:用于音频 信号的滤波、放 大、压缩等处理, 提高音质和音效
运放滤波器在音 频信号处理中的 优势:具有高精 度、高稳定性、 低噪声等特点, 能够满足音频信
号处理的需求
通信信号处理
信号接收:接收来自天线的信号
信号放大:将接收到的信号放大到合适 的电平
信号滤波:对放大后的信号进行滤波, 去除噪声和干扰
运放滤波器技术面 临的挑战和问题, 如功耗、稳定性等
运放滤波器技术发展趋势
集成化:运放滤波器将更加集成化,提高性能和可靠性 低功耗:运放滤波器将更加注重低功耗设计,降低功耗和成本 高精度:运放滤波器将更加注重高精度设计,提高测量精度和稳定性 智能化:运放滤波器将更加注重智能化设计,提高自适应性和智能化程度
测试性能:使用测试设备 对滤波器进行性能测试,
确保满足设计要求
运放滤波器设计软件介绍
软件名称:FilterPro 功能:设计运放滤波器,提供多种滤波器类型 特点:界面友好,操作简单,支持多种编程语言 应用领域:电子工程、信号处理、通信工程等
运放滤波器设计实例分析
实例一: 低通滤波 器设计
实例二: 高通滤波 器设计
网络化:运放滤波器将更 加网络化,实现远程监控 和诊断
感谢您的观看
汇报人:
噪声类型:白噪声、 粉红噪声、蓝噪声 等

