七年级数学竞赛讲座02 特殊的正整数

合集下载

整数整除的概念和性质

整数整除的概念和性质

整数整除的概念和性质对于整数和不为零的整数b,总存在整数m,n使得a=bm+n(0≤n<b),其中m称为商,n称为余数,特别地,n=0时,即a=bm,便称a被被b整除(也称a是b的倍数或的约数),记为b|a.整除有以下基本性质:1.若a|b,a|c,则a|(b c);2.若a|b,b|c,则a|c;3.若a| b c,且(a,c)=1,则a|b,特别地,若质数p|b c,则必有p|b或p|c;4.若b|a,c|a,且(b,c) =1,则b c|a.解整除有关问题常用到数的整除性常见特征:1.被2整除的数:个位数字是偶数;2.被5整除的数:个位数字是0或5;3.被4整除的数:末两位组成的数被4整除;被25整除的数,末两位组成的数被25整除;4.被8整除的数:末三位组成的数被8整除;被125整除的数,末三位组成的数被125整除;5.被3整除的数:数字和被3整除;6.被9整除的数:数字和被9整除;7.被11整除的数:奇数位数字和与偶数位数字和的差被11整除.【例1】一个自然数与13的和是5的倍数,与13的差是6的倍数,则满足条件的最小自然数是.思路点拨略(重庆市竞赛题)注:确定已知条件来确定自然数,是数学活动中常见的一类问题,解这类问题时往往用到下列知识方法:(1)运用整除性质;(2)确定首位数字;(3)利用末位数字;(4)代数化;(5)不等式估算;(6)分类讨论求解等.【例2】有三个正整数a、b、c其中a与b互质且b与c也互质,给出下面四个判断:①(a+c)2不能被b整除,②a2+c2不能被b整除:③(a+b)2不能被c整除;④a2+b2不能被c整除,其中,不正确的判断有( ).A.4个B.3个 C 2个D.1个思路点拨举例验证.(“希望杯”邀请赛试题)【例3】已知7位数61287xy是72的倍数,求出所有的符合条件的7位数.(江苏省竞赛题)思路点拨7位数61287xy能被8,9整除,运用整数能被8、9整除的性质求出x,y的值.【例4】(1)若a、b、c、d是互不相等的整数,且整数x满足等式(x一a)(x一b)(x一c)(x一d)一9=0,求证;4︳(a+b+c+d).(2)已知两个三位数abc与def的和abc+def能被37整除,证明:六位数abcdef也能被37整除.思路点拨 (1)x 一a ,x 一b ,x 一c ,x 一d 是互不相等的整数,且它们的乘积等于9,于是必须把9分解为4个互不相等的因数的积;(2)因已知条件的数是三位数,故应设法把六位数abcdef 用三位数的形式表示,以沟通已知与求证结论的联系.注:运用整除的概念与性质,建立关于数字谜中字母的方程、方程组,是解数学谜问题的重要技巧.华罗庚曾说:“善于‘退’,足够地,‘退’,‘退’到最原始而不失去重要性的地方,是学好数学的一个诀窍.”从一般退到特殊,从多维退到低维,从空间退到平面,从抽象退到具体……只要不影响问题的求解,对于许多复杂的问题,以退求进是一种重要的解题思想.【例5】 (1)一个自然数N 被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,被3除余2,被2除余1,则N 的最小值是 .(北京市竞赛题)(2)若1059、1417、2312分别被自然数x 除时,所得的余数都是y ,则x —y 的值等于( ).A .15B .1C .164D .174(“五羊杯”竞赛题)(3)设N=个1990111,试问N 被7除余几?并证明你的结论. (安徽省竞赛题) 思路点拨 运用余数公式,余数性质,化不整除问题为整除问题.(1)N+1能分别被2,3,4,5,6,7,8,9,10整除,(2)建立关于x ,y 的方程组,通过解方程组求解,(3)从考察11,111,…111111被7除的余数人手.【例6】盒中原有7个球,一位魔术师从中任取几个球,把每一个小球都变成了7个小球,将其放回盒中,他又从盒中任取一些小球,把每一个小球又都变成了7个小球后放回盒中,如此进行,到某一时刻魔术师停止取球变魔术时,盒中球的总数可能是( )A .1990个B .1991个C 1992个D .1993个思路点拨 无论魔术师如何变,盒中球的总数为6k+7个,其中k 为自然数,经验证,1993=331×6+7符合要求.故选D .【例7】在100以内同时被2、3、5整除的正整数有多少个?思路点拨 由于2与3互质,3与5互质,5与2互质(这种特性我们也称为2、3、5两两互质),所以同时被2、3、5整除的整数必然被2×3×5=30整除;另—方面,被30整除的正整数必然可同时被2、3、5整除,因此,在100以内同时被2、3、5整除的正整数就是在100以内被30整除的正整数,显然只有30、60、90三个.【例8】某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,从0001到9999号,如果号码的前两位数字之和等于后两位数字之和,则称这张购物券为“幸运券”.证明:这个商场所发放的购物券中,所有的幸运券的号码之和能被101整除. 思路点拨 显然,号码为9999是幸运券,除这张外,如果某个号码n 是幸运券,那么号m=9999—n 也是幸运券,由于9是奇数,所以m ≠n .由于m+n=9999相加时不出现进位,这就是说,除去号码9999这张幸运券外,其余所有幸运券可全部两两配对,而每一对两个号码之和均为9999,即所有幸运券号码之和是9999的整倍数,而101│9999,故知所有幸运券号码之和也能被101整除思考:“如果某个号码n 是幸运券,那么号m=9999—n 也是幸运券”,这是解决问题的关键,请你考虑这句话合理性. 若六位数9381ab 是99的倍数,求整数a 、b 的值.∵9381ab能被9整除,∴8+1+a+b+9+3=21+a+b能被9整除,得3+a+b=9k l(k1为整数).①又9381ab能被11整除,∴8—1+a—b+9—3=13+a—b能被11整除,得2+a—b=11k2(k2为整数).②∵0≤a,b≤9 ∴0≤a+b≤18,-9≤a-b≤9.由①、②两式,得3≤<9k1≤21,-7≤11k2≤1l,知k1=1,或k1=2;k2=0,或,而3+a+b与2+a—b的奇偶性相异,而k1=2,k2=1不符合题意.故把k1=1,k2=0代人①、②两式,解方程组可求得a=2,b=4.【例9】写出都是合数的13个连续自然数.思路点拨方法一:直接寻找从2开始,在自然数2,3,4,5,6,…中把质数全部划去,若划去的两个质数之间的自然数个数不小于13个,则从中取13个连续的自然数,就是符合要求的一组解,例如:自然数114,115,116,…,126就是符合题意的一组解.方法二:构造法我们知道,若一个自然数a是2的倍数,则a+2也是2的倍数,若是3的倍数,则a+3也是3的倍数,…,若a是14的倍数,则a+14也母14的倍数,所以只要取a为2,3,…,14的倍数,则a+2,a+3,…a+14分别为2,3,…,14的倍数,从而它们是13个连续的自然.所以,取a=2×3×4×…×14,则a+2,a+3,…,a+14必为13个都是合数的连续的自然数.【例10】已知定由“若大于3的三个质数a、b、c满足关系式20+5b=c,则a+b+c是整数n的倍数”.试问:这个定理中的整数n的最大可能值是多少?请证明你的结论.思路点拨先将a+b+c化为3(a+2b)的形式,说明a+b+c是3的倍数,然后利用整除的性质对a、b被3整除后的余数加以讨论得出a+2b也为3的倍数.∵=a+b+2a+5b=3(a+2b),显然,3│a+b+c若设a、b被3整除后的余数分别为r a、r b,则r a≠0,r b≠0.若r a≠r b,则r a=2,r b=1或r a=1,r b=2,则2a+5b =2(3m+2)+5(3n+1)=3(2m+5n+3),或者2a+5b=2(3p+1)+5(3q+2);3(2P+59+4),即2a+5b为合数与已知c为质数矛盾.∴只有r a=r b,则r a=r b=1或r a=r b=2.于是a+2b必是3的倍数,从而a+b+c是9的倍数.又2a+5b=2×11十5×5=47时,=a+b+c=11+5+47=63,2a+5b =2×13十5×7=61时,a+b+c =13+7+61=81,而(63,81)=9,故9为最大可能值.注:由余数切入进行讨论,是解决整除问题的重要方法.【例11】一个正整数N的各位数字不全相等,如果将N的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N,则称N为“新生数”,试求所有的三位“新生数”.思路点拨将所有的三位“新生数”写出来,然后设出最大数、最小数,求差后分析求出所有三位“新生数”的可能值,再进行筛选确定.【例12】设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c (a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba .由“新生数”的定义,得N=abc —cba =(100a+l0b+c)一(100c+l0b+d)=99(a —c).由上式知N 为99的整数倍,这样的三位数可能为:198,297,396,495,594,693,792,891,990.这九个数中,只有954-459=495符合条件,故495是唯一的三位‘新生数”. 注:本题主要应用“新生数”的定义和整数性质,先将三位“新生数”进行预选,然后再从中筛选出符合题意的数。

