材料力学课件(路桥)第8章弯曲变形

合集下载

《材料力学》课件8-2两相互垂直平面内的弯曲

《材料力学》课件8-2两相互垂直平面内的弯曲

弯曲变形的分布
弯曲变形的分布规律
两相互垂直平面内的弯曲变形分布规律与受力情况、材料性质和结构特点等因 素有关。通过分析这些因素,可以确定变形在两个相互垂直平面内的分布情况 。
变形分布对结构性能的影响
弯曲变形的分布情况直接影响到结构的承载能力和稳定性。因此,在设计过程 中,需要充分考虑变形分布的影响,以优化结构性能。
THANKS
感谢观看
案例三:机械零件的弯曲分析
总结词
机械零件的弯曲分析是机械工程中常见的分析类型,主 要关注的是零件在不同工况下的变形和应力分布。
详细描述
在机械零件设计中,两相互垂直平面内的弯曲分析是评 估零件性能的重要手段。通过弯曲分析,可以优化零件 的结构设计,提高零件的刚度和强度,降低应力集中和 疲劳失效的风险,从而提高机械设备的可靠性和稳定性 。
弯曲强度的分布
弯曲强度的分布规律
在两相互垂直平面内的弯曲中,弯曲强度在截面上呈线性分布,即离中性轴越远,弯曲 强度越大。
弯曲强度分布的影响因素
弯曲强度分布受到多种因素的影响,如截面形状、材料性质、弯矩大小等。例如,对于 矩形截面,其弯曲强度分布与弯矩的分布密切相关。
弯曲强度的应用
结构设计中的应用
案例二:建筑结构的弯曲分析
要点一
总结词
要点二
详细描述
建筑结构的弯曲分析主要关注的是在不同载荷和环境因素 下结构的稳定性。
建筑结构的弯曲分析需要考虑的因素包括结构形式、材料 特性、支撑条件、外部载荷等。通过弯曲分析,可以预测 建筑在不同工况下的变形和应力分布,从而优化建筑设计 ,提高建筑的稳定性和安全性。
03
两相互垂直平面内的弯曲的应力 分析
弯曲应力的计算
弯曲应力的计算公式

《材料力学》课程讲解课件第八章组合变形

《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4

材料力学第八章组合变形

材料力学第八章组合变形

例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max

工程力学(材料力学)8 弯曲变形与静不定梁

工程力学(材料力学)8 弯曲变形与静不定梁

B
ql4 RBl3 0
8EI 3EI
q 约束反力为
B
RB
3 8
ql
RB
用变形比较法求解静不定梁的一般步骤:
(1)选择基本静定系,确定多余约束及反力。 (2)比较基本静定系与静不定梁在多余处的变形、确定 变形协调条件。 (3)计算各自的变形,利用叠加法列出补充方程。 (4)由平衡方程和补充方程求出多余反力,其后内力、 强度、刚度的计算与静定梁完全相同。
教学重点
• 梁弯曲变形的基本概念; • 挠曲线的近似微分方程; • 积分法和叠加法计算梁的变形; • 梁的刚度条件。
教学难点
• 挠曲线近似微分方程的推导过程; • 积分法和叠加法计算梁的变形; • 变形比较法求解静不定梁。
第一节 弯曲变形的基本概念
齿轮传动轴的弯曲变形
轧钢机(或压延机)的弯曲变形
例13-4 用叠加法求图示梁的 yC、A、B ,EI=常量。
M
P
解 运用叠加法
A
C
l/2
l/2
A
=
q
5ql4 Pl3 ml2
B
yC
384EI
48EI
16EI
A
ql3 24EI
Pl 2
16EI
ml 3EI
B
B
ql3 24EI
Pl2 16EI
ml 3EI
M
+
q
A
+
BA
B
二、梁的刚度条件
y max y,
A
max
A ql3
B
24EI
RA
q
A
θB
l
B θB RB
在梁跨中点 l /2 处有 最大挠度值

