(完整版)浙江大学浙大卢兴江版微积分答案第七章

合集下载

浙江大学浙大卢兴江版微积分答案

浙江大学浙大卢兴江版微积分答案

6 定积分及其应用习题6.11. (1)e 1- (2)13 (3)122. (1)24R p (2)72(3)03. (1)1201d 1x x +ò (2)10ò (3)(i )10d ()x a b a x +-ò 或 11d b ax b a x-ò (ii )[]1ln ()d e a b a x x +-ò 或 1ln d e ba x xb a -ò 习题6.21. (1)112300d d x x x x >蝌 (2)553233(ln )d (ln )d x x x x >蝌 (3)222200sinsin d d xx x x x pp >蝌 2. (1[]222,0,1x x ?(2)提示:分析函数2()1xf x x=+在[]0,2上的最大(小)值. 3. 提示:取()()g x f x = 4. 提示:利用积分中值定理或定积分的定义证明.5. 提示:令()()F x xf x =对()F x 在10,2轾犏犏臌上用罗尔定理。

6. 提示:证明在[]0,p 内至少存在两点12,x x 使12()()0f f x x ==.习题6.31. (1)(2)sin 2x x - (2)6233e cos()x x x -(3)[][]sin ln 1sincos cos 1sinsin x x x x -+-+ (4)2221()d 2()x f t t x f x +ò(5)1()d xf t t ò2. (1)23(2)1 (3)1 (4)24p (5)13. 提示:利用夹逼定理.4. 4()sin 21f x x p =--. 5. 提示:2()y f x ⅱ= 6. 提示:利用2[()()]d 0baf x tg x x -?ò,其中t 为任意常数.7.(1)741)1)33p -++ (2)2 (3)143p - (4)26p (5)14 (6)12(7)24e --8. 提示:利用泰勒公式()()22a b a b f x f f x x 骣骣++¢琪琪=+-琪琪桫桫,x 位于x 与2a b+之间. 习题6.41. (1)15 (2)2 (3)16 (4)p (53p(6)121e骣琪-琪桫 (7)24p (8)34 (9)352e 2727- (10)1ln 32- (11)3p -(12)8p(13)43p - (14)(ln 2-+ (15)()3e 15p - (16)13(提示:222101110111xx x x x x x e dx dx dx e e e ----=++++⎰⎰⎰) (17)1 (18)4π(提示:作变换2x t π=-) (19)2 (20)13(21)34p (22)当n 为偶数时:131222n n n n p ---g g L g g ;当n 为奇数时:131123n n n n ---g g L g g (23)ln 28p2. 713e-3. 提示:22()d ()d ()d a bbb a b aaf x x f x x f x x ++=+蝌?,对2()d ba b f x x +ò作变换()x a b t =+-.4. 若f 是连续偶函数,()()d xaF x f t t =ò不一定为奇函数. 例如:2311()d 13x F x x x x ==-ò5.1n (提示:对10()d x n n n t f x t t --ò作变换n nx t u -=,用洛必达法则或导数的定义.) 6. ()1cos113-(提示:用分部积分法) 7. 提示:用分部积分法 8. (0)2f =. 9.(1)2101, 1321d , 103231, 023p p p p x x p x p p p ì骣ï琪-+<-琪ï桫ïï+=-++-?íïïï+?ïïîò (2)411,01()221, 12x x x F x x x ì-+-?ï=íï-#î10. 提示:利用()tan f x x =在0,4p 轾犏犏臌的单调性. 习题6.51.(1)2565 (2)1 (3)2p(4)163 (5)12442,633S S p p =+=- (6)92 (7)238a p (8)1ln 22 (9)1122.(1)a (2)43p3.(1)2R p (2)1ln(224+ (3)6a (4)22p 4. 1ln 32-5. 4 7. 3163a 8. (1)22x V p =,22y V p = (2)56p (3)24p (4),33p p(5)23332325,6,7x y y a V a V a V a p p p ==== 9.2p10. 44815p11. (1)21)p (2)33211113ln 93222π⎡⎛+⎛⎫⎢ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦12. 22arcsin a a 骣+ 13. 2560g r (焦) 14. 0.5625 kg/m 2. 15. 3.675(焦) 16. 1674.667 g (焦) 17.22503h pr (焦) 18. ()343R H R H p w w +- 19. 212Mgh mgh +(焦)20.21.222k ph R k p ++ 22.()kmM a a l +,其中k 为万有引力常数 23. 22ln 12kM al a l骣琪+琪+桫,其中k 为万有引力常数 习题6.61.211=-ò用矩形公式,梯形公式和抛物线公式计算(8)n = 2. 3.141592 (可利用抛物线公式计算120d 1xx +ò)3. 周长204l p q =ò,用抛物线公式计算(16)n =深其近似值为22.1035.习题6.71. (1)收敛,13 (2)发散 (3)收敛,1ln 242p +(4(5 (6312p -(7)收敛,12(8)收敛,238- (9)收敛,2(10)收敛,83 (11)收敛,p (12)发散(13)收敛,79 (14)收敛,p (15)收敛,(ln 22p+(16)当1k £时发散,当1k >时,收敛于1(ln 2)1kk--2. 提示:作积分变换1xt = 3. 2a b ==- 4*.(1)收敛 (2)收敛 (3)发散 (4)发散 (5)收敛 (6)收敛 (7)收敛 (8)发散 (9)收敛 (10)当1p <且1q <时收敛,其他发散. (11)收敛 (12)收敛 (13)当1n m >+时收敛,当1n m ?时发散 (14)当12p <<时收敛,其他发散 (15)当3m <时收敛,当3m ³时发散 (16)当12n <<时收敛,其他发散. 5.(1)11(1)n n p +G + (2)(1)p G +6.(1)1!2m (2)12122m +⎛⎫Γ=⎪⎝⎭ (3)(1)!3m m m -g 7. (1)130(2)111,22B n 骣琪+琪桫 = 12!(21)!!n n n +⋅+。

微积分3试卷(07)

微积分3试卷(07)

L AC
原式
L AC


0
CB

( x y) d x ( x y) d y
3 1
dx x
[(cost sin t )( sin t ) (cost sin t ) cost ]dt ln 3 ln 3

方法 2: 设 C (1,1), D(3,1),
解 2:直接法(第二类曲面积分).
S : x 1 y z , Dyz : 0 z y 1, 1 y 0, cos 0 S : z 1 x y, Dxy : 0 x y 1, 1 y 0, cos 0 S : y x z 1, Dxz : 0 z 1 x, 0 x 1, cos 0 I dy
I


LOB BO


AB

(格林公式)

2
3 d 3 d (e x sin x 1)dx 0 0 2 2
1 2

解 2: I (e
L

x2
sin x 3 y )d x + cos y d x x sin y d y y 4d y
3
计算平面第二型曲线积分
y [1 y
l
1
2
f ( x y )] d x
x 2 [ y f ( x y ) 1] d y. y2
3
参考解答:
4 5 2 一.(1) R ;(2) 11 a ; (3) 37 A ; (4) 2 ; (5) 16 a .
2
5
3

微积分各章习题及详细答案(供参考)

微积分各章习题及详细答案(供参考)

微积分各章习题及详细答案(供参考)第一章函数极限与连续一、填空题1、已知 f (sin x) 1cos x ,则 f (cos x)。

2(4 3x)22、 lim2)。

xx(1 x3、 x 0 时, tan x sin x 是 x 的阶无量小。

4、 lim xksin10 建立的 k 为。

xx5、 lim e x arctan xx6、 f ( x)ex1, xb,7、 limln( 3x1)x 06x。

x 0在 x 0处连续,则 b 。

x 0。

8、设 f (x) 的定义域是 [ 0,1] ,则 f (ln x) 的定义域是 __________ 。

9、函数 y 1 ln( x 2) 的反函数为 _________。

10、设 a 是非零常数,则 lim (xa) x ________ 。

xx a111、已知当 x 0时, (1 ax 2 ) 3 1与 cosx 1 是等价无量小,则常数 a ________。

12、函数 f ( x)arcsin3x的定义域是 __________ 。

1 x13、 lim ( x 22x 2 2)____________ 。

x14、设 lim (x2a ) x 8 ,则 a________。

xx a15、 lim ( n n 1)( n 2n) =____________ 。

n二、选择题1、设 f ( x), g(x) 是 [ l , l ] 上的偶函数, h( x) 是 [ l , l ] 上的奇函数,则中所给的函数必为奇函数。

(A) f ( x) g( x) ;(B) f ( x) h( x) ;( C ) f (x)[ g(x) h( x)] ;( D ) f ( x) g( x) h(x) 。

2、1 x3x( x),( x)1x ,则当时有。

1 x1(A) 是比 高阶的无量小; (B) 是比 低阶的无量小;( C )与 是同阶无量小;( D )~。

3、函数 f (x)1 x 1 ,x 0( x1) 在 x0处连续,则 k3 1 x 1 。

微积分第七章习题解答

微积分第七章习题解答

第七章习题解答1.求下列函数的定义域。

()(){}1,:112222≤+--=y x y x D y x z 解:()()(){}1,4,:14ln 222222≥<+-+--=x y x y x D x y x z 解:()()()(){} ,2,1,0,122,:sin 32222±±=+≤+≤+=k k y x k y x D y x z ππ解:()()()[](){}164,:1416ln 422222222<+<---+--=y x y x D yx y x y x z 解:()(){}0,,:115><<--++=x x y x y x D yx yx z 解:()(){},0,:62>≤≤-=x x y y x D yx z 解:()()(){}222222,42,:3arcsin 7y x y x y x D y x y x z >≤+≤---=解:()()()(){}(){}94,11,1410,1,:410ln ln arcsin 82222222<+≤-≤-=>--≤---+-=y x y x y x y x y x y x D y x y x z 解:2.求下列函数的极限。