七年级数学竞赛练习卷(2)(含答案)-

七年级数学竞赛练习卷(2)(含答案)-

七年级数学竞赛练习卷(2)一、选择题:1、两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( )A. 1911B. 1199C. 819D. 273 2、若790a b +=,则2ab 一定是( )A 、正数B 、负数C 、非负数D 、非正数 3、满足(n 2-n-1)n + 2=1的整数n 有几个?( )A 、4个B 、3个C 、2个D 、1个4、若不等式︱x+1︱+︱x-3︱≤a 有解,则a 的取值范围是( ) A.0<a ≤4 B.a ≥4 C.0<a ≤2 D.a ≥25、若a 、b 是有理数,且a 2001+b 2001=0,则A 、a=b=0B 、a-b=0C 、a+b=0D 、ab=06、某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( )A 、20%B 、25%C 、80%D 、75%7、两个相同的瓶子中装满了酒精溶液,第一个瓶子里的酒精与水的体积之比为a :1,第一个瓶子为b :1,现将两瓶溶液全部混和在一起,则混和溶液中酒精与水的体积之比是( ) (安徽省初中数学联赛试题)A 、2b a + B 、12++b a ab C 、22++++b a ab b a D 、24++++b a abb a 8、咖啡A 与咖啡B 按x :y(以重量计)的比例混合。

A 的原价为每千克50元,B 的原价为每千克40元,如果A 的价格增加10%,B 的价格减少15%,那么混合咖啡的价格保持不变。

则x :y 为( ) A 、5:6 B 、6:5 C 、5:4 D 、4:59、设P 是质数,若有整数对(a ,b )满足 ,则这样的整数对(a ,b )共有 ( ) A .3对 B .4对 C .5对 D .6对 10、有理数a 、b 、c 满足下列条件:a +b +c =0且abc <0,那么cb a 111++的值 ( ) (A )是正数 (B)是零 (C)是负数 (D)不能确定11、设四个自然数a,b,c,d 满中条件1≤a<b<c<d≤2004和a+b+c+d=ad+bc ,m 与n 分别为abcd 的最大值和最小值,则6nm +等于( ) A .2002; B .2004: C .2006: D .2008。

初中数学竞赛讲座——数论部分1(进位制)

初中数学竞赛讲座——数论部分1(进位制)

第一讲正整数的表示及进位制一、基础知识:1.我们通常接触的整数都是“十进制”整数,十进制计数法就是用0,1,2…9十个数码,采用“逢十进一”的法则进行计数的方法。

例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为:1999=1×1000+9×100+9×10+9底数为10的各整数次幂,恰好是十进制数的各个位数:100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1位上的数)故1999=1×103+9×102+9×101+9×1003na记作:3na=10n-1+…+102a n-2+10其中最高位a1≠0,即,其它则是0≤a1,a.各位上的数字相同的正整数记法:999=1000-1104-1,∴999n个=10n-1111n个=1019n-,333n个=103n555n个=5(101)9n-解答有关十进制数的问题,常遇到所列方程,少于未知数的个数,这时需要根据示0到9的整数这一性质进行讨论。

.二进制及其它进制二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。

例如二进制中的111记为(111)2111=1×22+1×2+1=73na )2记作:3na=2n-1××a3+…+22×a其中最高位a1≠0,,其它则是0≤a1,a2,位数(n为正整数3na )b记作:3na=b n-1××a3+…+b2×a其中最高位a1≠0,,其它则是0≤a1,(一)十进制转二进制(整数部分)辗转相除直到结果为,将余数和最后的60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。

余数与同余——数学竞赛系列讲座(2)

余数与同余——数学竞赛系列讲座(2)
与 r都 是 自然 数 , 且 0≤ r< 巩 而 关于 余数 问题 , 国古 代就 有研 究. 北 朝时 期的数 学 著作 《 子算 我 南 孙 经 》 记 载 着 著 名 数 学 问 题 “ 不 知 数 ”:今 有 物 , 知 其 数 , 三 数 之 , 就 物 不 三 剩 二 ; 五 数 之 , 三 ; 七 数 之 , 二 . 物 几 何 ? 答 日 :二 十 三 , 就 五 剩 七 剩 问 这 是 “ 国 剩 余 定 理 ” 中 . 如 果 两 个 正 整 数 a,b被 非 零 自 然 数 m 除 时 所 得 的 余 数 相 同 , 即 a— q + r m ,b一 +r ,那 么 就 称 a 与 b关 于 模 m 同 余 . 为 a; 记 b( o o r dm) .此 时 n与 b的 差 能 被 m 整 除 , 为 n一6 0( d .因 此 记 mo m) 同余 问题常 常转 化 为整除 问题 求解 . [ 型 例题 ] 典
因 此 A 可 能 是 2 4 1 、8 7 . 、 、 9 3 、 6
经检 验 , 有 A 一 1 只 9符 合 题 意 . 反思
方 法. 例 3 有 甲 、 、 3个 人 , 乙 丙 甲每 分 行 走 1 0米 , 2 乙每 分 行 走 i 0 0 米 , 每 分 行 走 7 米 , 果 3个 人 同 时 、同 向 , 同 地 出 发 , 周 长 是 丙 0 如 从 沿 3 0米 的 圆 形 跑 道 上 行 走 , 么 至 少 经 过 多 少 分 后 3个 人 又 可 以 相 聚? 0 那
维普资讯
余 数 与 同 余

数学竞赛系列讲座( ) 2
江 苏 省南 京市教 育局教 研 室 朱 建明
[ 本 知识 ] 基
如 果 整 数 a除 以正 整 数 m , 为 q 余 数 为 r 则 a— q + r 其 中 q 商 , , m ,

初中数学竞赛讲座-数论部分2(整数的整除性)

初中数学竞赛讲座-数论部分2(整数的整除性)