运放的供电滤波

运放的供电滤波

运放的供电滤波运放的供电滤波是运放电路设计中非常重要的一个环节,它可以有效地抑制电源噪声和防止电路中的振荡,从而提高运放电路的性能和稳定性。

下面将详细介绍运放的供电滤波原理、方法和实践。

一、运放供电滤波原理运放的供电滤波主要是通过在电源和地之间添加滤波器来实现的。

滤波器的作用是减小电源电压的波动和噪声,同时防止电路中的振荡。

根据频率响应的不同,滤波器可以分为低通滤波器、高通滤波器和带通滤波器。

在运放供电中,一般使用低通滤波器来抑制高频噪声。

二、运放供电滤波方法1.电源退耦滤波电源退耦滤波是在运放的电源和地之间添加一个由电阻、电容和电感组成的滤波器,以减小电源电压的波动和噪声。

其中,电容可以滤除高频噪声,电感可以滤除低频噪声。

1.电源内阻滤波电源内阻滤波是在运放的电源和地之间添加一个低阻抗的电源内阻滤波器,以减小电源内阻对电路性能的影响。

该方法可以有效地抑制电源内阻引起的噪声和振荡。

1.频率补偿滤波频率补偿滤波是在运放的输出端添加一个由电阻、电容和电感组成的滤波器,以减小电路中的振荡。

该方法可以通过调整滤波器的参数来优化电路的频率响应,从而提高电路的稳定性和性能。

三、运放供电滤波实践在进行运放供电滤波时,需要考虑以下几个因素:1.确定滤波器的类型和参数:根据运放电路的具体要求和实际情况,选择合适的滤波器类型和参数。

例如,对于高频噪声,可以选择低通滤波器;对于低频噪声,可以选择高通滤波器等。

2.3.选择合适的元件:选择合适的电阻、电容和电感元件,以保证滤波器的性能和稳定性。

例如,选择低阻抗的电源内阻滤波器可以有效地抑制电源内阻引起的噪声和振荡等。

4.5.合理布局:在电路板布线时,需要合理布局滤波器的位置,以保证滤波器的效果。

例如,将滤波器靠近运放的电源和地引脚放置,可以减小电源和地之间的距离,从而减小噪声和振荡的影响。

6.7.调试与优化:在进行电路调试时,需要对滤波器进行优化,以保证电路的性能和稳定性。

运算放大器的工作原理及选择方法

运算放大器的工作原理及选择方法

运算放大器的工作原理及选择方法(入门级) cjy1.模拟运放的分类及特点模拟运算放大器从诞生至今,已有40多年的历史了。

最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。

在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。

当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。

经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。

这使得初学者选用时不知如何是好。

为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。

1.1.根据制造工艺分类根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。

按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。

标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。

这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。

为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。

标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。

通过变更标准硅工艺,可以设计出通用运放和高速运放。

典型代表是LM324。

在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。

滤波器的频率选择特性与带宽控制方法

滤波器的频率选择特性与带宽控制方法

滤波器的频率选择特性与带宽控制方法随着电子设备的迅速发展,滤波器作为一种重要的电路元件,被广泛应用于通信、音频、视频等领域中。

滤波器的主要功能是去除或衰减电路中不需要的信号,以及保留或增强所需的信号。

本文将介绍滤波器的频率选择特性以及带宽控制方法。

一、滤波器的频率选择特性滤波器的频率选择特性是指滤波器在不同频率下的响应情况,即对于不同频率的输入信号,滤波器能够选择性地通过或抑制。

滤波器的频率选择特性可以分为两类:低通滤波器和高通滤波器。

1. 低通滤波器低通滤波器是指对于频率小于某一截止频率的信号,能够通过的滤波器。

低通滤波器在音频领域中被广泛应用,用于去除高频噪声,保留低频音频信号。

常见的低通滤波器有RC低通滤波器、LC低通滤波器等。

2. 高通滤波器高通滤波器是指对于频率大于某一截止频率的信号,能够通过的滤波器。

高通滤波器在通信领域中常用于去除低频噪声,保留高频信号。

常见的高通滤波器有RC高通滤波器、LC高通滤波器等。

二、带宽控制方法带宽是指滤波器在频率选择特性中,能够满足一定要求的频率范围。

带宽的选择对于滤波器的性能以及应用有着重要影响。

下面介绍两种常见的带宽控制方法。

1. 调整阻抗通过调整滤波器电路中的阻抗值,可以改变滤波器的带宽。

一般来说,增大阻抗可以减小带宽,而减小阻抗可以增大带宽。

这种方法常用于被动滤波器,如RC滤波器、LC滤波器等。

2. 设计滤波器参数通过设计滤波器的参数,如电容、电感等数值,可以控制滤波器的带宽。

对于主动滤波器,如运放滤波器、数字滤波器等,可以通过改变电路中元件数值及布局来实现带宽控制。

此外,数字滤波器还可以通过调整算法参数来控制带宽。

三、滤波器的应用滤波器广泛应用于通信、音频、视频等领域。

在通信领域,滤波器用于解调、调制等信号处理过程中,提高信号的质量和可靠性。

在音频领域,滤波器用于音频信号的处理和增强,提高音质和音乐效果。

在视频领域,滤波器用于图像信号的处理,去除噪声和增强图像细节。

巴特沃斯带通滤波器设计

巴特沃斯带通滤波器设计

做巴特沃斯带通滤波器设计模拟滤波器在测试系统或专用仪器仪表中是一种常用的变换装置。

例如:带通滤波器用作频谱分析仪中的选频装置;低通滤波器用作数字信号分析系统中的抗频混滤波;高通滤波器被用于声发射检测仪中剔除低频干扰噪声;带阻滤波器用作电涡流测振仪中的陷波器等等。

下面就在低频高阶滤波电路中应用较多的巴特沃斯滤波器的设计交流下自己的做法。

本设计只讨论有源带通滤波器的设计,因为带通包含了低通和高通的电路,暂不分别讨论。

设计中运放选择TI产品典型的通用双放LM358,LM358里面包括两个高增益、独立的、内部频率补偿的双运放,适用于电压范围很宽的单电源,而且也适用于双电源工作方式,特点方面具有低输入偏置电流、低输入失调电压和失调电流,它的共模输入电压范围较宽,差模输入电压范围等于电源电压范围,单电源供电电压3-32V,双电源供电±1.5-±16V,单位增益带宽为1MHz,适用于一般的带通滤波器的设计,同时具有低功耗的功能,对于设计阶数相对高一些的带通滤波器的话,可以选用TI的四运放LM324,其性能与LM358大体相同,应用起来节省空间。