()()()()()1sin lim 1sin lim 1sin lim 10222222022220==+++++→→→→→uu u y x y x y x y x y x u x x y y 解:()()()()()001lim1lim lim lim limlim 222222222220000=+=+++=+++=++++∞→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞→y yx xy x y x yy x x y x y x y x y x y y y y y y x x x x x x 解:()221sin lim sin lim sin limsin lim 322220000=⋅=⋅=⋅=→→→→→→→→y u uu xy y xy xy x xy xxy y y y y u x x x 解:()022lim limlim4220222222000=⋅+=++→→→→→→yy x xy y x xy y x xy y y y x x x 解:3求下列函数的一阶偏导数。

浙江大学2011-2012学年春学期《微积分》(II)课程期末考试试卷

浙江大学2011-2012学年春学期《微积分》(II)课程期末考试试卷

浙江大学2012-2013学年春学期《微积分》(II )课程期末考试试卷 1. 设()3a b c ⨯⋅=,求()()()()a b b c c a +⨯-⋅-.2. 求直线L 的方程,设L 经过点(1,4,3)--,且与两直线1241:350x y z L x y -+=⎧⎨++=⎩,2213:412x y z L -++==-都垂直. 3. 设直线1:22x tL y t z t =-⎧⎪=+⎨⎪=⎩,其中t 为参数。

求L 绕z 轴所成的旋转曲面的方程,并说出该曲面的名称。

4. 求经过直线L :4050x z x y z -+=⎧⎨++=⎩且与平面P :4812x y z --= 所成的二面角为45度的平面方程。

5.设22(,)(4)(2)arcsinarctan((1))f x y x y y y x =-+--,求(1,2)x f '及(1,2)y f '。

6. 设函数22232u x y z =++,点P (1,1,1),曲面S 222236x y z ++=,求函数u 在点P 处沿曲面S 的外法线方向的方向导数。

7. 设函数(,)z z x y =由方程(,)0y z F x x=确定,其中F 为可微函数,且20F '≠,计算z z xy x y∂∂+∂∂。

8.求1221||1)sin()x dx xy x y dy -++⎰。

9.设0r =>,()u f r =存在二阶连续导数,求 222222u u ux y z∂∂∂++∂∂∂。

(请用,(),(),()r f r f r f r '''表示)10. 设 (,)z f x y =在点(1,2)处存在连续的一阶偏导数,且(1,2)2f =,(1,2)3x f '=,(1,2)4y f '=,()(,(,2))x f x f x x ϕ=,求1()x dx dx ϕ=。

浙江大学微积分复习资料

浙江大学微积分复习资料

I = lim (x2 + 2x + sin x) - (x + 2)2 = lim
-2x + sin x + 4
x®+¥ x2 + 2x + sin x + (x + 2) x®+¥ x2 + 2x + sin x + (x + 2)
= lim
-2 + x-1 sin x + 4x-1
= -1.
x®+¥ 1 + 2x-1 + x-2 sin x + (1 + 2x-1)
x
= 1.
x®0
x®0
x2
x®0 2x(ex - x) x®0 2x(ex - x) 2
1
1
因此,lim (ex - x) x2 = e2 .
x®0
6、 求:lim sin x - tan x . x®0 tan x(ex - 1) ln(1 - x)
I
=
lim
x®0
tan
x(cos -x3
x
- 1)
若为高阶无穷小量,可考虑用 Taylor 展开,不过在应用Taylor 展开时,要求 对有关展开式比较熟悉;否则还是“慎用”.
常见的等价无穷小量:
· 当x ® 0 时,常见的等价无穷小量: (1)sin x ~ x ; (2) tan x ~ x ; (3)ln(1+ x) ~ x ; (4) ex -1 ~ x ; (5) arctan x ~ x ;(6) arcsin x ~ x ; (7) 1 - cos x ~ x2 ;(8) (1 + x)a -1 ~ a x.

浙江大学城市学院微积分II(丙)练习册全部答案

浙江大学城市学院微积分II(丙)练习册全部答案

第八章 微分方程初步第一节 微分方程的概念1. 验证函数212y C x C x =+是否为微分方程2220yy y x x'''-+=的解.解:122y C C x y C '''=+=2, 2, 代入方程:()221212222222()0y y y C C C x C x C x x x x x'''-+=-⋅+++=22 因此是解。

2.验证由方程22x xy y C -+=所确定的函数为微分方程(2)2x y y x y '-=-的通解.解:对22x xy y C -+=两边求导,有2()20x y xy yy ''-++=,即有 (2)2x y y x y '-=-,是解有因为解中一个任意常数,任意常数个数与微分方程阶数相同,因此是通解。

3.验证函数1212()(,xy C C x e C C -=+为任意常数)是微分方程20y y y '''++=的通解,并求满足初始条件004,2,x x y y =='==-的特解.解:2122122212212()(),()(2),x x x x x x y C e C C x e C C C x e y C e C C C x e C C C x e ------'=-+=--''=----=--- 将上式代入方程左边有:21221212(2)2()()0x x x C C C x e C C C x e C C x e ------+--++=,有因为解中2个任意常数,任意常数个数与微分方程阶数相同,因此是通解。

由004,2,x x y y =='==-得: 124,2C C ==特解:(42)xy x e -=+第二节一阶微分方程1、求下列可分离变量微分方程的通解(或特解)(1)0 xydx=解:1,dyy= 11211,(1)ln, ln,,C Cdy x yyy Cy y e--=-=+==±⋅=⎰(20 +=解:,=,=()21,y=-arcsin,x C=即为通解(3)212,0x yxy xe y-='==解: 22,,x y y xdyxe e e dy xe dxdx-=⋅=()()22222222221,,211,,221111,ln,2224y x y xy x x y x xy x x x xe dy xe dx e xdee xe e dx e xe e dxe xe e C y xe e C===-=-⎛⎫⎛⎫=-+=-+⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰由12xy==,得1,C=211ln()122xy x e⎡⎤=-+⎢⎥⎣⎦(4)23(4),1xx x y y y='-==.解:22,,(4)(4)dy dx dy dxy x x y x x==--⎰⎰()411111ln,ln ln ln4,4441ln ln,,4444Cy dx y x x Cx xC xx xy C y ex x x=+=--+-=+=±⋅=---⎰ 由31xy==,得113C=,43(4)xyx=-。

高等数学微分方程第七章练习题答案

高等数学微分方程第七章练习题答案

第七章 练习题一、填空: 第一节1、微分方程()1y x 2='+'y 的阶 一 __.2、0)()67(=++-dy y x dx y x 是 一 阶常微分方程. 3、01"=+xy 是 二 阶常微分方程. 4、微分方程2'=y x 的通解为 c x y +=2 。

5、 153'+=+x y xy 是 1 阶常微分方程 6、与积分方程()dx y x f y x x ⎰=0,等价的微分方程初值问题是0|),,(0'===x x y y x f y7、223421xy x y x y x ''''++=+是 3 阶微分方程。