初中数学竞赛讲座-数论部分2(整数的整除性)第二讲整数的整除性一、基础知识:1.整除的基本概念与性质所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.定义:设a,b是整数,b≠0.如果有一个整数q,使得a=bq,那么称a能被b整除,或称b整除a,并记作b|a.也称b是a的约数,a是b的倍数。

如果不存在这样的整数q,使得a=bq,则称a不能被b整除,或称b不整除a,记作b|a.关于整数的整除,有如下一些基本性质:性质1若a|b,b|c,则a|c证明:∵a|b,b|c,∴bap,cbq(p,q是整数),∴c(ap)q(pq)a,∴a|c性质2若a|b,b|a,则|a|=|b|.性质3若c|a,c|b,则c|(a±b),且对任意整数m,n,有c|(ma±nb).证明:∵a|b,a|c,∴bap,caq(b,q是整数),∴bcapaqa(pq),∴a|(bc)性质4若b|a,d|c,则bd|ac.特别地,对于任意的非零整数m,有bm|am性质5若a=b+c,且m|a,m|b,则m|c.性质6若b|a,c|a,则[b,c]|a.特别地,当(b,c)=1时,bc|a【此处[b,c]为b,c的最小公倍数;(b,c)为b,c的最大公约数】.性质7若c|ab,且(c,a)=1,则c|b.特别地,若p是质数,且p|ab,则p|a或p|b.性质8n个连续整数中,必有一个能被n整除.【特别地:两个连续整数必有一偶数;三个连续整数必有一个被3整除,如11,12,13中有3|12;41,42,43,44中有4|44;77,78,79,80,81中5|80.】二.证明整除的基本方法证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法;(3)按模分类法;(4)反证法等.下面举例说明.例1若a|n,b|n,且存在整数某,y,使得a某+by=1,证明:ab|n.初中数学兴趣班系列讲座——数论部分唐一良数学工作室证明:由条件,可设n=au,n=bv,u,v为整数,于是n=n(a某+by)=na某+nby=abv某+abuy=ab(v某+uy)所以n|ab例2证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.证明:设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n是整数),于是(2n-1)2+(2n+1)2+(2n+3)2+1=12(n2+n+1).所以12|[(2n-1)2+(2n+1)2+(2n+3)2].又n2+n+1=n(n+1)+1,而n,n+1是相邻的两个整数,必定一奇一偶,所以n(n+1)是偶数,从而n2+n+1是奇数,故24|[(2n-1)2+(2n+1)2+(2n+3)2].例3若整数a不被2和3整除,求证:24|(a2-1).分析因为a既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k,6k+1,6k+2,6k+3,6k+4,6k+5这六类.由于6k,6k+2,6k+4是2的倍数,6k+3是3的倍数,所以a只能具有6k+1或6k+5的形式,有时候为了方便起见,也常把6k+5写成6k-1(它们除以6余数均为5).证明因为a不被2和3整除,故a具有6k±1的形式,其中k是自然数,所以a2-1=(6k±1)2-1=36k2±12k=12k(3k±1).由于k与3k±1为一奇一偶(若k为奇数,则3k±1为偶数,若k为偶数,则3k±1为奇数),所以2|k(3k±1),于是便有24|(a2-1).例4若某,y为整数,且2某+3y,9某+5y之一能被17整除,那么另一个也能被17整除.证明:设u=2某+3y,v=9某+5y.若17|u,从上面两式中消去y,得3v-5u=17某.①所以17|3v.因为(17,3)=1,所以17|v,即17|9某+5y.若17|v,同样从①式可知17|5u.因为(17,5)=1,所以17|u,即17|2某+3y.例5已知a,b是自然数,13a+8b能被7整除,求证:9a+5b都能被7整除.分析:考虑13a+8b的若干倍与9a+5b的若干倍的和能被7整除,证明13a+8b+4(9a+5b)=7(7a+4b)是7的倍数,又已知13a+8b是7的倍数,所以4(9a+5b)是7的倍数,因为4与7互质,由性质7|(9a+5b)例6已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.初中数学兴趣班系列讲座——数论部分唐一良数学工作室证明用反证法.如果a,b不都能被3整除,那么有如下两种情况:(1)a,b两数中恰有一个能被3整除,不妨设3|a,3b.令a=3m,b=3n±1(m,n都是整数),于是a2+b2=9m2+9n2±6n+1=3(3m2+3n2±2n)+1,不是3的倍数,矛盾.(2)a,b两数都不能被3整除.令a=3m±1,b=3n±1,则a2+b2=(3m±1)2+(3n±1)2=9m2±6m+1+9n2±6n+1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾.由此可知,a,b都是3的倍数.例7已知a,b是正整数,并且a2+b2能被ab整除,求证:a=b.先考虑a,b互质的情况,再考虑一般情况。

初中数学竞赛教程21整数的性质

初中数学竞赛教程21整数的性质

初中数学竞赛教程21整数的性质整数是数学中非常基本且重要的概念之一、它是全体正整数、负整数和零的集合,用整数集表示为Z,数学符号为Z={...,-3,-2,-1,0,1,2,3,...}。

整数的性质涉及到整数的四则运算、整数的大小比较以及整数的奇偶性等方面。

下面就对整数的性质进行详细介绍。

一、整数的四则运算1.加法:对于整数a和b,它们的和a+b也是一个整数。

加法满足交换律,即a+b=b+a;加法还满足结合律,即(a+b)+c=a+(b+c)。

2.减法:对于整数a和b,它们的差a-b也是一个整数。

3.乘法:对于整数a和b,它们的积a×b也是一个整数。

乘法满足交换律,即a×b=b×a;乘法还满足结合律,即(a×b)×c=a×(b×c)。

4.除法:对于整数a和b,其中b不等于0,a/b的商可能是一个整数,也可能是一个带有小数部分的数。

二、整数的大小比较1.大小关系:对于两个整数a和b,如果a<b,称a小于b;如果a>b,称a大于b;如果a=b,称a等于b。

2.大于0和小于0:正整数都大于零;负整数都小于零。

三、整数的奇偶性1.奇数:整数中,除了能被2整除的数字外,其他的数字都是奇数。

奇数可以表示为2k+1的形式,其中k为任意整数。

2.偶数:能被2整除的数字为偶数。

偶数可以表示为2k的形式,其中k为任意整数。

3.奇数和奇数的和是偶数,奇数和偶数的和是奇数,偶数和偶数的和是偶数。

四、整数的性质定理1.整数的加法性质:对于任意整数a和b,有a+b=b+a,即整数的加法满足交换律。

2.整数的减法性质:对于任意整数a和b,有a-b=a+(-b),即整数的减法可以转化为加法运算。

3.整数的乘法性质:对于任意整数a、b和c,有(a+b)×c=a×c+b×c,即整数的乘法满足分配律。

4.整数的除法性质:对于任意整数a、b和c,如果a=b×c,且b不等于0,则a除以b的余数为0。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的3倍加上5等于这个数的5倍减去9,那么这个数是:A. 3B. 4C. 5D. 63. 一个长方形的长是14厘米,宽是10厘米,那么它的周长是多少厘米?A. 24B. 28C. 48D. 564. 下列哪个分数是最接近0.5的?A. 1/2B. 3/5C. 4/7D. 5/95. 一个数的75%是60,那么这个数是多少?A. 80B. 120C. 160D. 2006. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 407. 一个数除以3的商加上2等于这个数除以4的商,这个数是多少?A. 6B. 9C. 12D. 158. 下列哪个数是质数?A. 2B. 4C. 6D. 89. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是多少厘米?A. 1B. 2C. 3D. 410. 下列哪个表达式的结果是一个整数?A. (1/2) + (1/3)B. (1/2) + (1/4)C. (1/3) + (1/6)D. (1/4) + (1/5)二、填空题(每题4分,共40分)11. 一个数的1/4加上它的1/2等于______。

