8205s锂电池保护板工作原理-Word整理
DW01、8205A锂电池保护板工作原理及过放过充短路保护解析
锂电池呵护板工作原理及过放过充短路呵护解析之巴公井开创作锂电池呵护板根据使用IC,电压等分歧而电路及参数有所分歧,下面以DW01 配MOS管8205A进行讲解:锂电池呵护板其正常工作过程为:当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A 内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与呵护板的P-端相当于直接连通,呵护板有电压输出。
2.呵护板过放电呵护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变成0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与呵护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
呵护板处于过放电状态并一直坚持。
等到呵护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与呵护板的P-又重新接上,电芯经充电器直接充电。
4.呵护板过充电呵护控制原理:当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变成0V,8205A内的开关管因第4脚无电压而关闭。
此时电芯的B-与呵护板的P-之间处于断开状态。
即电芯的充电回路被切断,电芯将停止充电。
呵护板处于过充电状态并一直坚持。
等到呵护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V 时,DW01 停止过充电呵护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与呵护板P-又重新接上,电芯又能进行正常的充放电。
锂电池保护板原理详细分析
5、过放电保护 电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降 至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池 的永久性损坏。 在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不 同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为 关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作 用。而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二极管对电 池进行充电。 由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极 小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。 在控制IC检测到电池电压低于2.3V至发出关断V1信号之间,也有一段延时时 间,该延时时间的长短由C3决定,通常设为100毫秒左右,以避免因干扰而造成 误判断
-
1
-
3、短路保护 电池在对负载放电过程中,若回路电流大到使U>0.9V(该 值由控制IC决定,不同的IC有不同的值)时,控制IC则判断 为负载短路,其“DO”脚将迅速由高电压转变为零电压,使 V1由导通转为关断,从而切断放电回路,起到短路保护作用。 短路保护的延时时间极短,通常小于7微秒。其工作原理与 过电流保护类似,只是判断方法不同,保护延时时间也不一 样。 除了控制IC外,电路中还有一个重要元件,就是MOSFET, 它在电路中起着开关的作用,由于它直接串接在电池与外部 负载之间,因此它的导通阻抗对电池的性能有影响,当选用 的MOSFET较好时,其导通阻抗很小,电池包的内阻就小, 带载能力也强,在放电时其消耗的电能也少。
-
2、过充电保护 锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电 过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转 为恒压充电,直至电流越来越小。 电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续 恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池 的化学副反应将加剧,会导致电池损坏或出现安全问题。 在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC 决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由 导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过 充电保护作用。而此时由于V2自带的体二极管VD2的存在,电池可以通过该二 极管对外部负载进行放电。在控制IC检测到电池电压超过4.28V至发出关断V2信 号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右, 以避免因干扰而造成误判断。
DW01与8205A组合锂电池保护板工作原理
锂电池保护板工作原理锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解:锂电池保护板其正常工作过程为:当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。
4.保护板过充电保护控制原理:当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的充电回路被切断,电芯将停止充电。
保护板处于过充电状态并一直保持。
等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电.5.保护板短路保护控制原理:如图所示,在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V 时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G 极电压小于0.7V以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。