对于运放的要求此设计不是特别高,只要运放的频率满足低通的截止频率即可,如果精确度要求高的话那么首先运放的供电电压要足够稳定,或者选择精密运放,如TLC274A,否则通用的即可,例如推荐TI的LM224四运放。

巴特沃斯带通滤波器幅频响应在通带中具有最平幅度特性,但是从通带到阻带衰减较慢,如果对于过渡带要求稍高,可以增加阶数来实现,否则改选用切比雪夫滤波电路。

下面讨论设计两种带通滤波器,其一为二阶低通滤波器和二阶高通滤波器组成的四阶带通滤波器,如下图:图1 四阶带通滤波器参数选择与计算:对于低通滤波器的设计,电容一般选取1000pF,对于高通滤波器的设计,电容一般选取0.1uF,然后根据公式R=1/2Πfc计算得出与电容相组合的电阻值,即得到此图中R2、R6和R7,为了消除运放的失调电流造成的误差,尽量是运放同相输入端与反向输入端对地的直流电阻基本相等,同时巴特沃斯滤波器阶数与增益有一定的关系(见表1),根据这两个条件可以列出两个等式:30=R4*R5/(R4+R5),R5=R4(A-1),36=R8*R9/(R8+R9),R8=R9(A-1)由此可以解出R4、R5、R8、R9,原则是根据现实情况稍调整电阻值保持在一定限度内即可,不要相差太大,注意频率不要超过运放的标定频率。

数模电复试面试题目(3篇)

数模电复试面试题目(3篇)

第1篇一、基础知识部分1. 以下哪些是模拟电子技术中的基本放大电路?(至少列举3种)A. 共射放大电路B. 共集放大电路C. 共基放大电路D. 比较放大电路2. 简述晶体管放大电路中的共射、共集和共基三种组态的特点及适用场合。

3. 以下哪些是数字电子技术中的基本逻辑门?(至少列举3种)A. 与门B. 或门C. 非门D. 异或门4. 简述TTL和CMOS两种逻辑门的特点及适用场合。

5. 列举三种常用的数模转换器(DAC)和模数转换器(ADC)。

6. 简述A/D转换和D/A转换的基本原理。

7. 简述数字信号处理中采样定理的含义。

8. 列举三种常用的滤波器类型。

二、电路分析部分1. 试用叠加定理求解下列电路中的电流I1和I2:```+3V|| R1=2kΩ|_______| || R2=4kΩ ||_______| || R3=6kΩ ||_______| || I1 ||_______| || I2 ||_______| || GND |```2. 求下列RLC串联电路的谐振频率、品质因数和带宽:```+3V|| R=2kΩ|_______| || L=0.5H ||_______| || C=10μF ||_______| || GND |```3. 试用戴维南定理求解下列电路中的电压U:```+10V|| R1=3kΩ|_______| || R2=4kΩ ||_______| || R3=5kΩ ||_______| || R4=6kΩ ||_______| || GND |```4. 试用节点电压法求解下列电路中的电压U1和U2:```+10V|| R1=2kΩ|_______| || R2=3kΩ ||_______| || R3=4kΩ ||_______| || R4=5kΩ ||_______| || GND |```三、数字电路部分1. 试用真值表或卡诺图化简下列逻辑函数:F(A, B, C) = AB + AC + BC2. 试用与非门和或非门实现下列逻辑函数:F(A, B, C) = A + B + C3. 试用D触发器设计一个4位同步加法计数器。