材料力学弯曲变形

材料力学弯曲变形
13
压杆稳定计算 1)根据压杆的约束条件确定长度系数 )根据压杆的约束条件确定长度系数µ 2)计算杆件自身的柔度 )计算杆件自身的柔度λ(10.7),判断发生弯曲的平面 , 也可由惯性矩来判断最大、最小刚度平面) (也可由惯性矩来判断最大、最小刚度平面) 3)通过比较 的大小,判断计算临界压力的公式 的大小, )通过比较λ的大小
1. λ1与材料的性能有关,材料不同,λ1的数 与材料的性能有关,材料不同, 值也就不同; 越大,杆件越容易弯曲。 值也就不同;λ越大,杆件越容易弯曲。 2. 满足 1条件的杆件称为细长杆或大柔度杆; 满足λ≥λ 条件的杆件称为细长杆 大柔度杆; 细长杆或 也叫大柔度杆的分界条件。 也叫大柔度杆的分界条件。其临界应力可用欧 拉公式计算。 拉公式计算。 3. λ越大杆件越容易弯曲。 越大杆件越容易弯曲。 越大杆件越容易弯曲 解题步骤: 解题步骤: 1)由截面形状确定最大、最小刚度平面 )由截面形状确定最大、 2)计算柔度,判断欧拉公式是否适用 )计算柔度, 3)计算临界压力和临界应力 )
σ =
P ≤ [σ ] st A
14
图示结构中, 为圆截面杆 直径d=80 mm,A端固 为圆截面杆, 例10.4 图示结构中,AB为圆截面杆,直径 , 端固 端铰支; 是正方形截面杆 边长a=70 mm,C端也为 是正方形截面杆, 定,B端铰支;BC是正方形截面杆,边长 端铰支 , 端也为 铰支; 和 杆可以独自发生弯曲变形而互不影响 杆可以独自发生弯曲变形而互不影响; 铰支;AB和BC杆可以独自发生弯曲变形而互不影响;两杆 的材料是A3钢 的材料是 钢,其λp=104 ,l=3 m,稳定安全系数 st=2.5 ; ,稳定安全系数n 求结构的许可载荷P。 求结构的许可载荷 。
π 2E Pcr = σ cr A = 2 ⋅ A = 269kN λ

材料力学课件第8章组合变形zym

材料力学课件第8章组合变形zym

§8—4 扭转与弯曲的组合 一、圆截面杆弯扭组合 实例: (一)实例: 已知:塑性材料轴尺寸,传动力偶Me。 已知:塑性材料轴尺寸,传动力偶 。 试建立轴的强度条件。 试建立轴的强度条件。 解: 1、确定危险点: 、确定危险点: (1)外力分析 ) F 计算简图: ①计算简图: Fτ 由 ∑ M x = 0 得: FD = Me 2 可确定F 由F可确定 τ。 可确定 外力分解: ②外力分解: 变形判断: ③变形判断: AB段扭转变形,BE段弯扭组合变 段扭转变形, 段弯扭组合变 段扭转变形 形,EC段弯曲变形。 段弯曲变形。 段弯曲变形
解: 、确定各边为中性轴时的压力作用点: 1、确定各边为中性轴时的压力作用点: b2 h2 2 iy = , iz2 = 12 12 h az = ∞ AB截距: a y = − , 截距: 截距 2 h2 iz2 12 = h , zF = 0 F作用点 坐标: yF = − = − 作用点a坐标 作用点 坐标: h 6 ay − 2 同样确定b,c,d点。 同样确定 点 2、连线 确定截面核心。 、连线a,b,c,d确定截面核心。 确定截面核心 解:
3 由: W ≥ M max = 12 ×10 N ⋅ m 6
[σ ]
100 × 10 Pa
= 12 × 10−5 m3 = 120cm3
查表选定16号工字钢。 查表选定 号工字钢。 号工字钢 (2)组合变形校核计算: )组合变形校核计算: 16号工字钢:W=141cm3,A=26.1cm3 号工字钢: 号工字钢
2、应力状态分析 、 均为单向应力状态 单向应力状态。 均为单向应力状态。
'' σ A = σ ′ +σ A =
F (0.425m) F × (0.075m) + −3 2 15 ×10 m 5310 ×10−8 m 4

弯曲内力—弯曲变形概述(材料力学)