8205s锂电池保护板工作原理
8205S锂电池保护板工作原理产品描述:锂电保护场效应管(MOSFET) 8205A (GM8205A)规格书(PDF) 8205A 厂商:台湾进口Gem-mirco 8205A 封装:TSSOP-8 8205A 内阻:19mΩ8205A 电压:20V 电流:6A锂电池保护板其正常工作过程为:当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A 内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。
4.保护板过充电保护控制原理:当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的充电回路被切断,电芯将停止充电。
锂电池保护板原理
锂电池保护板原理锂电池保护板原理,也称为保护IC,是一种可以有效保护锂电池的微型集成电路,它通过监控并控制电池充放电过程中的关键参数来实现电池的安全使用。
锂电池保护板是一种新型的复合电路,它采用了先进的集成技术,能够检测到电池在充电、放电及放电过程中的关键参数,如电压、电流、温度等,并对其进行监控,以保证电池操作的安全性。
锂电池保护板的主要功能是对电池的充放电过程中的关键参数,如充电电压、放电电压、充电电流、放电电流、温度等参数进行检测,根据检测结果,自动执行相应的保护措施,从而保障电池正常使用。
首先,锂电池保护板会定时监测电池的电压,并且根据实际情况调整电压上限。
如果电池的电压超出预设的上限,保护板会自动断开电池的充电电路,避免电池过度充电造成损坏。
其次,锂电池保护板也会定时监测电池的充电电流,并且根据实际情况调整电流上限。
如果电池的充电电流超出预设的上限,保护板会自动断开电池的充电电路,避免电池过度充电造成损坏。
此外,锂电池保护板也会定时监测电池的放电电压,并且根据实际情况调整电压下限。
如果电池的放电电压低于预设的下限,保护板会自动断开电池的放电电路,避免电池过度放电而损坏。
最后,锂电池保护板也会定时监测电池的放电电流,并且根据实际情况调整电流上限。
如果电池的放电电流超出预设的上限,保护板会自动断开电池的放电电路,避免电池过度放电而损坏。
除此之外,锂电池保护板还可以定时监测电池的温度,并且根据实际情况调整温度上限。
如果电池的温度超出预设的上限,保护板会自动断开电池的充放电电路,避免电池过热而损坏。
以上就是锂电池保护板原理的基本概念,它的功能非常强大,不仅可以保护电池的安全使用,还可以有效延长电池的使用寿命。
因此,锂电池保护板已经成为当今锂电池安全使用的必备装备。
DW01、8205A锂电池保护板工作原理及过放过充短路保护解析
锂电池保护板工作原理及过放过充短路保护解析锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解:锂电池保护板其正常工作过程为:当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。
4.保护板过充电保护控制原理:当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的充电回路被切断,电芯将停止充电。
保护板处于过充电状态并一直保持。
等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电。
锂电池保护板工作原理及构成
锂电池保护板工作原理及构成
锂电池保护板概要
锂电池保护板是对串联锂电池组的充放电保护;在充满电时能保证各单体电池之间的电压差异小于设定值(一般±20mV),实现电池组各单体电池的均充,有效地改善了串联充电方式下的充电效果;同时检测电池组中各个单体电池的过压、欠压、过流、短路、过温状态,保护并延长电池使用寿命;欠压保护使每一单节电池在放电使用时避免电池因过放电而损坏。
锂电池保护板技术参数
均衡电流:80mA(VCELL=4.20V时)
均衡起控点:4.18±0.03 V过充门限:4.25±0.05 V (4.30±0.05 V可选)
过放门限:2.90±0.08 V (2.40±0.05 V可选)
过放延时:5mS。
锂电池保护板原理
锂电池保护板原理(总10页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除锂电池保护板原理锂电池(可充型)之所以需要保护,是由它本身特性决定的。
由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。
锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。
普通锂电池保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。
其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。
在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化。
1、过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平变为低电平时VDD-VSS间电压。
2、过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平变为高电平时VDD-VSS间电压。
3、过放电检出电压:通常状态下,Vdd逐渐降低至D O端由高电平变为低电平时VDD- VSS间电压。
4、过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平变为高电平时 VDD-VSS间电压。
5、过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平变为低电平时VM-VSS间电压。
6、过电流2检出电压:在通常状态下,VM从OV起以1ms以上4ms以下的速度升到DO端由高电平变为低电平时VM-VSS间电压。
7、负载短路检出电压:在通常状态下,VM以OV起以1μS以上50μS以下的速度升至DO端由高电平变为低电平时VM-VSS间电压。
8205s锂电池保护板工作原理