模拟滤波器设计及运放选择

模拟滤波器设计及运放选择

模拟滤波器设计及运放选择滤波器是一种能够对信号进行频率选择和频率衰减的电路。

在电子系统中,滤波器广泛应用于音频处理、通信系统、控制系统等方面。

滤波器设计的目标是通过选择合适的电路元件和参数,使得滤波器能够满足特定的频率响应要求。

在滤波器设计中,常用的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

除了选择滤波器类型外,选择合适的滤波器阶数也是设计滤波器的关键。

滤波器阶数指的是滤波器中电子元件的数量,阶数越高,滤波器对信号的衰减能力越强。

当设计滤波器时,还需要选择合适的运放。

运放是一种放大器,可以将输入信号放大到合适的范围。

在滤波器中,运放的功能不仅限于放大信号,还可以提供一些额外的功能,比如放大增益、相位延迟等。

在选择运放时,需要考虑以下几个因素:1.噪声水平:运放的噪声水平对滤波器的性能有很大影响。

噪声水平越低,滤波器的信噪比就越高。

2.带宽:运放的带宽决定了滤波器能够传递的最高频率。

如果带宽不足,信号的高频分量将无法通过滤波器。

3.运放增益和稳定性:运放的增益和稳定性对于滤波器的放大系数和频率响应有很大影响。

因此,选择具有适当增益和高稳定性的运放是设计滤波器的重要考虑因素之一在实际的滤波器设计中,通常会先根据预设的频率响应要求选择合适的滤波器类型和阶数。

然后,根据滤波器的阻抗要求和电源电压等因素,选择合适的运放。

在选择运放时,可以参考运放的数据手册,了解其噪声水平、带宽、增益和稳定性等参数。

根据实际需求,结合数据手册中的参数,选择符合要求的运放。

总之,滤波器设计和运放选择是一项复杂的任务。

需要综合考虑滤波器的频率响应要求、阻抗要求以及运放的噪声水平、带宽、增益和稳定性等因素。

只有合理选择滤波器类型和阶数,并且选择适当的运放,才能设计出性能良好的滤波器。

电路中的模拟集成电路设计

电路中的模拟集成电路设计

电路中的模拟集成电路设计随着科技的不断发展,模拟集成电路在各个领域的应用越来越广泛。

模拟集成电路设计是一项复杂而又关键的任务,它涉及到了电子工程的许多方面,包括电路设计、材料选择、电子元件特性等。

本文将探讨电路中的模拟集成电路设计的基本原理和一些常见的设计技巧。

第一部分:模拟集成电路的基本原理模拟集成电路是指在同一芯片上集成了多个功能电路的电子器件。

与数字集成电路相比,模拟集成电路可以处理连续信号,具有更高的精度和稳定性。

在模拟集成电路设计中,首先需要理解几个基本原理。

1. 基本电路理论:模拟集成电路设计离不开基本电路理论,包括电压、电流、电阻的基本概念以及欧姆定律、基尔霍夫定律等。

设计师需要熟悉这些基本理论,并能够灵活运用到实际设计中。

2. 放大器设计:放大器是模拟集成电路中最基本的功能电路之一。

放大器可以将输入信号放大到需要的幅度,通常有运放放大器和差分放大器等不同类型。

在设计放大器时,需要考虑增益、带宽、失真等参数。

3. 滤波器设计:滤波器用于滤除输入信号中的某些频率分量或加cent。

模拟集成电路中常见的滤波器包括低通滤波器、高通滤波器、带通滤波器等。

在滤波器设计中,需要考虑通带范围、阻带范围、通带波纹、阻带衰减等参数。

第二部分:模拟集成电路设计的技巧在理解了模拟集成电路的基本原理之后,设计师还需要掌握一些设计技巧,以确保设计的电路达到要求。

1. 选择合适的元件:在模拟集成电路设计中,选择合适的元件至关重要。

不同的元件具有不同的特性,如电阻、电容、电感等。

设计师需要根据设计要求和实际情况选择合适的元件。

2. 进行仿真和优化:在设计过程中,进行仿真是必不可少的一步。

通过仿真,可以评估设计的性能,并进行校正和优化。

常用的仿真工具有SPICE、MATLAB等。

3. 线路布局和电磁兼容:模拟集成电路设计不仅要考虑电路的功能和性能,还要对线路进行合理的布局。

合理的线路布局可以减少干扰和噪音,提高电磁兼容性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、模拟滤波器设计流程模拟滤波器设计流程——(一)基本概念预备知识基本的电子电路常识,信号与系统中的频域,零极点,传递函数,拉普拉施变换等概念。

