《有理数的乘方》教学设计说明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有理数的乘方》教学设计说明
齐齐哈尔外国语学校贾利
一、教材分析
教材的地位与作用:有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。
二、学情分析:
在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。
在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。
三、教学目标:
根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:
⑴、知识与技能:让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。
⑵、过程与方法:在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。
⑶、情感、态度和价值观:让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。
四、教学重点与难点:
有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。
五、课堂结构设计:
数学是一门培养和发展人的思维的重要学科,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则。因此,在本课的课堂结构设计中,我具体设计了以下教学流程:
六、评价分析
①、强调学生对探究过程的参与及与同学合作交流的意识进行评价,以促进学生动手操作、合作探究的意识。
②、尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的合作交流中提高思维能力。
③、对于不同层次学生采取分层次练习的评价方式,以满足不同层次学生知识技能的发展。
七、板书设计:我力图做到简洁明了,这样既起了示范的作用,又留给学生足够的展示空间。
八、教学反思
有理数乘方是同学们又接触到的一种新的运算,是初中数学教学的重点之一,也是初中数学教学的一个难点。所以我在教这一节课的教学中要从有理数乘方的意义,有理数乘方的符号法则,有理数乘方运算顺序,有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。要求学生深刻理解有理数乘方的意义,住以下几点:
一、乘方是一种特殊的乘法运算。相当于“+、-、×、÷”。教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。强调幂的意义,幂的意义与“和、差、积、商”一样。
二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。法则是:正数的任何次幂是正数,0的任何正整数次幂是0,负数的奇次幂是负数,负数的偶数次幂是正数,教师在教学时强调做乘方时先确定符号再计算
。
《有理数的乘方》教案
齐齐哈尔外国语学校贾利
一、教学目标:
根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:
⑴、知识与技能:让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。
⑵、过程与方法:在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。
⑶、情感、态度和价值观:让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。
二、教学重点与难点:
有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。
三、教学过程:
1、创设情境,激发兴趣
(1)、讲故事传说,古印度国王第一次玩国际象棋就被深深的迷住了。他决定奖赏发明者,并让他自己提要求,发明者指着棋盘对国王说:“那就在棋盘的第一格里放入一颗麦粒,第二格中放入二颗麦粒,第三格中放入四颗麦粒,第四格中放入八颗麦粒……按这样的规律放满64格:”国王反对说:“不、不、这么一点麦子算不上什么奖赏,”但发明者坚持如此。
(2)、提出问题同学们,请想一想如果国王答应发明者的要求,国王应给发明者多少粒麦子?(停顿30秒)今天我们一起来学习有理数的乘方,通过本节课的学习,我们将具备初步解决本题的能力。
(3)、板书课题:有理数的乘方
2、合作探究,分层推进(1)、投影:某种
细胞每过30分钟便由1个分裂成2个,经5小时
后这种细胞由1个分裂成几个?填表(结合分裂示
意图,探索规律)
启发:分裂次数与因数2的个数有何关系?
猜想:经过5时(分裂10次)后,有几个2相乘?
乘方的意义
方式:结合⑴2×2×2…×2=210 ⑵a×a×a…a×a=2n
10个n个
讲解:乘方的意义:求n个相同因数a的积的运算叫做乘方.
一般的,n个相同的因数a相乘,即,记作
用图表表示
读作:a的n次幂或a的n次方.
3、分层练习,寓教于乐
练一练(1) 4个 -7相乘
5个 -1/3相乘
(2)说出下列各式的底数、指数、读法及意义(学生口答)
①53 ②(-1/3)4 ③(-3)4 ④(-1.5)2 ⑤2
(3)运用法则,积累经验
例1 计算上述(2)中各式
提问:怎样进行乘方运算?
注意:负数的乘方在书写时一定要把整个负数(连同符号)用小括号括起来.
其意义不同.
方式:学生板演,并自我纠正
思考: 从以上的计算中你能发现底数是正数的幂的特点和底数是负数的幂