12. 如果5个连续的整数的和是45,那么中间的数是______。

13. 一个数的2倍与7的和是35,那么这个数是______。

14. 一个等腰三角形的两个底角都是70度,那么它的顶角是______度。

15. 一本书的价格是35元,如果打8折出售,那么现价是______元。

16. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了______公里。

17. 一个数的3/4加上它的1/2等于5,那么这个数是______。

18. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是______平方厘米。

初中数学竞赛-七年级 -整数问题2 - 答案

初中数学竞赛-七年级 -整数问题2 - 答案



即可.
【解答】解:385 的二位因数有 11,35,55,77, 他们不全相同,
解得,

故最大为 77,77,55,和为 209, 最小为 11,11,35,和为 57.
∴100x+y=352=1225, ∴x=12,y=25,
故答案为 209,57.
即:小王现在的年龄是 12 岁,
6.在 100~1999 这一千九百个自然数中,十位与个位数 字相同的共有 190 个.
结论. 【解答】解:∵2m+2006+2m =2m(22006+1) ∵22006 末位是 4, ∴22006+1 末位是 5, 而 2m 是偶数, 所以 2m+2006+2m(m 是正整数)的末位数字是 0.
则 k=0、1 或 2,(0 不合要求,舍去), 因此 A=4001 或 A=8004. 故答案为:4001 或 8004. 15.若 1+2+3+…+k 之和为一完全平方数 N2,并且 N 小 于 100,则 K 的可能值是 1,8 或 49 . 【考点】#9:完全平方数.
与最小公倍数之和等于 ab+1 .
个数仍然为完全平方数,则小王现在的年龄是 12
【考点】#6:约数与倍数. 菁优网版权所有
【分析】由于相邻的两个自然数互为质数,故他们的 最大公约数是 1,最小公倍数是 ab,从而易求答案. 【解答】解:a、b 为两个相邻的自然数,它们的最大
岁. 【考点】#9:完全平方数.
位对应着 1,2,…,19 这 19 种可能即可得出答案.
15,然后左边分解因式,右边分解因数,建立方程组
【解答】解:后两位数字相同,只有 00,11,22,33, 44,55,66,77,88,99 这 10 种可能情形, 而每一种相同的末两位数字相同的数,百位到千位对 应着 1,2,…,19 这 19 种可能,

初中数学竞赛练习第02讲 代数式(含解析)

初中数学竞赛练习第02讲 代数式(含解析)

第2讲代数式一、单选题l. (2022·福建九年级统考觉赛〉已知正整数。

,b,c,d满足:a<b<C<d,的b+c+d=2022,d2 -♂+b2-a2 =2022, 则这样的4元数组(a,b, C, d)兴有()A.251组B.252组 c.502组 D.504组’+ .t,nnA2.(2021·全国九年级竞赛〉当x=�二三二肘,多项式(4x3-1997x -1994户侧的值为〈〉2A.1B.-1c.22001 D._ 220013.(2022·广东,九年级统考竞赛〉已知a1(b+c)=b1(α+c) =2022,且a'b,则ι仇·的值为〈)A.2022B.-2022 c.4044。

-40444.(2021·全国九年级党和设。

=-fi-1,则3a3+12a2-6a-12= ( )A.24B.25 c. 4../宁+10 D.4../宁+125.(2019秋·河南许昌·七年级校联考竞赛〉定义:若。

+b=月,则称。

与b是关于数n的“平衡数”。

比如3与-4是关于-I的“平衡数”,5与12是关于17的“平衡数”.现有α=3x2 -IOkx+ 12与b=-3x2+5x-2k (k为常数〉始终是关于数n的“平衡数”,则n=A.11B.12 c.13 D.146.(2019秋-河南许昌七年级校联考竞赛〉如果单项式7x"'y川与单项式4x2-my3"-'是同类项,则m.-2n的值是A.1B.-1c.2 D.-27.(2020秋·江西·七年级江西省子都中学校考竞赛〉数学课上,老师讲了多项式的加诚,放学后,小明回主l脱出础笔记,认真阳习老师课上讲的内容,他突然发现一道题:叫什川-tρ+叶y2) =-t x2一一+y2空格的地方被钢笔水弄污了,那么划中的一项是(〉A.-7xyB.7xyC.-xyD.xy8.(2022春·山东济南·六年级校考竞赛〉在幼发拉底河岸的古代庙宇图书馆遗址里,曾经发掘出大量的知土板,美索不达米亚人在这些结土板上刻出来乘法表、加法表和平方表.用这些简单的平方表,美索不达米亚入这样ti算:第一步:( 103+95)÷2=99,第二步(103-95) .;.2=4:第三步:查平方表:知99的平方是9801,第四步:查平方袭,知4的平方是16,�五步:9801-16=9785=95? 103.设两囚数分别为。

七年级上册数学竞赛试题

七年级上册数学竞赛试题

七年级上册数学竞赛试题【试题一】题目:求证:对于任意正整数 \( n \),\( 1^2 + 2^2 + 3^2 +\ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \)。

解答:我们可以使用数学归纳法来证明这个等式。

首先验证 \( n=1 \) 时等式成立:\[ 1^2 = \frac{1(1+1)(2\cdot1+1)}{6} = 1 \]假设当 \( n=k \) 时等式成立,即:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6} \]现在我们需要证明当 \( n=k+1 \) 时等式也成立:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 + (k+1)^2 =\frac{k(k+1)(2k+1)}{6} + (k+1)^2 \]\[ = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6} \]\[ = \frac{(k+1)(2k^2 + k + 6k + 6)}{6} \]\[ = \frac{(k+1)(2k^2 + 7k + 6)}{6} \]\[ = \frac{(k+1)(2(k+1)(k+3) + 1)}{6} \]\[ = \frac{(k+1)(k+2)(2(k+1)+1)}{6} \]这样我们就证明了对于任意正整数 \( n \),等式成立。

【试题二】题目:一个数列的前几项是 1, 2, 3, 4, ...,求第 \( n \) 项的表达式。

解答:观察数列的前几项,我们可以发现这是一个等差数列,首项 \( a_1 = 1 \),公差 \( d = 1 \)。

等差数列的通项公式为:\[ a_n = a_1 + (n-1)d \]将已知的首项和公差代入公式,得到:\[ a_n = 1 + (n-1) \times 1 = n \]【试题三】题目:如果一个三角形的三边长分别为 \( a \),\( b \),\( c \),且满足 \( a^2 + b^2 = c^2 \),证明这个三角形是直角三角形。

初中数学竞赛辅导资料(七年级用)

初中数学竞赛辅导资料(七年级用)

初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。

如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x=8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。

练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。

初中数学竞赛专题讲座有理数及其运算的技巧

初中数学竞赛专题讲座有理数及其运算的技巧

有理数及其运算技巧经验谈:有理数运算是中学数学中全部运算的基础,正确的理解有理数有关的看法,以及它的运算法例、公式,并且擅长依据所给题目要求,将推理与计算相联合,灵巧奇妙的选择简捷的算法,能够很好的提升思想的矫捷性。