8、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为 29、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是 310、方程()01///=+--y xy y x 的通解中含有 2 个任意常数 11、 微分方程03322=+dx x dy y 的阶是 1 第二节 1、微分方程x dye dx=满足初始条件(0)2y =的解为1x y e =+. 2、微分方程y x e y -=2/的通解是 C e e xy +=221 3、微分方程2dyxy dx=的通解是 2x y Ce = 4、一阶线性微分方程23=+y dx dy的通解为 323x Ce -+5、微分方程0=+'y y 的通解为 x ce y -=6、 微分方程323y y ='的一个特解是 ()32+=x y第三节1、tan dy y ydx x x=+通解为arcsin()y x Cx =.第五节1、微分方程x x y cos "+=的通解为213cos 6C x C x x y ++-= 2、微分方程01=+''y 的通解是( 21221C x C x y ++-= )3、 微分方程044=+'+''y y y 的通解是( x e C x C y 221)(-+= )4、微分方程032=-'+''y y y 的通解是( x x e C e C y 231+=- )5、 方程x x y sin +=''的通解是=y 213sin 61C x C x x ++-第六节1、 一阶线性微分方程x e y dxdy-=+的通解为 ()C x e y x +=- 2、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该方程的通解为)1(21221c c x c x c y --++=或1)1()1(221+-+-=x c x c y第七节1、 微分方程230y y y '''--=的通解为x x e C e C y 321+=-.2、 分方程2220d xx dtω+=的通解是 12cos sin C t C t ωω+3、微分方程02=+'-''y y y 的通解为 12()x y c c x e =+第八节1、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是3,2,1αβγ=-==-2、微分方程2563x y y y xe -'''++=的特解可设为=*y *201()x y x b x b e -=+二、选择 第一节1、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为( A )(A ) 2 (B ) 4 (C ) 3 (D ) 02、方程422421x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( B )(A ) 2 (B ) 4 (C ) 3 (D ) 03、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是( C )A 、1B 、2C 、3D 、54、微分方程1243/2///+=++x y x y x xy 的通解中含有任意常数的个数是( C ) A 、1 B 、2 C 、3 D 、55、微分方程34()0'''-=x y yy 的阶数为(B ) (A) 1 (B) 2 (C) 3 (D) 46、下列说法中错误的是( B )(A) 方程022=+''+'''y x y y x 是三阶微分方程; (B) 方程220()x y yy x ''-+=是二阶微分方程;(C) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D) 方程()()dyf xg y dx=是可分离变量的微分方程. 7、方程()01///=+--y xy y x 的通解中含有( B )个任意常数A 、1B 、2C 、3D 、4 8、 微分方程3447()5()0y y y x '''+-+=的阶数为( B ) A .1 B . 2 C .3 D .49、微分方程()043='-'+''y y y x y xy 的阶数是( A ).A. 2B. 4C. 5D. 310、 微分方程03322=+dx x dy y 的阶是( A ). A. 1 B. 2 C. 3 D. 0 11、 微分方程323y y ='的一个特解是( B )A. 13+=x yB. ()32+=x y C. ()3C x y += D. ()31+=x C y12、 方程322321x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( C )(A ) 2 (B ) 4 (C ) 3 (D ) 0第二节1、微分方程20y y '-=的通解为(B )A .sin 2y c x =B .2x y ce =C .24x y e =D .x y e =2、微分方程0ydx xdy -=不是 ( B )A. 线性方程B. 非齐次线性方程C. 可分离变量方程D. 齐次方程 3、微分方程0=+'y y 的通解为( D )A .x y e =B . x ce y -=C . x e y -=D . x ce y -=4、一阶常微分方程e yx dxdy -=2满足初始条件00==x y 的特解为( D ) A x ce y = B x ce y 2= C 1212+=x y e e D ()1212+=x y e e5、微分方程02=+'y y 的通解为( D )A .x e y 2-=B .x y 2sin =C .x ce y 2=D .x ce y 2-= 6、 微分方程 ydy x xdx y ln ln =满足11==x y 的特解是( C )A. 0ln ln 22=+y xB. 1ln ln 22=+y xC. y x 22ln ln =D. 1ln ln 22+=y x第五节1、 微分方程2(1)0y dx x dy --=是( C )微分方程.A .一阶线性齐次B .一阶线性非齐次C .可分离变量D .二阶线性齐次第六节1、已知x y cos =,xe y =,x y sin =是方程()()()xf y x Q dx dyx P dxy d =++22的三个解,则通解为 ( C )A x c e c x c y x sin cos 321++=B ()()x x e x c e x c y -+-=sin cos 21C ()x c x c e c c y x sin cos 12121--++=D ()x c x c e c c y x sin cos 12121++++=第七节1、微分方程02=+'-''y y y 的通解为( D )A .12x x y c e c e -=+;B .12()x y c c x e -=+;C .12cos sin y c x c x =+;D .12()x y c c x e =+ 2、下面哪个不是微分方程''5'60y y y +-=的解( D ) (A )65x x e e -+ (B )x e (C )6x e - (D )6x x e e -+3、 已知2,sin ,1x y x y y ===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D ) A .221sin 1x C x C y ++=B .2321sin xC x C C y ++=C .21221sin C C x C x C y --+=D .212211sin C C x C x C y --++= 4、已知x y x y y cos ,sin ,1===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D )A .x C x C C y cos sin 321++=B .xC x C C y cos sin 321++= C .2121sin cos C C x C C y --+=D .21211cos sin C C x C x C y --++= 5、微分方程0y y ''+=的通解为( C )(A) 12x x y c e c e -=+; (B) 12()x y c c x e -=+; (C) 12cos sin y c x c x =+; (D) 12()x y c c x e =+6、已知1=y ,x y =,2x y =是某二阶非齐次线性微分方程的三个解,则方程的通解为( C ) A 2321x C x C C ++ B 21221C C x C x C --+ C )1(21221C C x C x C --++ D ()()2122111C C x C x C ++-+-7、已知x y y x 4='+''的一个特解为2x ,对应齐次方程0='+''y y x 有一个特解为x ln ,则原方程的通解为 ( A )A 、221ln x c x c ++ B 、221ln x x c x c ++ C 、221ln x e c x c x ++ D 、221ln x e c x c x ++- 8、微分方程04=+''y y 的通解为( A )A .x c x c y 2sin 2cos 21-= ;B .x e x c c y 221)(-+=C x x e c e c y 2221-+=;D .x e x c c y 221)(+=9、 分方程2220d xx dtω+=的通解是( A );A .12cos sin C t C t ωω+B .cos t ωC .sin t ωD .cos sin t t ωω+第八节1、微分方程x e y dxyd =-22的一个特解应具有的形式为 DA ()x e b ax +B ()x e bx ax +2C x aeD x axe2、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是( C )(A )3,2,1αβγ===- (B )3,2,1αβγ==-=- (C )3,2,1αβγ=-==- (D )3,2,1αβγ=-=-= 三、计算第二节1、求微分方程0ln '=-y y xy 的通解 解:分离变量xdxy y dy =ln ...........2分 两边积分可得 1ln ln ln C x y += ..........4分 整理可得Cx e y = .........6分 5、计算一阶微分方程ln 0x x y y '⋅-=的通解。

高等数学第七章微分方程试题及答案汇编

高等数学第七章微分方程试题及答案汇编

第七章 常微分方程一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()⎰⎰+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M通解()()()()C dy y N y N dx x M x M =+⎰⎰1221()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程⎪⎭⎫⎝⎛=x y f dx dy 令u x y =, 则()u f dxdux u dx dy =+= ()c x c xdxu u f du +=+=-⎰⎰||ln二.一阶线性方程及其推广1.一阶线性齐次方程()0=+y x P dxdy 它也是变量可分离方程,通解()⎰-=dxx P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程()()x Q y x P dxdy=+ 用常数变易法可求出通解公式 令()()⎰-=dxx P ex C y 代入方程求出()x C 则得()()()[]⎰+=⎰⎰-C dx e x Q e y dx x P dx x P3.伯努利方程()()()1,0≠=+ααy x Q y x P dxdy令α-=1y z 把原方程化为()()()()x Q z x P dxdz αα-=-+11 再按照一阶线性非齐次方程求解。

4.方程:()()x y P y Q dx dy -=1可化为()()y Q x y P dydx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。

四.线性微分方程解的性质与结构我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。

二阶齐次线性方程 ()()0=+'+''y x q y x p y (1) 二阶非齐次线性方程 ()()()x f y x q y x p y =+'+'' (2) 1.若()x y 1,()x y 2为二阶齐次线性方程的两个特解,则它们的线性组合()()x y C x y C 2211+(1C ,2C 为任意常数)仍为同方程的解,特别地,当()()x y x y 21λ≠(λ为常数),也即()x y 1与()x y 2线性无关时,则方程的通解为()()x y C x y C y 2211+=2.若()x y 1,()x y 2为二阶非齐次线性方程的两个特解,则()()x y x y 21-为对应的二阶齐次线性方程的一个特解。

《微积分》课后答案第7章(复旦大学版)解析

《微积分》课后答案第7章(复旦大学版)解析
此文档由天天learn()为您收集整理。
第七章
习题 7-1 1. 略. 2. 求点(a,b,c)关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标. 解:(1)点(a,b,c)关于 xoy 面的对称点是(a,b,-c); 关于 xoz 面的对称点是(a,-b,c); 关于 yoz 面的对称点是(-a,b,c); (2)点(a,b,c)关于 x 轴的对称点是(a,-b,-c); 关于 y 轴的对称点是(-a,b,-c); 关于 z 轴的对称点是(-a,-b,c); (3)点(a,b,c)关于原点的对称点是(-a,-b,-c); 3. 自点 P0(x0, y0, z0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.
2.试用向量证明:如果平面上一个四边形的对角线互相平分,则该四边形是平行 四边形. 证:(如上题图),依题意有 AM MC, DM MB. 于是 AB AM MB MC DM DC. 故 ABCD 是平行四边形. 3.已知向量 a=i-2j+3k 的始点为(1,3,-2),求向量 a 的终点坐标. 解:设 a 的终点坐标为( x, y, z ),则
0 ( x0 , y0 , z0 ) 作 xoy 面的垂线,垂足坐标是 ( x0 , y0 , 0) ; 解:自点 P
作 xoz 面的垂线,垂足是 ( x0 , 0, z0 ) ; 作 yoz 面的垂线,垂足是 (0, y0 , z0 ); 自点 P 0 ( x0 , y0 , z0 ) 作 x 轴的垂线,垂线是 ( x0 , 0, 0);
解得 b , c
5 3
38 5 38 ,故所求点的坐标为 0, , . 3 3 3
1
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。

近十份大学微积分下期末试题汇总(含答案)

近十份大学微积分下期末试题汇总(含答案)

浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷一 、填空题(每小题5分.共25分.把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a =,3b =,3a b ⋅=,则a b += . 3.设(,)f u v 可微.(,)yxz f x y =,则dz = .4.设()f x 在[0.1]上连续.且()f x >0, a 与b 为常数.()}{,01,01D x y x y =≤≤≤≤,则()()()()Daf x bf y d f x f y σ++⎰⎰= .5.设(,)f x y 为连续函数.交换二次积分次序2220(,)x x dx f x y dy -=⎰⎰.二 、选择题(每小题5分.共20分.在每小题给出的四个选项中只有一个是符合题 目要求的.把所选字母填入题后的括号内)6.直线l 1:155121x y z --+==-与直线l 2:623x y y z -=⎧⎨+=⎩的夹角为 (A )2π . (B )3π . (C )4π . (D )6π. [ ] 7.设(,)f x y 为连续函数.极坐标系中的二次积分cos 2d (cos ,sin )d f r r r r πθθθθ⎰⎰可以写成直角坐标中的二次积分为(A)100(,)dy f x y dx ⎰⎰ (B)100(,)dy f x y dx ⎰⎰(C)10(,)dx f x y dy ⎰⎰(D)10(,)dx f x y dy ⎰⎰[ ]8.设1, 02()122, 12x x f x x x ⎧≤≤⎪⎪=⎨⎪-≤⎪⎩ ()S x 为()f x 的以2为周期的余弦级数.则5()2S -=(A )12. (B )12-. (C )34. (D )34-. [ ] <9.设,)(0,0),(,)0, (,)(0,0),x y f x y x y ≠==⎩则(,)f x y 在点O (0,0)处(A )偏导数存在.函数不连续 (B )偏导数不存在.函数连续(C )偏导数存在.函数连续 (D )偏导数不存在.函数不连续 [ ] 三、解答题10.(本题满分10分)求曲线L :2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在其上点M (1.-1.2)处的切线方程与法平面方程.11.(本题满分10分)设F 可微.z 是由F (x y -,,)0y z z x --=确定的可微函数.并设23F F ''≠.求z zx y∂∂+∂∂. 12.(本题满分10分)设D 是由曲线3y x =与直线y x =围成的两块有界闭区域的并集.求2[e sin()]d xDx y σ++⎰⎰. 13.(本题满分10分)求空间曲线L :222920335x y z x y z ⎧+-=⎨++=⎩上的点到xOy 平面的距离最大值与最小值.14.(本题满分10分)设平面区域D ={}(,)01,01x y x y ≤≤≤≤.计算二重积分22 1 d Dx y σ+-⎰⎰.15.(本题满分5分)设当y >0时(,)u x y 可微.且已知222222(,)()(2)y x du x y xy dx x y y dy x y x y=++-++++. 求(,)u x y .浙江大学2007-2008学年春季学期《微积分II 》课程期末考试试卷答案一、填空题(每小题5分.共25分) 1.231421=-++=d .2.22()()2496a b a b a b a b a b +=+⋅+=++⋅=++=3.()()dy xy f x x f dx y y f yx f dz x y x y 121211ln ln --'+⋅'+'+⋅'=4.()()()()()()()()⎰⎰⎰⎰++=++=D Dd x f y f x bf y af d y f x f y bf x af I σσ. ()()⎰⎰+=+=+=∴Db a I b a d b a I 21,2σ.5.()()2220111,,x x dx f x y dy dy f x y dx --=⎰⎰⎰⎰或 ()0111,dy f x y dx -⎰⎰或 ()1101,dy f x y dx -⎰⎰.二、选择题(每小题5分.共20分) 6.选(B ).l 1的方向向量{}1,2,1-.l 2的方向向量{}2,1,1--.{}{}3,2163662,1,11,2,1cos πθθ===--⋅-=.7.选(D ). 积分区域(){}0,,22≥≤+=y x y x y x D .化成直角坐标后故知选(D ).8.选(C ). 511111113()()()((0)(0))(1)222222224S S S f f -=-==-++=+=.9.选(A ). ()()0000,0lim0,0,00x y x f f x→-''===.偏导数存在. 取kx y =.()4411lim,lim kk kk kx x f x x +=+=→→随k 而异.所以不连续.三、解答题(10~14每题10分.15题5分.共55分) 10.由L .视x 为自变量.有⎪⎩⎪⎨⎧=-+=++.0226,0264dx dz z dx dy y x dx dz z dx dy y x 以()()2,1,1,,-=z y x 代入并解出dxdzdx dy ,.得 87,45==dx dz dx dy . 所以切线方程为87245111-=+=-z y x .法平面方程为()()()57112048x y z -+++-=.即0127108=-++z y x .11.133212232332,,1y x z z F F F F F F F F z z z z x F F F y F F F x y F F ''''''''--+∂∂∂∂=-=-=-=-+==''''''''∂-+∂-+∂∂-.12.D 在第一象限中的一块记为D 1.D 在第三象限中的一块记为D 2.()()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++++=++2122122sin sin sin D D DD x D x x d y x d y x d e d e d y x eσσσσσ.32222312101xx x x x xxxD D e d e d dx e dy dx e dy σσ-+=+⎰⎰⎰⎰⎰⎰⎰⎰ ()()()()222210103333011x x x x x x e dx xx e dx x x e dx xx e dx -=-+-=-+-⎰⎰⎰⎰()2111130021()112x u u u u x x e dx e du ue du e ue e e e =-=-=---=--=-⎰⎰⎰()()()()3312101sin sin sin sin x x xxD D x y d x y d dx x y dy dx x y dy σσ-+++=+++⎰⎰⎰⎰⎰⎰⎰⎰()()()()103301cos cos cos cos x x x x dx x x x x dx -⎡⎤⎡⎤=-+-+-+-+⎣⎦⎣⎦⎰⎰ ()()()()13301cos cos cos cos 0x x x x dx x x x x dx ⎡⎤⎡⎤=-+-+++-+=⎣⎦⎣⎦⎰⎰ 所以.原式2-=e .13.L 上的点到平面xoy 的距离为z .它的最大值点.最小值点与2z 的一致.用拉格朗日乘数法.设()()()53329,,,,2222-+++-++=z y x zy x z z y x F μλμλ.求偏导数.并令其为零有:20F x x λμ∂=+=∂.1830F y x λμ∂=+=∂. 2430F z z z λμ∂=-+=∂.22920Fx y z x∂=+-=∂ . 3350Fx y z μ∂=++-=∂ . 解之得两组解()()1215,,(1,,1);,,(5,,5)33x y z x y z ==--. 所以当31,1==y x 时.1=z 最小;当35,5-=-=y x 时.5=z 最大.14.将分成如图的两块.41的圆记为D 1.另一块记为D 2()⎰⎰⎰⎰--=-+DD d y x d y x 1222211σσ+()⎰⎰-+2122D d y x σ ()()()σσσd y x d y x d y xD DD ⎰⎰⎰⎰⎰⎰-+--++--=11111222222()()()()1222211122220211211211()43343D Dx y d x y d d r rdr dy xy dx πσσθππ=--++-=-++-=+-+=-⎰⎰⎰⎰⎰⎰⎰⎰15.由()222222,()(2)y x du x y xy dx x y y dy x y x y =++-++++.有222xy y x y x u ++=∂∂.从而知()()y y x y x y x u ϕ++=2221arctan,.又由y y x yx x y u 2222+++-=∂∂.推知 ()22222221()xx y x y y x y y x x y y ϕ-'++=-++++. ()()22,y y y y C ϕϕ'==+所以.()2221,arctan2x u x y x y y C y =+++. 注:若用凑的办法亦可:222222()(2)y x xy dx x y y dy x y x y++-++++()()22222211221()ydx xdy ydx xdy xy ydx xdy ydy d xy dy x x y y y--=+++=++++ ()221(arctan)2x d xy y y =++ 所以.()C y y x y x y x u +++=22221arctan,. ()()u f u F ='.浙江大学2006–2007学年春季学期 《 微积分Ⅱ 》课程期末考试试卷开课学院: 理学院 考试形式:闭卷 考试时间: 年 月 日 所需时间:120 分钟 考生姓名: _____学号: 专业: ________一、 填空题(每小题5分.满分30分) 1. 直线63321-==+z y x 在平面0522=--+z y x 上的投影直线方程为.2. 数量场2),,(zye z y x g x +=在)0,3,1(P 点的梯度为 .=u函数)ln(),,(22z y x z y x f ++=在P 点沿u的方向导数为 .3. 设ϕϕ,),2,3(),,(f y x x u u x f z+== 具有二阶连续偏导数.则=∂∂∂yx z 2.4. 设}1,11|),{(3≤≤≤≤-=y x x y x D.则=+⎰⎰+Dy xy x e y x x d d )(222.5. 已知曲面1=z y x 与椭球面193222=++z y x 在第一卦限内相切.则切点坐标为 .公共切平面方程为.6. 设函数⎪⎩⎪⎨⎧<≤<≤=121,210,)(2x x x x x f .∑∞=+=10cos 2)(n n x n a a x S π.其中,2,1,0,d cos )(210==⎰n x x n x f a n π.则.)27(=S二、 (满分10分)求直线 ⎩⎨⎧=-++=-+-022012z y x z y x 绕x 轴旋转一周所得的旋转曲面方程.1002 22dd x yex y.三、(满分10分)计算⎰⎰-四、 (满分15分)已知),(y x z z =由方程013=++zxe z y 确定.试求1022==∂∂y x x z.五、 (满分15分)设平面),,(,1:z y x d y x =+π为曲线⎪⎩⎪⎨⎧=++=++014222z y x z y x 上的点),,(z y x 到平面π的距离.求),,(z y x d 的最大.最小值 .六、 (满分15分)如图是一块密度为ρ(常数)的薄板的平面图形(在一个半径为R 的半圆直 径上拼上一个矩形.矩形的另一边为h ),已知平面图形的形心位于原点(0, 0). 试求:1. 长度 h ;2.薄板绕x 轴旋转的转动惯量.七、 (满分5分) 求证:当0,1≥≥s t 时.成立不等式 s e t t t ts +-≤ln .参考解答:一.1.⎩⎨⎧=--+=+-0522043z y x z y x ; 2. 21},0,,3{e e ;3. )3(2))(3(2222122222122212ϕϕϕϕϕϕ''+''⋅'+'+'⋅'⋅''+'''f f f ; 4.;32 5. ;03313,3,1,31=-++⎪⎭⎫⎝⎛z y x 6. 83.二.直线:t z t y t x -=-==1,1,曲面上点→),,(z y x P 直线上点00000001,1),,,(x z x y z y x -=-=22222020220)1()1(,,x x z y z y z y x x -+-=+⇒+=+=则旋转曲面方程:222)1(2x z y -=+三.⎰⎰10222d d xy ex y -⎰⎰⎰-==--212212220142)d 41(d d y y e x e y 2y yy2120202020221d d d d 212212212212212------=-+=+=⎰⎰⎰⎰e y e ey y e e y y e yy y y y四.,1)1,0(-=z ,032=∂∂++∂∂⋅x z xe e x z z y z z ex z y x 3110-=∂∂∴== ,02632222222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂⋅+∂∂⋅x z xe x z xe x z e x z z y x z z y z z z 2102294ex zy x =∂∂∴== 五.|1|21),,(-+=y x z y x d )14()()1(2222-++++++-+=z y x z y x y x L μλ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-++='=±===++='==+='-==⇒≠=++-+='=⇒==++-+='014,01302,002)1(20,002)1(22223231221z y x L z y x z y x L x z L xz x y y y x L x y x L z y xμλμλμμλλμμλ,无解最小距离:2236),,(323131-=-d .最大距离:2236),,(323131+=--d六.形心:01,0=⇒==⎰⎰⎰⎰DDxdxdy xdxdyx y σ即0d cos d d d 220=⋅+⎰⎰⎰⎰---ππθθRhRRr r r y x xR h R h R 320312)21(232=⇒=⋅+-⋅ ⎰⎰=Dxdxdy y I 2302202)832(d θsin d d d 22R R h r r r y y x RhRR πθππ+=⋅+=⎰⎰⎰⎰--- 七.设0)0,1(,ln ),(=-+-=F ts e t t t s t F s.ln ,0),(t s e t t e s t F s s s ==⇒=-=' 且对固定的1>t . 当,0),(,ln 0<'<<s t F t s s 当,0),(,ln >'>s t F t ss所以.t s ln =取得最小值且为0.则 0),(≤s t F .即s e t tt ts +-≤ln1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________. 6 知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( c ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( b ).(A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值 8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( a).(A)123I I I >> (B)213I I I >> (C)123I I I << (D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( d ). (A) b ax y += (B) x e b ax y 3)(+= (C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+=10、设∑∞=12n na收敛.则∑∞=-1)1(n nna ( d ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 2、、)32,31(-. 4、1. 5、"6'0y y y -+=. 11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x =的函数为23,0x y y =>。