弯曲内力—弯曲变形概述(材料力学)
弯曲内力
平面弯曲及梁的分类 剪力和弯矩的定义及正负号规定 截面法和代数和法求剪力和弯矩 单一荷载下静定梁的内力图 分布荷载集度、剪力与弯矩之间的微分关系 利用内力图规律绘制剪力图和弯矩图 叠加原ห้องสมุดไป่ตู้绘制梁的弯矩图
弯曲变形实例 1 桥式吊车梁
弯曲变形概述
弯曲变形概述
弯曲变形实例 2 火车轮轴
弯曲变形概述
梁上所有横截面的竖向对称 轴形成了梁的纵向对称面
3. 梁的计算简图及梁的分类
弯曲变形概述
(1)简支梁:梁的一端是固定铰支座,另一端是可动铰支座。
(2)外伸梁:一端或两端伸出支座外的梁。
(3)悬臂梁:一端固定,另一端自由的梁。
Fq
FAx
A
FAy
Me B
FB
FAx A
FAy
q B FB
支座
固定铰支座 可动铰支座 固定端支座
1. 弯曲变形
受力特征
当杆件受到垂直于杆件轴线的横向力或位于杆轴平面内的外力偶时,杆件的轴线
将由直线变成曲线,这种变形称为弯曲,以弯曲为主要变形的构件,通常称为梁。
变形特征
弯曲变形概述
2.平面弯曲
若梁上所有外力都作用在纵向对称面内,则梁的轴线将在纵向对称面内由直线变 成曲线,这种弯曲称为平面弯曲。
FAx
A
MA
FAy
F
B
Me
弯曲变形概述
3.弯曲构件---梁
(1)可简化为简支梁的吊车大梁
(2)可简化为外伸梁的火车轮轴 (3)可简化为悬臂梁的化工反应塔
qF
A
B
F
A
F
B

《材料力学弯曲》课件

《材料力学弯曲》课件
定义方式
弯曲应变通常用曲率半径的变化量与原始曲率半径的比值来表示,即 ΔR/R。其中 ΔR 是曲率半径的变化量,R 是原始曲率半径。
弯曲应变的计算
应变计法
通过在物体上粘贴应变片 ,并利用应变计测量应变 值,从而计算出弯曲应变 。
有限元分析法
利用有限元分析软件,建 立物体的有限元模型,通 过模拟受力情况下的变形 过程,计算出弯曲应变。
实验法
通过实验测试物体的弯曲 变形,利用相关公式计算 出弯曲应变。
弯曲应变的分布
应变分布图
通过绘制应变分布图,可以直观地了 解物体在弯曲变形过程中应变的大小 和分布情况。
应变集中
应变梯度
在弯曲变形过程中,物体不同部位上 的应变大小和方向可能不同,形成应 变梯度。
在物体受力点附近区域,应变会集中 增大,可能导致材料疲劳或断裂。
材料力学的重要性
总结词
材料力学在工程设计和实践中具有重要意义。
详细描述
在工程设计和实践中,材料力学是必不可少的学科之一。通过对材料力学的研究 ,工程师可以更好地理解材料的性能,预测其在各种工况下的行为,从而设计出 更加安全、可靠、经济的工程结构。
材料力学的基本假设
总结词
材料力学基于一系列基本假设,这些假设简 化了问题的复杂性,使得分析更为简便。
学习目标
01
02
03
04
掌握材料力学的基本概念、原 理和分析方法。
理解弯曲问题的特点和解决方 法。
能够运用所学知识解决简单的 弯曲问题。
培养分析问题和解决问题的能 力,提高力学素养。
02
材料力学基础
材料力学的定义
总结词
材料力学是一门研究材料在各种 力和力矩作用下的行为的学科。

《材料力学》第八章组合变形

《材料力学》第八章组合变形
解 (1)外力分析,确定变形类型—拉弯组合;
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。