将现实中的问题与学习中的知知趣联合,并合理的解决它,你会发现数学的好多乐趣。

内容综述:当我们认识了零、负整数和负分数后,就引出了有理数的看法。

整数(正整数、零、负整数)和分数(正分数、负分数)统称有理数,任何一个有理数都能够表示为一个既约分数。

并且,有理数能够比较大小,有理数的和、差、积、商(分母不为零)仍为有理数,随意两个有理数之间都有无量个有理数,有理数运算是中学数学中全部运算的基础,它要求同学们在理解有理数的有关看法、法例的基础上,能依据法例,公式等正确、快速地进行运算,同时还要擅长依据题目条件,将推理与计算相联合,灵巧奇妙地选择合理的简捷的算法解决问题,从而提升运算能力,发展思想的矫捷性与灵巧性。

重点解说:§1、数轴与大小:两个有理数的大小由它们在数轴上对应点的地点关系来确立:对应点在右侧的数总比对应点在左侧的数大。

★★例 1 察看图 1 中的数轴用字母a,b,c挨次表示点A, B, C 对应的数,试确立这三个数的大小关系。

思路:由 B 点在 A 点右侧,知b-a>0 ,而 A, B 都在原点左侧,故ab>0 ,又 c>0 ,这说明要比较的大小,只要比较分母ab,b-a,c的大小。

解:因为 C 点在 1 的右侧,所以c>1 ,因为 A 点在 -1 与之间,B点在与0之间,所以AB 的距离大于而小于1,即由相同的原因有,。

所以又 ab>0, 故从而有0<ab<b-a<c。

所以★★例 2:设证明 1:a,b∵是两个有理数,且a<b,∴ b>a,∴ba<b, 求证:-a>0..而∴∴证明2∵∴即∴又∴即故说明:由本例可知,随意两个不相等的有理数a,b之间存在一个有理数,由此可推知,随意两个有理数之间存在无穷多个有理数。

初中数学竞赛讲座——数论部分8(同余系的应用)

初中数学竞赛讲座——数论部分8(同余系的应用)

第8讲剩余系及其一次同余方程一、基础知识:(1)剩余系对于任意正整数n而言,一个整数除以m所得的余数只能是0,1,2, …,n-1中的某一个。

依次可将整数分成n个类(例如n=2时,就是奇数或偶数),从每一类中各取一个数所组成的集合就称为模的一个完全剩余系,简称为模的完系。

定义1:如果一个剩余系中包含了这个正整数所有可能的余数(一般地,对于任意正整数n,有n个余数:0,1,2,...,n-1),那么就被称为是模n的一个完全剩余系。

定义2:剩余系:设模为m,则根据余数可将所有的整数分成m类,分别记成[0],[1],[2],…[m-1],这m个数{0,1,2,…m-1}称为一个完全剩余系,每个数称为相应类的代表元。

例如:当m=10则,{0,1,2,3,4,5,6,7,8,9}最小非负完全{-5,-4,-3,-2,-1,0,1,2,3,4}绝对值最小{-4,-3,-2,-1,0,1,2,3,4,5}绝对值最小(一)根据剩余类的概念,很容易得到以下几条有关剩余类的性质:①每一个整数一定包含在而且仅包含在模m的一个剩余类中②整数p所属的模m的剩余类中的每一个数都可以写成km+p的形式,这里k是整数用符号p mod m表示p所属的模m的剩余类,这条性质写成数学表达式就是p mod m= {p+km(k是整数)}③整数p、q在模m的同一个剩余类中的充要条件是p、q对模m同余。

这条性质用数学符号就可表示为:p mod m= q mod m p≡q(mod m)实际上,同余式就是剩余类等式的一个特殊情况,是集合中的一个元素,前面有关同余的一些性质对剩余类仍然成立。

这条性质表明,对于模m的两个剩余类要么相等,要么它们的交集为空集,因此,模m有且仅有m个剩余类,它们是:0mod m,1 mod m,2 mod m,…(m―1)mod m。

在解决一些有关模m余数的问题时,我们就可以查看m个数:0,1,2,…,m―1,从而得相应的剩余类的情况,使问题变得异常简单,具体例子,请看后面的例题。

初中数学竞赛精品标准教程及练习:连续正整数的性质

初中数学竞赛精品标准教程及练习:连续正整数的性质

初中数学竞赛精品标准教程及练习:连续正整数的性质初中数学竞赛精品标准教程及练习(24)连续正整数的性质一、内容提要一.两个连续正整数1.两个连续正整数一定是互质的,其商是既约分数。

2.两个连续正整数的积是偶数,且个位数只能是0,2,6。

3.两个连续正整数的和是奇数,差是1。

4.大于1的奇数都能写成两个连续正整数的和。

例如3=1+2,79=39+40,111=55+56。

二.计算连续正整数的个数例如:不同的五位数有几个?这是计算连续正整数从10000到99999的个数,它是99999-10000+1=90000(个)1. n位数的个数一般可表示为9×10n-1(n为正整数,100=1)例如一位正整数从1到9共9个(9×100),二位数从10到99共90个(9×101)三位数从100到999共900个(9×102)……2.连续正整数从n 到m的个数是m-n+1把它推广到连续奇数、连续偶数、除以模m有同余数的连续数的个数的计算,举例如下:3.从13到49的连续奇数的个数是21349-+1=19从13到49的连续偶数的个数是21448-+1=184.从13到49能被3整除的正整数的个数是31548-+1=12从13到49的正整数中除以3余1的个数是31349-+1=13你能从中找到计算规律吗?三.计算连续正整数的和1.1+2+3+……+n=(1+n)2n(n是正整数)连续正整数从a到b的和记作(a+b)21 +-ab把它推广到计算连续奇数、连续偶数、除以模m有同余数的和,举例如下:2.11+13+15+…+55=(11+55)×223=759(∵从11到55有奇数21155-+1=23个)3.11+14+17+…+53=(11+53)×215=480(∵从11到53正整数中除以3余2的数的个数共31153-+1=15)四. 计算由连续正整数连写的整数,各数位上的数字和1.123456789各数位上的数字和是(0+9)+(1+8)+…+(4+5)=9×5=452.1234…99100计算各数位上的数字和可分组为:(0,99),(1,98),(2,97)…(48,51),(49,50)共有50个18,加上100中的1∴各数位上的数字和是18×50+1=901五. 连续正整数的积从1开始的n 个正整数的积1×2×3×…×n 记作n !,读作n 的阶乘1.n 个连续正整数的积能被n !整除,如11×12×13能被1×2×3整除;97×98×99×100能被4!整除;a (a+1)(a+2)…(a+n)能被(n+1)!整除。

初中数学竞赛讲座——数论部分3(素数与合数)

初中数学竞赛讲座——数论部分3(素数与合数)

第三讲素数与合数一、基础知识:对于任意正整数n>1,如果除1和n本身以外,没有其它的因数,那么称n 为素数,否则n称为合数。

这样,我们将正整数分为了三类:1,素数,合数。

例如:2,3,5,7,11,…都是质数。

1既不是质数也不是和数。

1之所以要摒于质数之外,是因为它完全没有质数所具备的那些重要的数论性质。

质数p和a互质,必要而且只要p|\a事实上,若p|a,则p和a除±1外还有公因数±p,故二者不互质。

若p|\a,则±p当然就不是p,a的公因数;但除了±p,只有±1才可能是p的因数,所以只有±1才可能是p,a的公因数,即二者互质。

显然任意两个不同的质数互质。

质数的性质性质1.素数中只有一个数是偶数,它是2.性质2.设n为大于1的正整数,p是n的大于1的因数中最小的正整数,则p为素数。

性质3.设a 是任意一个大于1的整数,则a 的除1 外最小正因数q 是一质数,并且当a是合数时,q≤证明:假设q不是质数,则由定义可知q除1及本身以外还有一正因数,设它为b,因而1<b<q。