《微积分》上册部分课后习题答案

《微积分》上册部分课后习题答案

微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。

浙江大学《微积分》课程期末考试试卷

浙江大学《微积分》课程期末考试试卷

浙江大学2004-2005学年秋冬季学期《微积分》课程期末考试试卷一、填空题1.1lim()xx x e x →-= .2.设()f x 可导,2(cos )f x y x =则d d yx= . 3.ln (0)xy x x=>的值域范围为 . 4.3121x x -=⎰5.设,arcsin x y t⎧⎪=⎨=⎪⎩则22d d y x = . 6.当0x →时,20cos d 2x tx e t t x --⎰与B Ax 等价无穷小,则常数A = ,B = .二、计算题1.求221d .22x x x x +++⎰ 2.已知(0),(),f a f b π==且()f x ''连续,求[]0()()sin d f x f x x xπ''+⎰.3.求2+∞⎰.4.求曲线sin (0)y x x π=≤≤与x 轴围成的平面图形分别绕x 轴和y 轴旋转一周所得的旋转体体积x V 和y V .5.在曲线段 2(08)y x x =≤≤上, 求一点2(,)P a a 使得过P 点的切线与直线0,8y x ==所围成的三角形的面积最大.三、求幂级数2021!n n n x n ∞=+∑的收敛区间以及在收敛区间上的和函数,并求级数0212!nn n n ∞=+∑的和.四、证明若2,e a b e <<<则2224ln ln ()b a b a e ->-⋅ 五、已知sin 0()0x e x x F x xa x ⎧≠⎪=⎨⎪=⎩为连续函数.(1)求常数a ; (2)证明()F x 的导函数连续.浙江大学2004-2005学年秋冬学期《微积分》课程期末考试试卷答案一、填空题1.2110ln()lim()lim x x x x x x e x e x e →→--=1002ln()1lim lim 22()x x x x e x e x x e x x e e e →→---===.2. 22(cos )d (cos )[2(cos )(cos )sin ln ]d f x y f x x f x f x x x x x'=-⋅. 3. (1,]e-∞ .4.3121x x -+⎰.111x x x --=+⎰⎰12x x =⎰, 令sin x t =222222001312sin cos td 2sin (1-sin t)d 2()224228t x t x πππππ===⋅-⋅⋅=⎰⎰.5.由x =d d x t = a r c s i n y t =,d d y t =d 1d y x t =-,2221d d yt x==.6. 由洛必达法则20100cos d cos 12lim lim x tx B B x x x e t t x e x xAx ABx-→→----=⎰, 2323310[1()][1()]12!3!2!lim B x x x x x o x o x xABx-→++++-+--=, 其中:232331(),cos 1()2!3!2!xx x x e x o x x o x =++++=-+33101()3lim 1B x x o x ABx -→-+==, 得13,13B AB -=⎧⎪⎨=-⎪⎩,即1,412A B =-=. 二、计算题 1.22221221d d d 22221(1)x x x x x x x x x x ++=-++++++⎰⎰⎰=2ln(22)arctan(1)x x x C ++-++.2.[]00()()sin d ()sin d ()sin d f x f x x x f x x x f x x x πππ''''+=+⎰⎰⎰()sin d sin d ()f x x x x f x ππ'=+⎰⎰00()sin d sin ()()cos d f x x x xf x f x x x πππ''=+-⎰⎰00()sin d cos ()()sin d f x x x xf x f x x x πππ=--⎰⎰=a b +.3.221x +∞+∞=-⎰⎰21arcsinx +∞=-=6π . 4. 22sin d 2x V x x πππ==⎰,2002sin d 2cos 2cos d 2y V x x x x x x x πππππππ==-+=⎰⎰.5. 解:(1)过点2(,)P a a 的切线方程为 22()y a a x a -=-, 令0y =,得22()a a x a -=-,得2a x =, 令8x =,得222(8)16y a a a a a =+-=-,令221()(8)(16)(8)222a aS a a a a =--=-,213()(8)2(8)()(8)(8)22222a a a aS a a '=-+--=-- ,令()0S a '=,得163a =,16a =(舍).1333()(8)(8)1622222a a S a a ''=----=- ,16316()1680323S ''=⋅-=-<,所以,当163a =时,三角形面积最大.三、因为 2220102121()!(1)!!n n n n n n n x x x n n n ∞∞∞===+=+-∑∑∑2220()2!n x n x x e n ∞==+∑222222(21)x x x x e e e x =+=+,所以2220021212(221)5!!n n n n n n e e n n ∞∞==++==⋅+=∑∑.四、 设 2()ln ,()f x x g x x ==,在[,]a b 上由柯西定理,有 222ln ln ln 2,b a e a b e b a ξξξ-=<<<<- .再令2ln 1ln (),()0()x xx x e x x x ϕϕ-'==<<,故()x ϕ单调下降,得222(),()x e x e e ϕ><<,有2ln 2e ξξ>,得2224ln ln ()b a b a e ->-. 五、 (1)因为 0sin lim1x x e xx→=, 所以1a =. (2)0sin 1(0)lim x x e xx F x→-'=20sin lim x x e x x x→-= 00sin cos 12cos lim lim 122x x x x x e x e x e x x →→+-===, 所以,2(s i n c o s )s i n,0;()1,0.x x x x e x e x e x x F x x x ⎧+-≠⎪'=⎨⎪=⎩而 20sin cos sin limx x x x xe x xe x e xx →+-02cos lim 12x x xe x x →==,所以 ()F x '在(,)-∞+∞上是连续的.浙江大学2005-2006学年秋冬学期《微积分》课程期末考试试卷一、 计算题1.已知抛物线2y ax bx c =++过点(1,2),且在该点的曲率圆方程为22151()(),222x y -+-=则a = ,b = ,c =2.设12()sin d x f x t t =⎰,则(1) 10()d f x x =⎰ ;(2) 1()lim1x f x x →=- 3.若011lim ,2a x x →=则a = 4.当x = 时,函数2x y x =⋅取得极小值.5.曲线arctan y x =在横坐标为1的点处的切线方程为 *6.已知01(cos sin ),(0,2),2n n n xa a nxb nx x ππ∞=-=++∈∑则5b = (此题不作要求)二、求极限1.0sin tan lim tan (1)ln(1)x x x x x e x →--- 2. 21sin 0lim(cos )xx x → 三、求导数1.设函数()x x y =由sin 0y x x -+=所确定,求22d d ,d d x xy y2.设sin arctan ,ln(x t t y t =-⎧⎪⎨=+⎪⎩ 求22d d ,d d y y x x 3.设()arccot xy x e =-()y x '. 四、求积分 1.21d (1)(1)x x x ++⎰.2.x .3.1321(x x x -+⎰. 4.20sin 2d 1cos xxx xπ+⎰.五、设曲线21:1(01),C y x x =-≤≤x 轴和y 轴所围区域被曲线22:(0)C y ax a =>分为面积相等的两部分,试求常数a .六、将函数12()arctan 12x f x x -=+展开成x 的幂级数,并求级数0(1)21nn n ∞=-+∑的和.七、设()f x 在(,)a +∞内可导,且lim (),x f x a →∞'=证明:()limx f x a x→∞=.浙江大学2005-2006学年秋冬学期《微积分》课程期末考试试卷答案 一、计算题1. 由2y ax bx c =++,有2,2y ax b y a '''=+=,得112,2,2x x a b c y a b y a =='''++==+=由曲率圆方程22151()(),222x y -+-=两边求导,152()2()022x y y '-+-=,得1,21x y y =='=,5222()02x y y y y ''''++-=,得1,24x y y ==''=根据2y ax bx c =++与曲率圆22151()(),222x y -+-=在点(1,2)有相同的,,y y y ''';得到 24,21,2a a b a b c =⎧⎪+=⎨⎪++=⎩, 所以有2,3,3a b c ==-=.2. (1)11120()d (sin d )d xf x x t t x =⎰⎰⎰=111220sin d sin d xx t t x x x +⎰⎰12201=sin d 2x x ⎰ =12011cos (1cos1)22x -=- . (2)1211sin d ()limlim 11xx x t tf x x x →→=--⎰21sin lim sin11x x →-==-. 3. 因为,当0x →时2112x, 所以200112lim ,2a x x x x →→==得 2a = . 4. ()2x y x x =⋅,()22ln 2x x y x x '=+,令()0,22ln 20x x y x x '=+=,解得 1ln 2x -=, 由于2()2ln 22ln 22ln 22ln 2(2ln 2)x x x x y x x x ''=++=+, 当1ln 2x =-时,1()0ln 2y -''>,所以当1ln 2x -=时,()2x y x x =⋅取到极小值.5. 因为, 21111arctan ,,,arctan1124x x y x y y y x π==''=====+, 所以,切线方程为 1(1)24y x π=-+. 