初中数学数轴教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 数轴
10数本2班
教学目标:
1.使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;
2.向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。
3.使学生进一步理解有理数与数轴上的点的对应关系;巩固在数轴上由数找点、由点读数的方法;
4.会借用数轴直观的进行有理数的大小比较,体会数形结合的数学思想。
教材分析:数轴是在引入了负数及对有理数进行分类后给出的,它是我们数学学习和研究的一个重要工具。本节课从标有刻度的温度计表示温度高低这一事例出发,通过实际情景类比出数轴的画法和用数轴上的点表示数的方法。它将有助于我们后面将要学习的相反数、绝对值概念的理解,更直观地进行有理数大小的比较和对有理数运算法则的推导。
重点难点:1.掌握数轴的正确画法。
2.利用数轴比较有理数的大小。
3.体会数形结合的数学思想,加深对有理数的认识。
教学过程:
一、复习过程:
1.有理数包括那些数?说出有理数的分类方法?
整数和分数统称有理数,有理数可以这样进行分类
Ⅰ. 在分类时,一定要保证使每个数只能在同一层次中的一个集合
中.
Ⅱ. 在所有含“正”“负”字眼的集合中,都不能出现“0”. 因为
“0”既不是正数也不是负数.
Ⅲ. 在有理数的分类中,未出现小学学过的“小数”“自然数”,是因为有理数中的小数都可以化为分数的形式;而“自然数”又包含在整数范围
内.
2. 将有理数:+2,100,0,2
1
39773.0,21-+--,,,填入相应的集合中:
正数集合:{ } 负数集合:{ } 正数集合:{ }
二、引入新课:
1. 利用温度计可以测量温度,请同学们说出温度计的结构?(同学讨论)
温度计上有刻度,刻度上有读数,可根据液面的不同位置读出不同的数,从而测得温度。
如:在0上10个刻度,表示C 010; 在0下5个刻度,表示C 05-;等等
类似于这种用带有刻度的物体表示数的东西还有哪些?(直尺、弹簧秤等)
2.出示温度计:
① 你是怎样读出上面的温度的?
②温度计刻度的正负是怎样规定的?以什么为基准?基准刻度线
表示多少摄氏度?
③每摄氏度两条刻度之间的距离有什么特点?
总结:与温度计类似,我们也可以在一条直线上画出刻度,标上读数,
用直线上的点表示正数、负数和零,并用直线上的点来表示数。
像这样的直线就是我们今天要学习的内容——数轴。
把温度计横放与数轴进行对比归纳出数轴的画法。
三、讲解新课:
1.数轴的画法
1)画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温
度计上的0℃);
2)规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3)选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位
取一点,依次表示为-1,-2,-3,…
于是+3可以用数轴上位于原点右边3个单位的点表示;
-4可以用数轴上位于原点左边4个单位的点表示;
在原点右边41个单位的点表示4
1
;在原点左边1.5个单位的点表示1.5.
判断下图中所画的数轴是否正确?如不正确,指出错在哪里?
总结:1.画数轴时容易漏掉正方向; 2.画数轴时单位不统一;
3.容易把原点左边的数变成正数;
4.标错点。特别是对负数标错点。如:
-3标到+3 处;31-标到32
-处。
2.数轴的定义:
规定了原点、正方向和单位长度的直线叫做数轴。
①画数轴时,原点、正方向和单位长度三个条件缺一不可。称这三个条件为数轴的“三要素”;
②数轴定义中的“规定”二字,这就说原点的选定,正方向的取向,单位长度的大小的确定都是根据需要“规定的”。一旦确定了,不能随意更改。
③所有的有理数都可以用数轴上的点表示。反过来,不能说数轴上的所有点都表示有理数。
3. 利用数轴比较有理数的大小
通过学习数轴可知:在数轴上表示的两个数,右边数总比左边的数大。正数都大于零,负数都小于零。
4.例1.将下列所给的数在数轴上表示出来:1,-3,-2.5,21
2 ,0
例2.比较-3,2
1
,0 ,2 ,3.5的大小。 例3.指出数轴上A 、B 、C 、D 个点分别表示什么数?
四、小结提高
1.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,
它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;
2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,
注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。
五、课后思考
1.一个点从原点开始,按下列条件移动两次后到达终点,说出它是表示什么数的点?
(1)向右移动2
11个单位长度,再向左移动2个单位。
(2)向左移动3个单位长度,再向左移动2个单位长度。
2.数轴上表示3和-3的点离开原点的距离是多少?这两个点的位置有什么不同?
3.数轴上到原点的距离是5的点有几个?它们分别表示什么数?
六、课后作业
39页 1, 2, 3