一.模拟滤波器分类由于知识所限,这里我们只谈谈模拟滤波器。

从频域上可以划分为低通滤波器,高通滤波器,带通滤波器,带阻滤波器和全通滤波器等。

这种划分方式便于做系统模型分析。

而按照应用来划分不外乎就是滤波,均衡,延时等。

按照应用来划分的方式不是很容易说清楚,因此我们还是应当将应用指标要求对应到不同的滤波器类型上面。

二.设计模拟滤波器怎样设计?需要指标要求,而指标的获得应该是从系统划分开始。

对于滤波器的性能指标要求,系统往往会给出一个底线。

系统仿真在这一步尤为关键,系统仿真不仅可以给出滤波器的指标,也可以验证不同类型滤波器对性能的影响。

如果能够使用matlab作为仿真工具,这一步就会变得很简单,simulink提供了不同类型滤波器的model,直接调用就可以了。

当然,如果你对各种类型滤波器的优缺点非常了解,那就很容易确定适合的滤波器类型了,后面的事就是具体的电路实现,这里不再详述。

不过能够做一下系统仿真要更保险一点,毕竟在后期电路实现的时候还会出现很多非理想因素,如果前期能购通过系统仿真为各个模块指标留出足够的裕量,这是是很明智的。

三.模拟滤波器类型上面说的是如何选择滤波器的方法,那么各种类型的滤波器在指标和性能上又有什么区别呢?第一步,我们首先要了解滤波器的关键指标有哪些.。

性能指标包括两方面的内容:频域上我们关心的是截止频率fc,3dB带宽BW,中心频率f0,带外抑制度(阻带衰减),通频带纹波等;时域上有冲激响应,阶越响应,群时延等等。

不同类型的滤波器性能优缺点就表现为其中的几项。

应用的需求可以直接反映为对截止频率,阻带频率,抑制度,以及时延等特性的要求。

预告:后面准备用一个贴对各种类型的滤波器特性做简单的总结和介绍,和滤波器选择方法;再用一个贴介绍我做过的一个滤波器设计流程。

敬请关注!模拟滤波器设计流程——(二)分类滤波器设计(on chip)可能算是我这几年工作接触最多的一个方向了。

然而到现在我还是觉得很难去给出一个模拟滤波器的基本概括,因为感觉其中涉及的东西太多,自己了解的东西还是太肤浅。

最开始做滤波器的时候比较盲目,领导分配了指标却不知道从何处入手,只能找些参考资料来看看。

关于模拟滤波器的分类这一话题,不同的资料有不同的说法,不知道该信谁的,也不知道究竟应该怎样去理解书中的知识,简单概括一下就是“抓瞎”。

滤波器的类型,阶次,拓扑结构等等概念经常是混淆不清。

当时很多电路感觉都是硬着头皮在做的,好在都还没出什么问题。

做多了几次,有些觉悟了,问题还是很多,但对于滤波器也有了点自己的理解方式。

从我的观点来看,理解滤波器的分类首先具备基本的系统设计与信号处理知识。

这两个背景知识对于理解滤波器相关概念和设计方法也是非常重要的书本上经常提到的那些滤波器不外乎有源,无源,低通,高通,带通,带阻等等。

有源与无源之分,无非就是看滤波器有无电源供电;而低通,高通等等分类方法,则是根据有用信号所占据的频段来划分的,信号的频段决定了你所选择的滤波器究竟是低通还是高通海市别的什么。

我们常常看到诸如butterworth型,chebychev型等滤波器,关于这种分类方式,以我的理解来看,指的是滤波器的零极点位置;不同的零极点位置决定了滤波器在带外抑制度,(带内/带外)纹波,幅频/相频特性,以及群时延等性能指标。