但q|a,所以b|a,这与q是a的除1外的最小正因数矛盾,因而q是质数。

当a是合数时,则a=c·q且c>1,否则a是质数。

由于q是a的除1外的最小正因数,所以q小于等于c ,2q≤q c=a故q≤说明:此性质表明,一个合数a一定是不大于的某些质数的倍数。

换言之,如果所有不大于的质数都不能整除a,那么a一定是质数(作为性质4如下)。

此性质是我们检验一个数是否为素数的最常用的方法。

例如判断191是不是素数。

因为不大于<14的素数有2,3,5,7,11,13,由于191不能被2,3,5,7,11,13整除,所以191是质数。

这种方法还可以求不大于a的所有素数,例如,求50以内的全体素数。

由于不大于的质数有:2,3,5,7,可以在2,3,4,,50中依次划去2,3,5,7的倍数(保留2,3,5,7)最后余下的数就是50以内的全体质数。

七年级数学竞赛 第2讲 奇数、偶数

七年级数学竞赛 第2讲 奇数、偶数
例 6.有 1997 枚硬币,其中 1000 枚国徽朝上,997 枚国徽朝下。现要求每一次翻转其中任意 6 枚,使它们 的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明。
(山西省太原市竞赛题) 解:不能,理由如下:将国徽朝上赋予“+1”,朝下赋予“−1”,
则 1997 枚硬币的国徽朝向情况可用 1997 个数乘积表示, 若这些数之积为−1(或+1),表明有奇数(或偶数)枚国徽朝下,开始时,其乘积为(+1)1000·(−1)997=−1, 每次翻转 6 枚硬币,即每次改变 6 个数的符号,其结果是 1997 个数之积仍为−1, 经有限次翻转后,这个结果总保持不变,即国徽朝下的硬币永远有奇数枚,故回答是否定的。
图②
17.将 10,11,…,99 这 90 个正整数写在黑板上,擦去其中的 n 个数,可使黑板上剩下的所有数的乘积的 个位数是 1,求 n 的最小值。
(四川省竞赛题)
(第 26 届国际数学奥林匹克候选题) 解题思路:分两步证明:先证明 n 是偶数 2k,再证明 k 是偶数,证明的关键是从整数入手,挖掘隐含的一 个等式。
例 5.开始时,5×5 方格表中的每个方格中都填有一个 0,每一步选取两个具有公共边的方格,将其中的数 同时加 1 或同时减 1。若干步后,各行、各列之数的和彼此相等。求证:所经过的步数为偶数。
(俄罗斯数学奥林匹克试题) 证明:若一步中所选的两个方格在同一行,则称为“水平步”,若在同一列,则称为“竖直步”。
在 5×5 方格表中,考虑第二列之和 S2 与第四列之和 S4, 每一水平步使 S2,S4 之一加 1 或减 1(即改变±1),另一个不变,故改变 S2−S1 的奇偶性; 每一竖直步使 S2,S4 不变或改变±2,故不改变 S2−S4 的奇偶性。 由于开始与结束时均有 S2−S4=0,故水平步数为偶数。 类似地考察第二行、第四行之和,可知竖直步数也为偶数。 所以,总步数为偶数

初中数学竞赛讲座——数论部分费马小定理

初中数学竞赛讲座——数论部分费马小定理

初中数学竞赛讲座——数论部分(费马小定理)————————————————————————————————作者:————————————————————————————————日期:第9讲费尔马小定理一、基础知识:法国数学家费尔马在1640年提出了一个有关整数幂余数的定理,在解决许多关于某个整数幂除以某个整数的余数问题时非常方便有用,在介绍这个定理之前,我们先来看一些具体的同余式,请同学们注意观察,发现这些同余式符合什么规律.3≡1(mod 2),5≡1(mod 2),7≡1(mod 2)…22≡1(mod 3),42≡1(mod 3),52≡1(mod 3)…24≡1(mod 5),34≡1(mod 5),44≡1(mod 5)…26≡(23)2≡1(mod 7),36≡(33)2≡1(mod 7),46≡(43)2≡1(mod 7)…这些同余式都符合同一个规律,这个规律就是费尔马小定理.费尔马小定理:如果p是质数,(a,p)=1,那么a p-1≡1(mod p)与费马小定理相关的有一个中国猜想,这个猜想是中国数学家提出来的,其内容为:当且仅当2p-1≡1(mod p),p是一个质数。

假如p是一个质数的话,则2p-1≡1(mod p)成立(这是费马小定理的一个特殊情况)是对的。

但反过来,假如2p-1≡1(mod p)成立那么p是一个质数是不成立的(比如341符合上述条件但不是一个质数)。

如上所述,中国猜测只有一半是正确的,符合中国猜测但不是质数的数被称为“伪质数”。

对于中国猜测稍作改动,即得到判断一个数是否为质数的一个方法:如果对于任意满足1 < b< p的b下式都成立:b p-1≡1(mod p),则p必定是一个质数。

实际上,没有必要测试所有的小于p的自然数,只要测试所有的小于p的质数就可以了。

这个算法的缺点是它非常慢,运算率高;但是它很适合在计算机上面运行程序进行验算一个数是否是质数。

初一数学竞赛系列讲座全套

初一数学竞赛系列讲座全套

初一数学竞赛讲座(三)数字、数位及数谜问题一、一、知识要点1、整数的十进位数码表示一般地,任何一个n 位的自然数都可以表示成:122321*********a a a a a n n n n +⨯+⨯++⨯+⨯---其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0.对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n -2、正整数指数幂的末两位数字(1) (1) 设m 、n 都是正整数,a 是m 的末位数字,那么m n 的末位数字就是a n 的末位数字。

(2) (2) 设p 、q 都是正整数,m 是任意正整数,那么m 4p+q 的末位数字与m q 的末位数字相同。

3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。

这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑〞、“猜〞的方法求解,是一种有趣的数学游戏。

二、二、例题精讲例1、有一个四位数,其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。

分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。

解:设所求的四位数为a ⨯103+b ⨯102+c ⨯10+d ,依题意得:(a ⨯103+b ⨯102+c ⨯10+d)+( d ⨯103+c ⨯102+b ⨯10+a)=9988∴ (a+d) ⨯103+(b+c) ⨯102+(b+c) ⨯10+ (a+d)=9988比拟等式两边首、末两位数字,得 a+d=8,于是b+c18又∵c-2=d ,d+2=b ,∴b-c=0从而解得:a=1,b=9,c=9,d=7故所求的四位数为1997评注:将整数用十进位数码表示,有助于将条件转化为等式,从而解决问题。

例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,假设最大数与最小数的差正好等于原来的数N ,那么称N 为“新生数〞,试求所有的三位“新生数〞。

初一数学竞赛讲座(1-16讲)

初一数学竞赛讲座(1-16讲)

初一数学竞赛讲座(一)自然数的有关性质一、知识要点1、 最大公约数定义1 如果a 1,a 2,…,a n 和d 都是正整数,且d ∣a 1,d ∣a 2,…, d ∣a n ,那么d 叫做a 1,a 2,…,a n 的公约数。