材料力学第8章-弯曲剪应力分析与弯曲中心的概念

材料力学第8章-弯曲剪应力分析与弯曲中心的概念

TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
弯曲剪应力以及弯曲中心的概念
前提
1. 基于弯曲正应力的分析结果——承认纯弯 正应力公式在横向弯曲时依然成立。
Mzy
Iz
第8章 弯曲剪应力分析与弯曲中心的概念
弯曲剪应力以及弯曲中心的概念
前提
2. 因为薄壁截面杆的内壁和外壁都没有力作 用,应用剪应力互等定理,横截面上的剪应力作 用线必然沿着横截面周边的切线方向。
薄壁截面梁的弯曲中心
TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
薄壁截面梁的弯曲中心
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
梁弯曲时横截面上的剪应力分析 实心截面梁的弯曲剪应力公式 薄壁截面梁的弯曲中心 结论与讨论
第8章 弯曲剪应力分析与弯曲中心的概念
薄壁截面梁的弯曲中心
薄壁杆件弯曲时为什么会发生扭转现象? 外力的作用线通过哪一点就不会发生扭转? 这一点的位置怎样确定?
第8章 弯曲剪应力分析与弯曲中心的概念
薄壁截面梁的弯曲中心
通过考察微段的局部平衡确定剪应力流的方向
TSINGHUA UNIVERSITY
横向弯曲时,梁的横截面上不仅有弯矩,而 且还有剪力。与剪力相对应的,梁的横截面上将 有剪应力。
分析弯曲剪应力的方法有别于分析弯曲正应 力的方法。
TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
弯曲剪应力以及弯曲中心的概念
分析模型-开口薄壁截面梁

第八章 构件的应力和变形-PPT精选

第八章 构件的应力和变形-PPT精选
19
(例8-4):冲床将钢板冲出直径d=25mm的圆孔,钢板厚度 t=10mm。剪切极限应力b=300MPa,试求所需的冲裁力F。
t
t
20
(附加习题1):冲床的最大冲力F=4×105N,冲头材料的许用应力 []=440MPa,被冲剪的板的剪应力[]=360MPa,求在最大冲力 作用下所能冲剪的圆孔的最小直径d和板的最大厚度t 。
输入功率PA=221kW。从动轮B、C的输出功率PB=148kW, PC=73kW, 试求轴上各截面的扭矩,并作扭矩图。(外力偶矩的计算公式为 M=9549Pk/n,式中:Pk为功率,n为转速)
TAC
TAB
27
•三. 圆轴扭转时的应力
dx=d
ρO
C
A
B
28
•三. 圆轴扭转时的应力

t
21
(习题8-9):拖车挂钩靠销钉来联接,如图所示,已知销钉材料 的许用剪切力[]=20MPa,拖车的拉力F=15×103N,试选择销钉 的直径d。
22
(习题8-10):一螺栓联接如图所示。已知外力F=200×103N,螺栓 的许用剪切力[]=80MPa。试求螺栓所需的直径d。
23
(习题8-11):在厚度t=5mm的薄钢板上,冲出一个如图所示形状 的孔,钢板的极限剪应力b=320MPa,求冲床必须具有的冲力F。
6
(例8-1):在图示的阶梯杆中,已知FA=10kN, FB=20kN, l =100mm,AB段与BC段的横截面面积分别为AAB=100mm2, ABC=200mm2,材料的弹性模量E=200GPa。试求杆的总伸长 量及端面A与D-D截面间的相对位移。
2 1
1
2
7
(例8-2):两钢杆各长50mm,用铰链联接,如图所示,B点作 用有向下的垂直力F,F=980N,[]=164MPa, E=205.8GPa, 在未受力前=30。求两杆横截面尺寸及B点的挠度(垂直位 移量)。

材料力学第八章-组合变形

材料力学第八章-组合变形

12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算

材料力学第八章

材料力学第八章


FN F zF z F yF y A Iy Iz
式中 A为横截面面积;
C
y
Iy , Iz 分别为横截面对 y 轴和 z 轴的惯性矩;
(zF,yF ) 为力 F 作用点的坐标;
(z,y)为所求应力点的坐标.
四、中性轴的位置
FN F zF z F yF y A Iy Iz
z
z
F/A
y
FzF/Wy
z FyF/Wz y
y
FN
(a)
My
(b)
Mz
(c)
(5)对于周边具有棱角的截面,其危险点必定在截面的棱角处, 并可根据杆件的变形来确定
最大拉应力 tmax 和最大压应力 cmin 分别在截面的棱角 D1 D2 处。无需先确定中性轴的位置,直接观察确定危险点的位置 即可
i ay yF
中性轴
2 z
2 iy az zF
(3)中性轴与外力作用点分别处于截面形心的相对两侧
z (yF , zF )
O
az ay
y
z
中性轴
O
外力作用点
z
D1(y1,z1) y
中性轴
y
D2(y2,z2)
(4)中性轴将横截面上的应力区域分为拉伸区和压缩区 横截面上最大拉应力和最大压应力分别为D1 , D2 两切点
C
Fx 0 Fy 0
FNAB F
FRAx 0.866F FRAy 0.5 F
A 1.2m F
30°
B
D 1.2m
FRAy
FNAB
30°
Fy
B
AB杆为平面弯曲与轴向压缩组合变形 中间截面为危险截面.最大压应力 FRAx A 发生在该截面的上边缘 F