8205S锂电池保护板工作原理产品描述:锂电保护场效应管(MOSFET) 8205A (GM8205A)规格书(PDF) 8205A厂商:台湾进口Gem-mirco 8205A 封装:TSSOP-8 8205A 内阻:19mΩ8205A 电压:20V 电流:6A锂电池保护板其正常工作过程为:当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A 内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。
4.保护板过充电保护控制原理:当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的充电回路被切断,电芯将停止充电。
电动车锂电池保护板的工作原理
电动车锂电池保护板的工作原理电动车,哦,那可是当下的热门话题!谁不想骑着它,风驰电掣,帅气得像个超人呢?但是,电动车的动力来源——锂电池,背后可藏着不少“秘密”,而保护板就是其中的一个小英雄。
今天就来聊聊这个保护板的工作原理,看看它是怎么保障我们骑行安全的。
1. 什么是锂电池保护板?首先,咱们得了解什么是锂电池保护板。
简单来说,它就像电池的守护神,负责保护电池不受伤害。
要是没有它,电池就像个无头苍蝇,随便乱飞,容易短路、过充或者过放,那可就麻烦了!保护板通过监控电池的状态,确保它们在一个安全的范围内工作。
就好比你在外面玩得嗨,手机电量也得留个余地,不然突然关机就尴尬了,对吧?1.1 保护电池,保障安全你想想,要是电池出了问题,电动车可是停不下来的!保护板能及时检测到电池的电压、温度等各种信息。
要是发现电压过高或者温度过高,它会立马切断电流,避免电池发热甚至爆炸。
这个功能可真是让人松了一口气,毕竟安全第一嘛!1.2 省电又持久保护板的另一个妙用就是延长电池的使用寿命。
它可以根据电池的实际情况,合理分配电量。
比如,当你骑行的时候,保护板会监控每个电池单元,确保它们都在一个健康的状态下工作。
这样,不仅让你的电动车跑得更远,还能让电池“长命百岁”,真是一举两得,何乐而不为呢?2. 保护板的工作原理好,接下来咱们聊聊保护板是怎么具体工作的。
听起来可能有点复杂,但其实就是几个简单的步骤,让我们一起来拆解一下。
2.1 电压监测首先,保护板会实时监测电池的电压。
每个电池都有一个理想的电压范围,保护板就像个细心的老师,随时观察学生的表现。
一旦发现某个电池的电压超出范围,它就会发出警报,甚至切断电源,避免更大的损失。
就像你上课的时候,老师发现有人开小差,立马就会把他叫回正轨。
2.2 温度监控其次,温度监测也非常重要。
电池在充电和放电的时候,会产生热量,保护板会实时监控这个温度。
如果温度过高,保护板就会启动冷却系统,或者直接切断电流。
锂电池保护板工作原理及构成
锂离子电池保护板工作原理及其构成锂离子电池保护板工作原理及其构成MOS锂在元素周期表上第3位,外层电子1个,容易失去形成稳定结构,所以是非常活泼的一种金属。
而锂离子电池具有放电电流大、内阻低、寿命长、无记忆效应等被人们广泛使用,锂离子电池在使用中严禁过充电、过放电、短路,否则将会使电池起火、爆炸等致命缺点,所以,在使用可充锂电池都会带有一块保护板来保护电芯的安全。
保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFE T串在主充放电回路中担当高速开关,执行保护动作。
电路原理图如下:1、下面介绍保护IC个引脚功能:VDD是IC电源正极,VSS是电源负极,V-是过流/短路检测端,Do ut是放电保护执行端,Cout是充电保护执行端。
2、保护板端口说明:B+、B-分别是接电芯正极、负极;P+、P-分别是保护板输出的正极、负极;T 为温度电阻(NTC)端口,一般需要与用电器的MCU配合产生保护动作,后面会介绍,这个端口有时也标为ID,意即身份识别端口,这时,图上的R3一般为固定阻值的电阻,让用电器的CPU辨别是否为指定的电池。
保护板工作过程:1、激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS 开关。
2、充电:P+、P-分别接充电器的正负极,充电电流经过两个MOS对电芯进行充电。
这时,IC的VDD、VSS既是电源端,也是电芯电压检测端(经R1)。
随着充电的进行,电芯电压逐渐升高,当升高到保护IC门限电压(一般是4.30V,通常称为过充保护电压)时,Cout随即输出高电平将对应那个M OS关断,充电回路也被断开。
过充保护后,电芯电压会下降,当下降到IC门限电压(一般为4.10V,通常称为过充保护恢复电压)时,Cout恢复低电平状态打开MOS开关。
电动车锂电池保护板的工作原理
电动车锂电池保护板的工作原理电动车锂电池保护板的“隐形守护神”
各位电动车大侠,今天咱们来聊聊那个让电池“重获新生”的神秘小英雄——锂电池保护板。
它就像个超级英雄,时刻守护着我们的电动小宝贝们,确保它们能安全、长久地陪伴我们。
首先得说说这个保护板是怎么工作的。
它可不是摆设,而是真正的幕后英雄!当电池里的能量开始疯狂释放时,保护板就像是一位聪明的管家,时刻监控着电池的状态,不让任何“不速之客”捣乱。
它通过精准的电流和电压检测,一旦发现异常,就会迅速启动保护机制,像是按下了紧急停止按钮,让电池“冷静下来”,防止了可能的过热、过充甚至爆炸。
接下来,咱们聊聊保护板的“超能力”。
它的“超能力”可大了去了!比如说,它能像天气预报一样提前知道电池什么时候需要充电;还能像医生一样,在电池出现问题前就发出警告信号。
更神奇的是,它还能根据不同的使用场景,调整自己的工作模式,比如在长途旅行中,它可以变成“节能模式”,让电池更持久;而在城市里,它又可以切换到“快充模式”,让你快速回血。
保护板也不是万能的。
有时候,它也会犯点小错误,比如误判电池状态,或者在特殊情况下反应不够灵敏。
这时候,我们就需要检查一下保护板的设置是否正确,或者给它充个电让它“重启一下”了。
我想说,虽然保护板是个“幕后英雄”,但它的存在真的让我们骑得更安心。
它不仅保护了我们的电池,也保护了我们心爱的电动车。
所以,下次当我们骑着电动车在路上
飞驰时,不妨多给这位“幕后英雄”一点掌声吧!毕竟,没有它的默默付出,我们的电动车可能早就“罢工”了哦!。
DW01、8205A锂电池保护板工作原理及过放过充短路保护解析之欧阳家百创编
锂电池保护板工作原理及过放过充短路保护解析欧阳家百(2021.03.07)锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解:锂电池保护板其正常工作过程为:当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。