6. 515b =.二、求极限1. 0sin tan lim tan (1)ln(1)x x x x x e x →---=30sin (cos 1)cos lim x xx x x→--,注:当0x →时1,ln(1)x e x x x --- , 20cos 11lim2x x x →-==-. 2. 因为 ,21sin 0lim(cos )xx x →=2cos 11cos 1sin 0lim[1(cos 1)]x x xx x -⋅-→+- ,而 20cos 11limsin 2x x x →-=-,1cos 1lim[1(cos 1)]x x x e -→+-=, 所以 11sin2lim(cos )xx x e-→=.三、求导数1. 对方程sin 0y x x -+=两边关于y 求导数,注意到()x x y =,有 d d 1cos 0d d x x x y y -+=,得 d d xy =11cos x-, 222d 1d()d()(cos )d d 1-cos d d d (1-cos )y xx x yx yy y x '--===3sin (1cos )x x -=-. 2. 2d 1sin arctan ,cos d 1x x t t t t t=-=-+, ln(y t =,d d y t =d d d d d yy t x t==, 222d d (1)cos 1yxt t =⎡⎤+-⎣⎦.3.111()arccot arccot [ln ln(1)]arccot ln(1)222xx x x x x y x e e e e e x e =---+=-++,2211()122(1)12(1)x x x x x x xe e e y x e e e e '=--+=--++++. 四、 1.21d (1)(1)x x x ++⎰=22111()d 2111x x x x x -++++⎰ 2111ln 1ln(1)arctan 242x x x C =+-+++. 2. (令15x t =)x =145315d t t t t +⎰=11215d 1t t t +⎰ =9753215()d 1tt t t t t t t -+-+-+⎰ =108642211111115[ln(1)]1086422t t t t t t C -+-+-++=28242231551515153155151515ln(1)282422x x x x x x C -+-+-++.3.1321(x x x -+⎰11x x -=⎰22202sin cos d t t t π=⎰ 注:令sin x t =22202sin (1sin )d t t t π=-⎰1312()224228πππ=⋅-⋅⋅=.4. 20sin 2d 1cos x x x x π+⎰=220dcos 1cos x x xπ-+⎰=20dln(1cos )x x π-+⎰ 2200ln(1cos )ln(1cos )d x x x x ππ=-+++⎰=22(cos )ln 2(1)2d 1n nn x x n ππ+∞=-+-⋅⋅+∑⎰1201(1)ln 2cos d n nn x x n ππ-∞=-=-+∑⎰ 12201(1)ln 22cos d n n n x x n ππ-∞=-=-+⋅∑⎰=11(1)(21)!!ln 22(2)!!2n n n n n ππ-∞=---+⋅⋅⋅∑.五、由 221,y x y ax⎧=-⎪⎨=⎪⎩得交点0x =, 311212002(1)d ()33x S S x x x +=-=-=⎰,022310012[(1)]d ()33x x a S x ax x x x +=--=-=⎰,由12S S =,得212323=⋅, 所以 3a =.六、由12()arctan 12x f x x -=+, 2221()2(1)4,142n n nn f x x x x ∞=-'==--<+∑, 210(1)4()()d (0)2421n n x n n f x f x x f xn π∞+=-'=+=-+∑⎰, 当12x =时,210(1)41024212n n n n n π∞+=-=-+∑, 得 0(1)214nn n π∞=-=+∑.七、解法一:由洛必达法则, ()()lim lim 1x x f x f x a x →+∞→+∞'==.解法二:① 若0a =,由lim ()0x f x →+∞'=,按定义知0ε∀>,10x ∃>,当1x x >时,恒有()2f x ε'<.1(,)b x ∀∈+∞,当x b >时,有()()()2f x f b f x b x b εξ'-=-<-,由于()()()()2f x f b f x f b x b ε-≤-<-,有()()2f x f b x b ε≤+-,再取2x b >,使得2()2f b x ε<,当2x x >时, 有2()()()()()()2222x bf b x b f b f x f x f b f b x x x x x x εεεεε---+=<+<+<+=, 所以,()lim0x f x x→+∞=. ② 若0a ≠,由lim ()x f x a →+∞'=,则有 lim [()]0x f x ax →+∞'-=, 设()()F x f x ax =-,有lim ()0x F x →+∞'=,由①知,()()limlim 0x x F x f x axx x→+∞→+∞-==,得证.浙江大学2006-2007学年秋冬学期《微积分》课程期末考试试卷一、求导数或微积分(1)设sin43(arctan 2)ln 2x y x x =++,求d d yx .(2)设22d ,sin()d t ts x e s y t s s -==-⎰⎰,求t =d d y x 及22d d y x .(3)设()y y x =是由方程210x y e x xy +---=确定的x 的可导函数,求0d x y =. 二、求积分(4)求60x ⎰.(5)求2arctan d xxe x e ⎰. (6)求1+∞⎰.三、求极限 (7)求3012cos lim[()1]3x x x x →+-. (8)设()f a ''存在,()0f a '≠,求11lim[]()()()()x af a x a f x f a →-'--.(9)设1121)1))nn n u n n n ⎡⎤=+++⎢⎥⎣⎦(((1,求lim n n u →∞. 四、选择题(10)设2620arcsin d ,(1)d xt t t e t αβ==-⎰⎰,则0x →时 [ ](A )αβ与是同阶但不等价无穷小. (B )αβ与是等价无穷小. (C )αβ是的高价无穷小. (D )βα是的高价无穷小. (11)设级数1n n a ∞=∑收敛,则下述结论不正确的是[ ](A )11()n n n a a ∞+=+∑必收敛. (B )2211()n n n a a ∞+=-∑必收敛.(C )2211()n n n a a ∞+=+∑必收敛. (D )2211()n n n a a ∞+=-∑必收敛.(12)设1,0,()()()d ,0,x x e x f x F x f t t x x -⎧≤==⎨>⎩⎰,则()0F x x =在处[ ](A )极限不存在 (B )极限存在,但不连续(C )连续但不可导 (D )可导(13)设()y f x =为连续函数,除点x a =外,()f x 二阶可导,()y f x ''=的图形如图, 则() [ ]y f x =(A )有一个拐点,一个极小值点,一个极大值点. (B )有二个拐点,一个极小值点,一个极大值点. (C )有一个拐点,一个极小值点,二个极大值点. (D )有一个拐点,二个极小值点,一个极大值点.五、(14)设曲线2y ax =(0,x ≥常数0)a >与曲线21y x =-交于点A ,过坐标原点O 和点A 的直线与曲线2y ax =围成一平面形D .(I) 求D 绕x 轴旋转一周所成的旋转体体积()V a ;(II )求a 的值使()V a 为最大.六、(15)将函数21()arctan ln(1)2f x x x x =-+在0x =处展开成泰勒级数(即麦克劳林级数)并指明成立范围.七、(16)设0,x >证明2()(4)(2)20x x f x x e x e =---+<.浙江大学2006-2007学年秋冬学期《微积分》课程期末考试试卷答案一、求导数或微分(1) sin 4sin 4122d 14cos 4ln sin 46(arctan 2)d 14x x y x x x x x x x x -=⋅+⋅++. (2) 由 20d ts x e s -=⎰,得2d d t xe t -=,由20sin()d ty t s s =-⎰,令t s u -=,得0220sin d sin d tty u u u u =-=⎰⎰,得2d sin d y t t =,所以222d d sin ,d d t t y ye t e x x π==,2222222222(sin )d 2sin 2cos d t t t tt t e t y te t te t x e e--'+== 22222(sin cos )t te t t =+, 22d d t y x π=.(3) 由 210x y e x xy +---=及0x =,得0y =,对方程 210x y e x xy +---= 两边取微分有(d d )2d (d d )0x y e x y x x y y x ++--+=, 将0x =,0y =代入,得 0d d x y x ==.二、求积分 (4)解66x x =⎰⎰6x =⎰ (令33sin x t -=)2227(1sin )cos cos d t t t t ππ-=+⎰22012754cos d 54222t t πππ==⋅⋅=⎰.(5)解 令x e t =,2arctan d xxe x e ⎰=3arctan d t t t ⎰211arctan d 2t t =-⎰ 2221arctan 1[d ]2(1)t t t t t =--+⎰ 2221arctan 11[d d ]21t t t t t t =--++⎰⎰ 21arctan 1[arctan ]2t t C t t=-+++ 21arctan [arctan ]2x x xxe e e C e-=-+++. (6)解t =,1+∞⎰202d 1t t +∞+⎰02arcta n t π+∞==. 