公约数中最大的叫做a 1,a 2,…,a n 的最大公约数,记作(a 1,a 2,…,a n ).如对于4、8、12这一组数,显然1、2、4都是它们的公约数,但4是这些公约数中最大的,所以4是它们的最大公约数,记作(4,8,12)=4.2、最小公倍数定义2 如果a 1,a 2,…,a n 和m 都是正整数,且a 1∣m, a 2∣m,…, a n ∣m ,那么m 叫做a 1,a 2,…,a n 的公倍数。

公倍数中最小的数叫做a 1,a 2,…,a n 的最小公倍数,记作[a 1,a 2,…,a n ].如对于4、8、12这一组数,显然24、48、96都是它们的公倍数,但24是这些公倍数中最小的,所以24是它们的最小公倍数,记作[4,8,12]=24.3、最大公约数和最小公倍数的性质性质1 若a ∣b,则(a,b)=a.性质2 若(a,b)=d,且n 为正整数,则(na,nb)=nd.性质3 若n ∣a, n ∣b,则()n b a n b n a ,,=⎪⎭⎫ ⎝⎛. 性质4 若a=bq+r (0≤r<b), 则(a,b)= (b,r) .性质4 实质上是求最大公约数的一种方法,这种方法叫做辗转相除法。

性质5若 b ∣a,则[a,b]=a.性质6若[a,b]=m,且n 为正整数,则[na,nb]=nm.性质7若n ∣a, n ∣b,则[]n b a n b n a ,,=⎥⎦⎤⎢⎣⎡.4、数的整除性定义3 对于整数a 和不为零的整数b ,如果存在整数q ,使得a=b q 成立,则就称b 整除a 或a 被b 整除,记作b ∣a ,若b ∣a ,我们也称a 是b 倍数;若b 不能整除a ,记作b a5、数的整除性的性质性质1 若a ∣b ,b ∣c ,则a ∣c性质2 若c ∣a ,c ∣b ,则c ∣(a ±b)性质3 若b ∣a, n 为整数,则b ∣n a6、同余定义4 设m 是大于1的整数,如果整数a ,b 的差被m 整除,我们就说a ,b 关于模m 同余,记作 a ≡b(mod m)7、同余的性质性质1 如果a ≡b(mod m),c ≡d(mod m),那么a ±c ≡b ±d(mod m),ac ≡bd(mod m)性质2 如果a ≡b(mod m),那么对任意整数k 有ka ≡kb(mod m)性质3 如果a ≡b(mod m),那么对任意正整数k 有a k ≡b k (mod m)性质4如果a ≡b(mod m),d 是a ,b 的公约数,那么()⎪⎪⎭⎫ ⎝⎛≡d m,m mod d b d a2、 例题精讲例1 设m 和n 为大于0的整数,且3m+2n=225.如果m 和n 的最大公约数为15,求m+n 的值(第11届“希望杯”初一试题)解:(1) 因为 (m,n)=15,故可设m=15a ,n=15b ,且(a,b)=1因为 3m+2n=225,所以3a+2b=15因为 a,b 是正整数,所以可得a=1,b=6或a=b=3,但(a,b)=1,所以a=1,b=6从而m+n=15(a+b)=15⨯7=105评注:1、遇到这类问题常设m=15a ,n=15b ,且(a,b)=1,这样可把问题转化为两个互质数的求值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学竞赛讲座02 特殊的正整数特殊的正整数一、一、知识要点1、 1、 完全平方数及其性质定义1如果一个数是一个整数的平方,则称这个数是完全平方数。

如:1、4、9、…等都是完全平方数,完全平方数有下列性质:性质1 任何完全平方数的个位数只能是0,1,4,5,6,9中的一个。

性质2 奇完全平方数的十位数一定是偶数。

性质3 偶完全平方数是4的倍数。

性质4 完全平方数有奇数个不同的正约数。

性质5 完全平方数与完全平方数的积仍是完全平方数,完全平方数与非完全平方数的积是非完全平方数。

2、 2、 质数与合数定义2一个大于1的整数a,如果只有1和a 这两个约数,那么a 叫做质数。

定义3一个大于1的整数a,如果只有1和a 这两个约数外,还有其他正约数,那么a 叫做合数。

1既不是质数也不是合数。

3、 3、 质数与合数的有关性质(1) (1) 质数有无数多个(2) (2) 2是唯一的既是质数,又是偶数的整数,即是唯一的偶质数。

大于2的质数必为奇数。

(3) (3) 若质数p ∣a •b ,则必有p ∣a 或p ∣b 。

(4) (4) 若正整数a 、b 的积是质数p ,则必有a=p 或b=p.(5) (5) 唯一分解定理:任何整数n(n>1)可以唯一地分解为:k a k a a p p p n 2121=,其中p 1<p 2<…<p k 是质数,a 1,a 2,…,a k 是正整数。

二、二、例题精讲例1 有一个四位数恰好是个完全平方数,它的千位数字比百位数字多1,比十位数字少1,比个位数字少2,这个四位数是解设所求的四位数为m 2,它的百位数字为a ,则有m 2=1000(a+1)+100a+10(a+2)+(a+3)=1111a+1023=11(101a+93)因为11是质数,所以11∣(101a+93),而101a+93=11(9a+8)+(2a+5),所以11∣(2a+5),由题意 a+3≤9,故a ≤6,从而a=3于是所求的四位数为4356例2 一个四位数有这样的性质:用它的后两位数去除这个四位数得到一个完全平方数(如果它的十位数是0,就只用个位数去除),且这个平方数正好是前两位数加1的平方。

例如4802÷2=2401=492=(48+1)2,则具有上述性质的最小四位数是(1994年四川省初中数学联合竞赛试题)解 设具有上述性质的四位数是100c 1+c 2,其中10≤c 1,c 2≤99,按题意,得100c 1+c 2=()22122122121c c c c c c c ++=+,∴100c 1= c 1c 2 (c 1+2),即210012+=c c ,因而(c 1+2)∣100,又10≤c 1≤99,所以c 1=18,23,48,98相应地c 2=5,4,2,1于是符合题意的四位数是1805,2304,4802,9801,其中最小的是1805评注:本题根据题意,列出不定方程,然后利用整数的整除性来求解。

例3 三个质数a 、b 、c 的乘积等于这三个质数和的5倍,则a 2+b 2+c 2=(1996年“希望杯”初二试题)分析:由题意得出abc=5(a+b+c),由此显然得质数a 、b 、c 中必有一个是5,不妨设a=5,代入前式中再设法求b 、c解因为abc=5(a+b+c),所以在质数a 、b 、c 中必有一个是5,不妨设a=5,于是5bc=5b+5c+25,即(b-1) (c-1)=6,而6=2⨯3=1⨯6,则⎩⎨⎧=-=-3121c b ①或⎩⎨⎧=-=-6111c b ②由①得b=3,c=4,不合题意,由②得b=2,c=7,符合题意。

所以所求的三个质数是5,2,7。

于是a 2+b 2+c 2=78评注:质数问题常常通过分解质因数来解决。

例4 试证:一个整数的平方的个位数字为6时,十位数字必为奇数。

分析:一个整数的平方的个位数字为6,则这个整数的个位数字必为4或6,从而可设此数为a=10g+4或a=10g+6 (g 为整数)。

证明:设一个整数为a ,则由一个整数的平方的个位数字为6知,此数可设为a=10g+4或a=10g+6 (g 为整数)∴当a=10g+4时,a 2=(10g+4)2=100g 2+80g+16=10(10g 2+8g+1)+6当a=10g+6时,a 2=(10g+6)2=100g 2+120g+36=10(10g 2+12g+3)+6∴十位数字必为10g 2+8g+1和10g 2+12g+3的个位数字,显然是奇数。