4.保护板过充电保护控制原理:当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的充电回路被切断,电芯将停止充电。
保护板处于过充电状态并一直保持。
等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V 时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电。
DW01、8205A锂电池保护板工作原理及过放过充短路保护解析精编版
锂电池保护板工作原理及过放过充短路保护解析锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS 管8205A进行讲解:锂电池保护板其正常工作过程为:当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。
4.保护板过充电保护控制原理:当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的充电回路被切断,电芯将停止充电。
保护板处于过充电状态并一直保持。
等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电。
锂电池保护电路工作原理
一、锂电池保护电路工作原理1.锂电池保护板其正常工作过程为:当电芯电压在2.5V至4.3V之间时,DW01的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01的第1脚、第3脚电压将分别加到8205的第5、4脚,8205内的两个MOS因其G极接到来自DW01的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01内部将通过R22电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
等到保护板的B+与P-间接上充电电压后,DW01经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。
3.保护板过充电保护控制原理:当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205内的开关管因第4脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的充电回路被切断,电芯将停止充电。
保护板处于过充电状态并一直保持。
等到保护板的B+与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01停止过充电保护状态重新在第3脚输出高电压,使8205内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电。
DW01、8205A锂电池保护板工作原理及过放过充短路保护解析教学教材
D W01、8205A锂电池保护板工作原理及过放过充短路保护解析锂电池保护板工作原理及过放过充短路保护解析锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解:锂电池保护板其正常工作过程为:当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。
4.保护板过充电保护控制原理:当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的充电回路被切断,电芯将停止充电。
保护板处于过充电状态并一直保持。
等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电。
锂电池保护板原理
锂电池保护板原理锂电池可充型之所以需要保护,是由它本身特性决定的.由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现.锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏.普通锂电池保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等.其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全.在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化.1、过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平变为低电平时VDD-VSS间电压.2、过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平变为高电平时VDD-VSS间电压.3、过放电检出电压:通常状态下,Vdd逐渐降低至D O端由高电平变为低电平时VDD- VSS间电压.4、过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平变为高电平时 VDD-VSS间电压 .5、过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平变为低电平时VM-VSS间电压.6、过电流2检出电压:在通常状态下,VM从OV起以1ms以上4ms以下的速度升到DO端由高电平变为低电平时VM-VSS间电压.7、负载短路检出电压:在通常状态下,VM以OV起以1μS以上50μS以下的速度升至DO端由高电平变为低电平时VM-VSS间电压.8、充电器检出电压:在过放电状态下,VM以OV逐渐下降至DO由低电平变为变为高电平时VM-VSS间电压.9、通常工作时消耗电流:在通常状态下,流以VDD端子的电流IDD即为通常工作时消耗电流.10、过放电消耗电流:在放电状态下,流经VDD端子的电流IDD即为过流放电消耗电流.1、通常状态:电池电压在过放电检出电压以上以上,过充电检出电压以下以下,VM 端子的电压在充电器检出电压以上,在过电流/检出电压以下OV的情况下,IC通过监视连接在VDD-VSS间的电压差及VM-VSS间的电压差而控制MOS管,DO、CO端都为高电平,MOS管处导通状态,这时可以自由的充电和放电;当电池被充电使电压超过设定值VC后,VD1翻转使Cout变为低电平,T1截止,充电停止,当电池电压回落至VCR时,Cout变为高电平,T1导通充电继续, VCR小于VC 一个定值,以防止电流频繁跳变.当电池电压因放电而降低至设定值VD时, VD2翻转,以IC内部固定的短时间延时后,使Dout变为低电平,T2截止,放电停止.