三、求极限 (7) 解 3012cos lim[()1]3xx x x →+- 2cos ln()3301lim [1]x x x e x +→=- 注2cos ln()32cos [1ln(),(0)]3xx x e x x ++-→ 2012cos limln()3x xx →+= 201cos 1lim ln(1)3x x x →-=+ 注[cos 1cos 1ln(1),(0)33x x x --+→] 201cos 11lim ()36x x x →-==. (8) 解 11lim[]()()()()x af a x a f x f a →-'--()()()()lim ()()(()())x a f x f a f a x a f a x a f x f a →'---='-- =()()lim()(()())()()()x af x f a f a f x f a f a f x x a →''-'''-+-2()()()lim ()(()())2(())()()x a f x f a f a x a f a f x f a f a f a f x x a→''-''-=='-'''+-. (9)解 由 112[1)1))]nn n u n n n =+++(((1, 取11ln ln(1)n n i i u n n==+∑,则 11100011limln lim ln(1)ln(1)d ln(1)d 2ln 211n n n n i i x u x x x x x n n x →∞→∞==+=+=+-=-+∑⎰⎰,所以 2ln 214lim n n u e e-→∞==. 四、(10)解:因为262000arcsin d limlim (1)d xx x t t te tαβ→→=-⎰⎰注:由洛必达法则2222331arcsin 3lim 1x x x x xe -→⋅=- 注:221,(0)x e x x -→ 22320231arcsin 1lim33x x x x x →==⋅, 所以,αβ与是同阶但不等价无穷小,则选 A . (11)解:(A ) 因为11111()nn n n n n n aa a a ∞∞∞++===+=+∑∑∑11212n n n n n n a a a a ∞∞∞====+=+∑∑∑,而1nn a∞=∑收敛,所以11()n n n a a ∞+=+∑必收敛,(B )因为222222222221122311211()n n n n n n n a a a a a a a a a a a ∞++++=-=-+-++-+-=∑,所以2211()n n n a a ∞+=-∑必收敛.(C )因为2212345221111()n n n n n n n a a a a a a a a a a ∞∞++==+=+++++++=-∑∑所以2211()n n n a a ∞+=+∑必收敛,(D )221234522112()(1)n n n n n n n n a a a a a a a a a ∞∞++==-=-+-++-+=-∑∑未必收敛,例如 1(1)n n n ∞=-∑收敛, 但221(1)nn n n a n ∞∞==-=∑∑发散,则结论不正确的是D ,本题选D(12)解:由1,0,()()()d ,0,x x e x f x F x f t t x x -⎧≤==⎨>⎩⎰,则 11121,0,()11,02x t x x t e dt e e x F x e dt e x x ----⎧=-≤⎪=⎨⎪=-+>⎩⎰⎰,即 112,0,()11,02x e e x F x e x x --⎧-≤⎪=⎨-+>⎪⎩, 因为 12101lim ()lim(1)12x x F x e x e ++--→→=-+=-, 11lim ()lim()1x x x F x e e e ----→→=-=- 所以 ()F x 在0x =处连续.因为 2012(0)lim 0x x F x++∆→∆'==∆, 01(0)lim 1xx e F x-∆-∆→-'==∆,(0)(0)F F +-''≠所以,()F x 在0x =不可导,所以选C. (13)如图,在点(,0)b 处,左边0y ''>,右边0y ''<,而点(,0)b 处0y ''=,所以点(,0)b 为曲线的拐点; 同理,在点(0,)d 处,左边0y ''<,右边0y ''>,而点(0,)d 处0y ''=,所以点(0,)d 为曲线的拐点; 在点(,0)c 处,左边0y '<,右边0y '>,而点(,0)c 处0y '=,所以点x c =为函数的极小值点; 在点(,0)a 处,左边0y '>,右边0y '<,而点(,0)a 处0y '=,所以点x a =为函数的极大值点, 所以,曲线有二个拐点,一个极小值点,一个极大值点. 选(B )五、解:由22,1y ax y x ⎧=⎪⎨=-⎪⎩求得交点)1a A a +(如图), 直线OA 的方程y x =. (I) 旋转体体积 ()Va 2224()d 1a x a x x aπ=-+⎰=25/2215(1)a a π⋅+, (II )53222552(1)(1)d ()22d 15(1)a a a a V a a a π+-+=⋅+ 27/2(4)15(1)a a a π-=+.在0a >处有唯一驻点4a =,当04a <<时d ()0d V a a >, 当4a >时,d ()0d V a a<, 故4a =为唯一极大值点,为最大值点.六、(15)解:由21()arctan ln(1)2f x x x x =-+21()arctan ,(),1f x x f x x'''==+展开之,20()(1),(1,1)n n n f x x x ∞=''=-∈-∑,两边积分,得212100(1)(1)()(0),(1,1)2121n n n n n n f x f x x x n n ∞∞++==--''=+=∈-++∑∑,再次两边积分,得220(1)()(0)(21)(22)nn n f x f x n n ∞+=-=+++∑220(1),(1,1)(21)(22)nn n x x n n ∞+=-=∈-++∑. 右边级数在1x =±处收敛,左边函数在1x =±处连续,所以成立范围可扩大到闭区间[1,1]-. 七、(16)证法1:由2()(4)(2)2x x f x x e x e =---+2(0)0,()(1)(1),2xx x f f x e x e '==---(0)0f '=2221()()44x x x xx f x e xe xe e ''=-=-.而当0x >时2114x e >>,所以当0x >时()0f x ''<, 于是知,当0x >时,()0f x '<,从而知,当0x >时,()0f x <. 证法2:由证法一,有 2211()(0)(0)()()022f x f f x f x f x ξξ''''''=++=< 证法3:由2()(1)(1)2xx x f x e x e '=---()1()2x x xx e x ξ='⎡⎤=--⎣⎦()02xe ξξ=-<,所以()0f x <.注:设()(1)x g x x e =-,在[,]2xx 上的拉格郎日中值定理,有()2(1)(1)1(),222xx x x x x x e x e x e x x ξξ='⎡⎤---=--<<⎣⎦ .浙江大学2007-2008学年秋冬学期《微积分》课程期末考试试卷一、(每小题6分)(1)设4cos 1tan 5ln 2x x y x e x π=++,求d d y x .(2)设由参数式22ln(1)x t ty t t ⎧=+⎨=-+⎩,确定了y 为x 的函数()y y x =,求曲线()y y x =的凹、凸区间及拐点坐标(区间用x 表示,点用(,)x y 表示).(3)求210sin lim()x x x x→(4)求(2)]x x →+∞+二、(每小题6分) (5)求21d (1)x x x +⎰.(6)求arcsin d xxe x e⎰. (7)求230d x xe x +∞-⎰.三、(第(8)-(11)小题每小题8分,第(12)小题6分) (8)(8分) 设()y y x =是由32210y xy x x ++-+=及(1)0y =所确定,求131()d lim (1)x x y t tx →-⎰.(9)(8分)设2()231x f x x x =-+,试将()f x 展开成x的幂级数,并求()(0)(1)n f n ≥.(10)(8分) 设常数0a >,讨论曲线y ax =与2ln y x =在第一象限中公共点的个数. (11)(8分) 设0a <,曲线2y ax bx =+当01x ≤≤时0y ≥.又已知该抛物线与x 轴及直线1x =所围成的图形的面积13D =,试确定常数a 与b 使该图形绕x 轴旋转一周而成的旋转体体积V 最小.(12)(6分) 设()f x 在区间(0,1)内可导,且()f x M '≤(M 为常数)证明:① 级数1111(()())22n n n f f ∞+=-∑绝对收敛; ② 1lim ()2n n f →∞存在.四、选择题(四选一,每小题4分)(13)设()()(),()()()f x u x v x g x u x v x =+=-,并设0lim ()x u x →与0lim ()x v x →均不存在,则下列结论正确的是 [ ](A )若0lim ()x f x →不存在,则0lim ()x g x →必存在.(B )若0lim ()x f x →不存在,则0lim ()x g x →必不存在.(C )若0lim ()x f x →存在,则0lim ()x g x →必不存在.(D )若0lim ()x f x →存在,则0lim ()x g x →必存在.(14)曲线1ln(1)(1)x y e x x =++-的渐近线的条数 [ ](A )4条 (B )3条. (C )2条. (D )1条.(15)设2122()lim 1n n n x x xf x x -→∞++=+,则()f x 的不连续点的个数为 [ ] (A )0个 (B )1个. (C )2个. (D )多于2个. (16)设()f x [,]a b 上可导,且()0,()0,f a f b ''><下述结论不正确的是[ ] (A )至少存在一点0(,)x a b ∈使0()()f x f a >; (B )至少存在一点0(,)x a b ∈使0()()f x f b >; (C )至少存在一点0(,)x a b ∈使0()0f x '=;(D )至少存在一点0(,)x a b ∈使01()(()())2f x f a f b =+.(17)设0(1,2,)n a n >=,下列结论正确的是[ ](A )若存在0N >,当n N >时均有11n n a a +<,则1n n a ∞=∑必收敛. (B )若存在0N >,当n N >时均有11n n a a +>,则1n n a ∞=∑必发散. (C )若1n n a ∞=∑收敛.则必存在0N >,当n N >时必有11n na a +<, (D )若1n n a ∞=∑发散.则必存在0N >,当n N >时必有11n na a +>.