评注:类似地,可以证明:一个整数的个位数字和十位数字都是奇数,则这个整数不是完全平方数。

例4 三人分糖,每人都得整数块,乙比丙多得13块,甲所得是乙的2倍,已知糖的总块数是一个小于50的质数,且它的各位数字之和为11,试求每人得糖的块数。

(安徽省初中数学联赛试题)分析:设出未知数,根据题意,列出方程和不等式组,再通过质数的性质来求解。

解 设甲、乙、丙分别得糖x 、y 、z 块,依题意得 ⎪⎩⎪⎨⎧++<+++==为质数,且 z y x z y x z y y x 50132∵ 11=2+9=3+8=4+7=5+6,故小于50且数字和为11的质数只可能是29和47 若x+y+z =29,则可得4y=42 ,y 不是整数,舍去。

若x+y+z =47,则可得4y=60,y =15,从而x=30,z=2∴甲、乙、丙分别得糖30、15、2块.评注:本题的关键是分析出小于50且数字和为11的质数只可能是29和47。

这类问题是常利用质数的性质来分析求得所有的可能值,再设法检验求得所要的解。

例5 如果p与p+2都是大于3的质数,那么6是p+1的因数。

(第五届加拿大数学奥林匹克试题)分析任何一个大于3整数都可以表示成6n-2,6n-1,6n,6n+1,6n+2,6n+3(n是大于0的整数)中的一种,显然6n-2,6n, 6n+2,6n+3都是合数,所以大于3的质数均可以写成6n+1或6n-1的形式,问题即证明p不能写成6n+1的形式。

解因为p是大于3的质数,所以可设p=6n+1(n是大于0的整数),那么p+2=6n+1+2=6n+3=3(2n+1) 与p+2是大于3的质数矛盾。

于是p≠6n+1,所以p=6n-1(n是大于0的整数),从而p+1=6n,即6是p+1的因数。

评注:对大于3整数合理分类是解决这个问题的关键。

对无限多个整数进行讨论时,将其转化为有限的几类是一种常用的处理方法。

例6 证明有无穷多个n,使多项式n2+3n+7表示合数。

分析:要使多项式n2+3n+7表示合数,只要能将多项式n2+3n+7表示成两个因式的积的形式。

证明当n为7的倍数时,即n=7k(k是大于等于1的整数)时n2+3n+7=(7k)2+3⨯7k+7=7(7k2+3k+1) 为7的倍数,所以它显然是一个合数。

评注:本题也可将7换成其他数,比如:3、5、11等等。

例7求证:22001+3是合数分析:22001+3不能分解,22001次数又太高,无法计算。

我们可以探索2 n的末位数字的规律,从而得出22001+3的末位数字,由此来证明22001+3是合数。

证明:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,29=256,…∴24k+1的末位数字是2,24k+2的末位数字是4,24k+3的末位数字是8,24k+4的末位数字是6(k 为非负整数)⨯250+1∴22001的末位数字是2,∴22001+3的末位数字是5而2001=4∴5∣22001+3,显然22001+3≠5 所以22001+3是合数评注:本题另辟蹊径,通过探索2 n的末位数字的规律来得出22001+3的末位数字,从而证明22001+3是合数。

解数学竞赛题,思路要开阔。

例8 求证大于11的整数一定可以表示成两个合数之和。

证明设大于11的整数为N若N=3k(k≥4,且k为整数),则N=6+3(k-2),显然6和3(k-2)都是合数若N=3k+1(k≥4,且k为整数),则N=4+3(k-1),显然4和3(k-1)都是合数若N=3k+2(k≥4,且k为整数),则N=8+3(k-2),显然8和3(k-2)都是合数于是对任意正整数N(N>11),一定可以表示成两个合数之和。

评注:本题是通过对整数的合理分类来帮助解题,这是解决整数问题的一种常用方法。

但要注意对整数的分类要不重复不遗漏。

例9 证明:n (n+1)+1(n是自然数)不能是某个整数的平方。

分析:注意到n (n+1)+1=n2+n+1,∵n是自然数,∴n2<n2+n+1<( n+1)2,这为我们证题提供了出发点。

证明:n (n+1)+1=n 2+n+1,∵n 是自然数,∴n 2<n 2+n+1<( n+1)2,而n 、n+1是两个相邻的自然数,∴n (n+1)+1(n 是自然数)不能是某个整数的平方。

评注:本题应用了在两个相邻正整数的平方数之间不可能还存在一个完全平方数这个结论。

例10 如果一个自然数是质数,且它的数字位置经过任意交换后仍然是质数,则称这个数为绝对质数。

证明:绝对质数不能有多于三个不同的数字。

分析:绝对质数中出现的数字不会有偶数,也不会有5,因为有偶数和5它就一定不是绝对质数,则绝对质数中出现的数字只可能是1,3,7,9。

接下来用反证法来证明这个问题。

证明:因为绝对质数的数字位置经过任意交换后仍然是质数,所以绝对质数中出现的数字不会有偶数,也不会有5,即绝对质数中出现的数字只可能是1,3,7,9。

假设有一个绝对质数M 中出现的数字超过了3个,也即这个绝对质数中出现的数字包含了1,3,7,9,则 13791379M 211+==M a a a n ,M 2=M+9137,M 3=M+7913,M 4=M+3791,M 5=M+1397,M 6=M+3197,M 7=M+7139都是质数。

可验证,这七个数中每两个数的差都不能被7整除,说明M 1、M 2、M 3、M 4、M 5、M 6、M 7被7除所得余数互不相同。

因而必有一个是0,即能被7整除,这与此数是质数矛盾。

所以假设不成立,所以绝对质数不能有多于三个不同的数字。

评注:本题是用反证法来证明,对于题目中出现“不”的字眼,常常用反证法来证明。

三、三、巩固练习选择题1、在整数0、1、2、3、4、5、6、7、8、9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u ,则x+y+z+u 的值是( )A 、17B 、15C 、13D 、112、设n 为大于1的自然数,则下列四个式子的代数值一定不是完全平方数的是( )A 、3n 2-3n+3B 、5n 2-5n-5C 、9n 2-9n+9D 、11n 2-11n-113、有3个数,一个是最小的奇质数,一个是小于50的的最大质数,一个是大于60的最小质数,则这3个数的和是( )A 、101B 、110C 、111D 、1134、两个质数的和是49,则这两个质数的倒数和是( )A 、4994B 、9449C 、4586D 、86455、a 、b 为正整数,且56a+392b 为完全平方数,则a+b 的最小值等于( )A 、6B 、7C 、8D 、96、3个质数p 、q 、r 满足等式p+q=r ,且p<q<r ,则p 的值是( )A 、2B 、3C 、5D 、7填空题7、使得m 2+m+7是完全平方数的所有整数m 的积是8、如果一个正整数减去54,是一个完全平方数,这个正整数加上35后,是另外一个完全平方数,那么这个正整数是9、一个质数的平方与一个正奇数的和等于125,则这两个数和积是10、p 是质数,p 2+2也是质数,则1997+p 4=11、若n 为自然数,n+3,n+7都是质数,则n 除以3所得的余数是12、设自然数n 1>n 2,且792221=-n n ,则n 1=,n 2= 解答题13、证明:不存在这样的三位数abc ,使cab bca abc ++成为完全平方数。

相关文档
最新文档