当然掌握这些滤波器的基本特点有利于我们设计电路的时候选择合适的类型。

对于不同类型的滤波器,其极点个数决定了阶次,阶次也与上述指标相关。

我们也常常看到如sallen-kay或别的分类方式。

对于这种说法,实际上已经具体到了滤波器的拓扑结构。

如同前面提到的滤波器零极点位置决定滤波器的类型,而实现零极点的方式,就对应到了滤波器的拓扑结构。

实际上从书本上我们也可以看到如果是拓扑结构的分类方式,常常会有对应的电路结构图。

我们可以根据这个电路图选择合适的R/C或OPA,来实现butterworth或chebychev之类的滤波器。

究竟选择哪种滤波器,需要看系统指标的要求,严格的系统指标会给出例如时延特性,带外抑制度等等要求。

这一步是滤波器设计必不可少的。

IC设计不需要做性能最优的模块,而是设计出满足性能要求而又成本最低的电路,这一点也需要牢记在心。

模拟滤波器设计流程——(三)从系统指标到电路映射片上集成的模拟滤波器常常是系统中的一个组成模块,对滤波器所有的性能指标要求来源与于系统指标的分解。

比如说滤波器的噪声,线性度,带外抑制度,带内纹波,时延特性等等。

确定采用何种类型,多少阶次的滤波器都可以通过系统仿真得到。

举个例子说,7阶的butterworth和5阶的切比雪夫在带外抑制度上可能都差不多,但在带内纹波和时延特性上却不尽相同,这样的两个滤波器分别代入系统做系统仿真,很容易就可以看到他们各自的特性对解调误码率的影响。

而如果都满足系统要求的情况下,如何去选择合适的滤波器,还要综合考虑复杂度,以及成本。

事实上做系统仿真的时候,往往就将我们能选择的滤波器类型范围缩小了。

而再考虑一下实现成本,基本上能够达到指标要求的滤波器类型和阶次也就定了。

剩下的工作无非就是常规的滤波器设计。

利用普遍的滤波器设计工具,代入抑制度,截止频率,增益等参数,就能得到特定结构中使用到的元件参数。

在综合滤波器设计的时候,最为广泛运用的应该是级联方式。

通过将高阶次的传递函数分解为多个一阶和二阶传递函数的组合,再分级实现滤波器。

这种方法大大简化了滤波器的设计,避免了多级反馈,从电路设计难度上来讲要更为容易一点。

假设我们需要设计一个5阶的butterworth型低通滤波器。

首先将滤波器划分为3级结构,1级一阶,2级2阶。

再根据归一化的传递函数表和滤波器的截止频率,可以得到各级的特征频率和Q值。

知道了这两个值之后带入对应的1阶或2阶传递函数,可以很方便地求解出需要的R或C(也有可能是Gm或C)值。

这样我们就将滤波器与普通的模拟电路如如运放等关联起来。

滤波器设计从这个层次再往下,考验的就是我们对基本的模拟电路模块如运算放大器,Gm单元等电路的掌握能力了。

如果滤波器传递分解之后有多级2阶结构,则需要考虑不同Q值的2阶结构在链路中的位置。

Q值高的一般放在后面,因为高Q值放在前面影响滤波器的动态范围。

但放在后面对抑制滤波器内部噪声却没什么好处,因为落在高Q 值模块谐振峰值处的噪声会被放大。

2、贝塞尔滤波器电子学和信号处理中,贝赛尔(Bessel)滤波器是具有最大平坦的群延迟(线性相位响应)的线性过滤器。

贝赛尔滤波器常用在音频天桥系统中。

模拟贝赛尔滤波器描绘为几乎横跨整个通频带的恒定的群延迟,因而在通频带上保持了被过滤的信号波形。

滤波器的名字来自于Friedrich贝赛尔,一位德国数学家(1784–1846),他发展了滤波器的数学理论基础。

贝塞尔(Bessel)滤波器具有最平坦的幅度和相位相应。

带通(通常为用户关注区域)的相位响应近乎呈线性。

Bessel滤波器可用于减少所有IIR滤波器固有的非线性相位失真。

贝塞尔(Bessel)线性相位滤波器正是由于具有向其截止频率以下的所有频率提供等量延时的特性,才被用于音频设备中,在音频设备中,必须在不损害频带内多信号的相位关系前提下,消除带外噪声。