第8章-梁的变形分析与刚度问题

第8章-梁的变形分析与刚度问题

(3)弹簧铰支座(弹簧系数 ) )弹簧铰支座(弹簧系数k) w F 例如: 例如: T = k wB = F / 2 F B A x l F l FT x = 0, w = 0 x = 2l, w = −
2k
常见的分段点连续条件: 常见的分段点连续条件: (1)连续的挠曲轴上的分段点 ) 连续挠曲线上任意一点只有一个挠度、一个转角。 连续挠曲线上任意一点只有一个挠度、一个转角。 个分段点处: 第i个分段点处: 个分段点处 Mi(x) Mi+1(x) i xi wi(x) wi+1(x) (2) 中间铰处 A w1(x) l B w2(x) l C x 挠度连续 转角连续
分段表示, (若梁的M(x)分段表示,上式也应分段表示) 若梁的 分段表示 上式也应分段表示)
1 ∴ ≈ ±w′′( x) M>0 ρ( x) M ( x) ± w′′( x) = w′ (x) > 0 EI
计算梁的位移的积分法
挠曲线近似微分方程
d 2 w M ( x) = 2 dx EI
(13.12)
1b 3 1 3 EIw2 = Fx2 − F( x2 − a) + C2 x2 + D2 6l 6
例题
例 题 13-6
3.定解条件: 定解条件: 定解条件
w
A
w1(x)
a
EI
F w2(x) b
C l
B
FA
x1 x2
x
FB
解得常数为: 解得常数为:
例题
例 题 13-6
4.求最大转角: 求最大转角: 求最大转角
称为叠加原理 称为叠加原理
2.弯曲位移计算的载荷叠加法 利用基本变形表 弯曲位移计算的载荷叠加法 利用基本变形表13.2

材料力学刘鸿文第六版最新课件第八章 组合变形

材料力学刘鸿文第六版最新课件第八章 组合变形
667 667
F c 160 106 171300N
934 934
许 可 压 力 为 F 45000N 45kN
§8-2 拉伸或压缩与弯曲的组合
例2图 示一夹具。在夹紧零件时, 夹 具受到的P = 2KN的力作用 。已知: 外力作用线与夹具竖杆轴线间的距离
e = 60 mm, 竖杆横截面的尺寸为b = 10 mm ,h = 22 mm,材料许用应力 [] = 170 MPa 。 试校核此夹具竖杆 的强度。
4、拉(压)弯组合变形下的强度计算
拉弯组合变形下的危险点 处于单向应力状态
t ,max
Fl Wy
F A
[ t ]
c ,max
Fl Wy
F A
[ c ]
4、中性轴位置
由中性轴上各点的正应力均为零;
FN
My
Байду номын сангаас
|z| 0
A
Iy
| z | FN I y A M y
+_
(-z y)
y -_
z
_
_
+
|z|
第三组
圆截面、弯扭组合变形
§8-4 扭转与弯曲的组合
扭转+双向弯曲
求合弯矩
M
2
M
2 y
M
2 z
§8-4 扭转与弯曲的组合
例题1 传动轴左端的轮子由电机带动,传入的扭转力偶矩
Me=300Nm。两轴承中间的齿轮半径R=200mm,径向啮合 力F1=1400N,轴的材料许用应力〔σ 〕=100MPa。试按 第三强度理论设计轴的直径d。
§8-1 组合变形和叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