当电路放电电流超过设定值或输出被短路时,过流、短路检测电路动作,使MOS管T2关断,电流截止.该保护回路由两个MOSFETT1、T2和一个控制ICN1外加一些阻容元件构成.控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C2为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下:1、正常状态在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小.此状态下保护电路的消耗电流为μA级,通常小于7μA.2、过充电保护锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到根据正极材料不同,有的电池要求恒压值为,转为恒压充电,直至电流越来越小.电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题.在带有保护电路的电池中,当控制IC检测到电池电压达到该值由控制IC决定,不同的IC有不同的值时,其“CO”脚将由高电压转变为零电压,使T1由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用.而此时由于T1自带的体二极管VD1的存在,电池可以通过该二极管对外部负载进行放电.在控制IC检测到电池电压超过至发出关断T1信号之间,还有一段延时时间,该延时时间的长短由C2决定,通常设为1秒左右,以避免因干扰而造成误判断.3、过放电保护电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏.在电池放电过程中,当控制IC检测到电池电压低于该值由控制IC决定,不同的IC 有不同的值时,其“DO”脚将由高电压转变为零电压,使T2由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用.而此时由于T2自带的体二极管VD2的存在,充电器可以通过该二极管对电池进行充电.由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于μA. 在控制IC检测到电池电压低于至发出关断T2信号之间,也有一段延时时间,该延时时间的长短由C2决定,通常设为100毫秒左右,以避免因干扰而造成误判断.4、过电流保护由于锂离子电池的化学特性,电池生产厂家规定了其放电电流最大不能超过2CC=电池容量/小时,当电池超过2C电流放电时,将会导致电池的永久性损坏或出现安全问题.电池在对负载正常放电过程中,放电电流在经过串联的2个MOSFET时,由于MOSFET的导通阻抗,会在其两端产生一个电压,该电压值U=IRDS 2, RDS为单个MOSFET导通阻抗,控制IC上的“V-”脚对该电压值进行检测,若负载因某种原因导致异常,使回路电流增大,当回路电流大到使U>该值由控制IC决定,不同的IC有不同的值时,其“DO”脚将由高电压转变为零电压,使T2由导通转为关断,从而切断了放电回路,使回路中电流为零,起到过电流保护作用.在控制IC检测到过电流发生至发出关断T2信号之间,也有一段延时时间,该延时时间的长短由C2决定,通常为13毫秒左右,以避免因干扰而造成误判断.在上述控制过程中可知,其过电流检测值大小不仅取决于控制IC的控制值,还取决于MOSFET的导通阻抗,当MOSFET导通阻抗越大时,对同样的控制IC,其过电流保护值越小.5、短路保护电池在对负载放电过程中,若回路电流大到使U>该值由控制IC决定,不同的IC有不同的值时,控制IC则判断为负载短路,其“DO”脚将迅速由高电压转变为零电压,使T2由导通转为关断,从而切断放电回路,起到短路保护作用.短路保护的延时时间极短,通常小于7微秒.其工作原理与过电流保护类似,只是判断方法不同,保护延时时间也不一样.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8205S锂电池保护板工作原理
产品描述:锂电保护场效应管(MOSFET) 8205A (GM8205A)规格书(PDF) 8205A
厂商:台湾进口Gem-mirco 8205A 封装:TSSOP-8 8205A 内阻:19mΩ8205A 电压:20V 电流:6A
锂电池保护板其正常工作过程为:
当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:
当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电
压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A 内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。
4.保护板过充电保护控制原理:
当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的充电回路被切断,电芯将停止充电。
保护板处于过充电状态并一直保持。
等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电.
5.保护板短路保护控制原理:
如图所示,在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电
阻很小的电阻,并称为8205A
的导通内阻,每个开关的导通内
阻约为30mU 03a9共约为
60mU 03a9,加在G极上的电
压实际上是直接控制每个开关
管的导通电阻的大小当G极电
压大于1V时,开关管的导通内
阻很小(几十毫欧),相当于开关
闭合,当G极电压小于0.7V以
下时,开关管的导通内阻很大
(几M
Ω),相当于开关断开。
电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×IUA又称为8205A的管压降,UA可以简接表明放电电流的大小。
上升到0.2V时便认为负载电流到达了极限值,于是停止第1脚的输出电压,使第1脚电压变为0V、8205A内的放电控制管关闭,切断电芯的放电回路,将关断放电控制管。
换言之DW01 允许输出的最大电流是3.3A,实现了过电流保护。
6. 短路保护控制过程:
短路保护是过电流保护的一种极限形式,其控制过程及原理与过电流保护一样,短路只是在相当于在P P-间加上一个阻值小的电阻(约为0Ω)使保护板的负载电流瞬时达到10A以上,保护板立即进行过电流保护。