另外,贝塞尔滤波器的阶跃响应很快,并且没有过冲或振铃,这使它在作为音频DAC输出端的平滑滤波器,或音频ADC输入端的抗混叠滤波器方面,是一种出色的选择。

贝塞尔滤波器还可用于分析D类放大器的输出,以及消除其它应用中的开关噪声,来提高失真测量和示波器波形测量的精确度。

虽然贝塞尔滤波器在它的通频带内提供平坦的幅度和线性相位(即一致的群延时)响应,但它的选择性比同阶(或极数)的巴特沃斯(Butterworth)滤波器或切比雪夫(Chebyshev)滤波器要差。

因此,为了达到特定的阻带衰减水平,需要设计更高阶的贝塞尔滤波器,从而它又需要仔细选择放大器和元件来达到最低的噪声和失真度。

3、各种模拟滤波器的特性比较滤波器就是为了从一堆信号中,把自己想得到的信号分离出来。

如AD/DA变换器的前置或后置滤波器。

而滤波器的各种逼近方式都是为了更好的接近理想情况。

下面分别从截止特性和相位特性等方面分析滤波器的选型,其实各种滤波器的书中也会有相似的内容。

一般而言,滤波器会产生一个和频率有关的相位偏移。

如果相位与频率的变化关系是线性的,那么滤波器仅仅会使信号延时一个常数量。

在后续处理时,只要知道固定的延时时间,补回去就可以得到真实情况。

然而,如果相位的变化是非线性的,那么对非正弦信号会产生严重的相位失真。

这就意味着经滤波器得到的信号与真实情况有偏差。

一般而言,过渡带幅度特性越陡峭,这个失真就越严重。

巴特沃思设计之初不知道哪种好时,一般选用巴特沃思。

因为这种滤波器通带阻带内特性最为平坦,截止特性和相位特性都不错,对构成滤波器的器件要求也不严格,易于得到符合设计值的特性。

切比雪夫通带内有等波纹起伏,截止特性特别好,但相位特性和群延时特性不太好。

如果对衰减特性较高,且相位要求不严的情况下,可以选取切比雪夫型滤波器。

贝塞尔通带内延时特性最平坦,因而这种滤波器能够无失真的传送诸如方波、三角波等频谱很宽的信号。

但其截止特性相当差。

逆切比雪夫(巴特沃思-切比雪夫)阻带内有零点(陷波点)。

由于椭圆形比它能得到更好的截止特性,因而它不太使用。

椭圆函数(联立切比雪夫)阻带内有零点。

切比雪夫的特性曲线仅在通带内有起伏,而逆切比雪夫的特性曲线仅在阻带内有起伏。

截止特性比其他滤波器都好,但对器件要求严。

如果只对衰减特性有要求,可以选取椭圆滤波器。

高斯常用于决定频谱分析仪带宽的滤波器中。

高斯型在特性上与贝塞尔型非常相似,但高斯型滤波器的群延迟特性不如贝塞尔滤波器的群延迟特性平坦。

贝塞尔在进入阻带区以后才开始迅速趋近于零值的,而高斯型滤波器的延时特性曲线则是在通带内就开始缓慢变化,并且趋近于零值的速度较慢。

此外,截止特性也不好。

相位等波纹通带内的相位是等波纹变化的。

勒让德截止特性比巴特沃思好,并且可以用小的器件值来实现。

相比较而言,巴特沃思型滤波器的特点是通带内比较平坦;切比雪夫型滤波器的特点是通带内有等波纹起伏;逆切比雪夫型滤波器的特点是阻带内有等波纹起伏;而椭圆函数型滤波器的特点是通带内和阻带内都有等波纹起伏。

如果滤波器特性中有起伏,滤波器的衰减特性截止区就比较陡峭,相位失真就越严重。

贝塞尔型滤波器的衰减特性很差,它的阻带衰减非常缓慢。

但是,这种滤波器的相位特性好,因而对于要求输出信号波形不能失真的场合非常有用。

设计滤波器时要综合考虑截止特性和相位失真的要求。

相关文档
最新文档