;
wRB B
RBL3 3EI
A L
x B RB
LBCRBELABC
y
补充方程
=
q
qL4 RBL3 RBLBC
A
+
B
8EI 3EI EA
RB
qL4 8I( LBC
L3
)
A 3EI
A
B
求解其它问题(反力、应力、
RB
变形等)
§8-6 如何提高梁的承载能力
1.强度:正应力:
max
Mmax Wz
剪应力:
L 2
L2
L 2
2
(L
x)2
L 0.5 L
q0 (L L
x)
Lx 6EI
L2
L 2
2
(L
x)2 dx
q0 L4
240EI
a
7
A EI
L
y MA
A L
A L
§8-5 简单超静定梁的求解方法
q Bx
1、处理方法:变形协调方程、 物理方程与平衡方程相结合, 求全部未知力。
y
dP
2q0 (L x) dx L
x C dx
x
0.5L
0.5L
y 由梁的简单载荷变形表,查简单载荷引起的变形。
w C dPdP(6 L E IL x)L 2 L2 L 2 2(Lx)2
叠加
q0 dP
x C dx
x
wCq wCdP
0.5L
0.5L
y
L 0.5 L
dP(L x) 6 E IL
x
wmax
0.021PL3 EI
x
wmax
0.0max
0.0073 PL3 EI
q
x
L
M
qL 2
wmax
0.013 qL4 EI
8
q
qL2 50
x
L/5
L/5
M
qL2 40
wmax
0.7875103
qL4 EI
q
L/2
L/2
qL2 32
M
9qL2/512
x
wmax
0.326103
知识点的回顾
¥ 叠加法求挠度、转角 ¥ 超静定梁的求解 ¥ 提高梁的承载能力
a
17
a
18
=
q
B
解:建立静定基
=
确定超静定次数,用反力代替多余
q
约束所得到的结构——静定基。
B
RB
A L
A A
+
=
q
几何方程——变形协调方程
B
RB
wBwB qwB RB 0
物理方程——变形与力的关系
q B
wB q 8qE L4 I
;
wRB B
RBL3 3EI
补充方程
qL4 RBL3 0 8EI 3EI
R
B
3qL 8
B
求解其它问题(反力、应力、
RB
变形等)
A L
y
A EI
L
A
=
=
C
EA LBC
q x
B RB
q B RB
q B
+
例10 结构如图,求B点反力。 解:建立静定基
几何方程 ——变形协调方程:
w Bw B qw B R B L B C
A
B
RB
C
物理方程——变形与力的关系
EA LBC
q
wB q 8qE L4I
max
QmaxSz*max bIz
2.刚度:
w M ( x) EIz
| wmax |w max
3.稳定性:
都与内力和截面性质有关。
一、合理布置外力(包括支座),使 M max 尽可能小。 P=qL
L/2
L/2
P=qL
+
M
PL/4
L/4
3L/4
P=qL
对称
L/5
4L/5
M
3PL/16
M
qL2/10
( P 1 P 2 P n ) 1 ( P 1 ) 2 ( P 2 ) n ( P n )
P q 例1 按叠加原理求A点转角和C点
A
B
挠度。
C
a
a
解、载荷分解如图
P
由梁的简单载荷变形表,
=
A
B
查简单载荷引起的变形。
C
+
P A
Pa2 4EI
w
P C
Pa3 6EI
q
A
C
B
q A
qa3 3EI
w
q C
5qa 4 24EI
P
q
叠加
A
B
C
a
a
P
=
A
P A
q A
a2 (3P 4qa) 12EI
A
B
C
wC
w
P C
w
q C
+
q
A
B
C
5qa4 Pa3 24EI 6EI
例2 按叠加原理求C点挠度。
q0 dP
解:载荷无限分解如图
x C dx
x
0.5L
0.5L
dP q(x)dx
a
1
第八章 弯曲变形
§8–4 按叠加原理求梁的挠度与转角 §8–5 简单超静定梁的求解方法 §8–6 如何提高梁的承载能力
a
2
§8-4 按叠加原理求梁的挠度与转角
一、叠加法:多个载荷同时作用于结构而引起的变形等于每个载荷单独作用 于结构而引起的变形的代数和。
w ( P 1 P 2 P n ) w 1 ( P 1 ) w 2 ( P 2 ) w n ( P n )
qL4 EI
二、选择合理的截面形状
三、选用高强度材料,提高许用应力值
同类材料,“E”值相差不多,“jx”相差较大,故换用同类材料只能提 高强度,不能提高刚度和稳定性。
不同类材料,E和G都相差很多(钢E=200GPa , 铜E=100GPa),故可选 用不同的材料以达到提高刚度和稳定性的目的。但是,改换材料,其原料费 用也会随之发生很大的改变!
相关文档
最新文档