浙江大学2007-2008学年秋冬学期《微积分》课程期末考试试卷答案一、(每小题6分)(1)24cos 4cos d 5cos sec 54(sin ln )d 2x x x x y xx e x e x x x x x =++-. (2)由22x t t =+,d 2(1)d x t t =+,ln(1)y t t =-+,d d 1y t t t =+,2d d 2(1)y tx t =+, 224d 1d 2(1)y tx t -=+,令 22d 0d y x =, 得 1t = 当11t -<<时,22d 0d yx> 曲线凹;当1t >时,22d 0d yx< 曲线凸,当1t =时,对应拐点.换成,x y ,当13x -<<时, 曲线()y y x =凹; 当3x >时, 曲线当()y y x =凸,点(3,1ln 2)-为拐点.(3)解 因为2211sin ln()00sin lim()lim xxx x x x x ex→→= ,而22001sin 1sin limln lim ln(11)x x x x x x x x→→=+-,201sin lim (1)x x x x →=- 注sin sin ln(11)1,(0)x xx x x+--→ 3200sin cos 11lim lim 36x x x x x x x →→--===-, 所以 21160s i n l i m ()x x xe x-→=.(4)lim (2))xx →+∞+2lim (1)]x x x→+∞=+222sin 2(1(1))limx x x ++-+=22sin 24()limx x x --=sin 42lim 1x x --==- .二、 (5)22111d ()d (1)(1)x x x x x x x -=-+++⎰⎰ =1ln ln 1x x C x--+++.(6) 方法1:令 arcsin x e t =,则cos sin ,ln sin ,d d sin x te t x t x t t===2arcsin cos d d sin x x e t tx t e t=⎰⎰1d()sin t t =-⎰ 1d sin sin t t t t =-+⎰ ln csc cot sin t t t C t =-+-+arcsin ln x x x e e e e C ---=-+-+,或写成arcsin ln 1x x e e x C -=--++.方法2:令 x e t =,则1ln ,d d ,(0)x t x t t t==>2arcsin arcsin 1d d arcsin d x xe t x t t e t t==-⎰⎰⎰arcsin t t =-+arcsin tt=-+arcsin 1ln t C t t =--++arcsin ln 1x x e e x C -=+-.(7)2232200011d d d 22x x tx ex x e x te t +∞+∞+∞---==⎰⎰⎰001[d ]2t t te e t +∞+∞--=-+⎰011[]22t e +∞-=-=.三、(8)解 由32210y xy x x ++-+=,1lim ()0x y x →=两边关于x 求导数,有23220y y xy y x ''+++-=,得222()3x yy x y x--'=+,1lim ()0x y x →'=, 222(3)(2)(22)(61)()(3)y x y x y yy y x y x ''+-----+''=+,1lim ()2x y x →''=-. 由洛必达法则,1321111()d ()()()1limlimlim lim (1)3(1)6(1)63x x x x x y t ty x y x y x x x x →→→→'''====----⎰. (9)解:()(21)(1)xf x x x =--1111121112x x x x-=-=+---- 0(2)nn n n x x ∞∞===-+∑∑1(21),2n n n x x ∞==-<∑ ()(0)(21)!,1n n f n n =-≥(10)解:令()2ln f x ax x =-,有2()f x a x'=-,令()0f x '=,得2x a=,22()f x x''=,由于()0f x ''>,所以22()22ln f a a=-为()f x 的唯一极小值,为最小值.以下讨论最小值的符号.①若222ln 0a->,即2a e >时,()0f x >,()f x 无零点,两曲线无公共点;②若2a e=,则当且仅当a e =时,()0f x =,()f x 有唯一零点,两曲线在第一象限中相切;③若20a e <<,有2()0f a<时,有因0lim ()x f x +→=+∞,lim ()x f x →+∞=+∞, 所以在区间2(0,)a 与2(,)a+∞内,()f x 各有至少一个零点,又因为在这两个区间中()f x 分别是严格单调的,所以()f x 正好有两个零点,即两曲线在第一象限中有且仅有两个交点. (11)解:因0a <,且当01x ≤≤时,0y ≥,所以如下图1211()d 323b ax bx x a +=+=⎰,所以312a b =-, 221220()d ()523a ab b V ax bx x ππ=+=++⎰21()51030b b π=-+,d 1()d 1015V b b π=-+,22d d 15V bb π=,令d 0d V b =,32b =,2232d 0d b V b=>,为唯一极小值,故32b V=为最小值,此时53,42a b =-=.(12)① 由拉格朗日中值定理 1111111111()()()()()()222222n n n n n n f f f f M ξξ++++''-=-=≤, 而1112n n ∞+=∑收敛,所以,1111[()()]22n n n f f ∞+=-∑绝对收敛;② 111()()22n n S f f +=-,因为lim n n S →∞存在,所以1lim ()2n n f →∞存在.四、 (13)解 (A )若0lim ()x f x →不存在,则0lim ()x g x →必存在.不正确,例如 211(),()u x v x x x ==, 221111(),()f x g x x x x x=+=-, 此时0lim ()x f x →不存在,0lim ()x g x →也不存在.(B )若0lim ()x f x →不存在,则0lim ()x g x →必不存在.不正确,例如 11(),()u x v x x x ==,2(),()0f x g x x==,此时0lim ()x f x →不存在,0lim ()0x g x →=存在.(C )若0lim ()x f x →存在,则0lim ()x g x →必不存在.假设0lim ()x g x →存在,由()()2()f x g x u x +=,得0lim ()x u x →存在,与已知矛盾,所以结论正确.(D )若0lim ()x f x →存在,则0lim ()x g x →必存在.由上述(C),说明0lim ()x g x →必存在不正确.所以结论正确的是C,本题选C. (14)解,因为11lim[ln(1)](1)x x e x x →++=∞-,1lim[ln(1)](1)x x e x x →++=∞-,有铅垂渐近线(0,1x x ==)2条,因为1lim[ln(1)]0(1)x x e x x →-∞++=-,有水平渐近线(0y =)1条,又因为 2()1l n (1)l i m l i m []1,1(1)xx x f x e a x x x x→+∞→-∞+=+==-,1lim[()]lim[ln(1)](1)x x x f x ax e x x x →+∞→+∞-=++--lim[ln (1)]lim[ln ln(1)]x x x x x x e e x e e x --→+∞→+∞=+-=++-lim ln(1)0x x e -→+∞=+=,有斜渐近线(y x =)1条,所以本题共有4条渐近线,选A.(15)解22122,1,3,1,2()lim 11,121,1,n n n x x x x x x x f x x x x x-→∞⎧+<⎪⎪=⎪++⎪==⎨+-=-⎪⎪⎪>⎪⎩, 则()f x 的不连续点(1,1x x =-=)的个数为2个所以选C. (16)解 取2()4,[1,1],1,1,()3,()3f x x x a b f a f b =-∈-=-===,当(1,1)x ∈-时()3f x >,()2,()2,()2f x x f a f b '''=-==-,满足题目条件:(A )至少存在一点0(,)x a b ∈使0()()f x f a >,成立, (B )至少存在一点0(,)x a b ∈使0()()f x f b >;成立, (C )至少存在一点0(,)x a b ∈使0()0f x '=;成立,(D )至少存在一点0(,)x a b ∈使01()(()())2f x f a f b =+.不成立. 所以本题选D(17)解 (A )不成立,例如11n n ∞=∑,满足当1n >时 111n n a n a n +=<+, 但11n n∞=∑发散, (B )成立,若存在0N >,当n N >时均有111,n n n na a a a ++>>, 则必有lim 0n n a →∞≠ 则1n n a ∞=∑必发散.(C )不成立, 例如 21(1)2n n n ∞=-+∑收敛,但不存在0N >,当n N >时必有11n n a a +<, (D )不成立,例如 11n n ∞=∑发散,但则存在0N >,当n N >时有111n na n a n +=<+.浙江大学2008-2009学年秋冬学期《微积分》课程期末考试试卷一、求导数或微分(每小题6分)(1)设sin 3(cos )(arcsin 2)x y x x e π=++,求d y .(2)设由参数式3arctan 16x t t y t t=++⎧⎨=+⎩,所确定的函数()y y x =在1t =-处的一阶导数d d yx , 及二阶导数22d d yx.二、求极限(每小题6分)(3)011lim()1x x x e →--, (4)lim x(5)21lim(sin cos )x x x x x →+.三、求积分(每小题6分)(6) 221ln d (1)x x x x x x -+-⎰, (7)11(2)x x x -+⎰, (8)已知2d 2x ex +∞-=⎰,求0xx -+∞⎰.四、(每小题6分)(9)试将函数12()arctan 12xf x x-=+展开成x 的幂级数,并写出此展开式成立的开区间. (10)求幂级数1!nnn n x n∞=∑的收敛半径及收敛区间,并讨论收敛区间端点处级数的敛散性. 五、(每小题8分)(11) 求由方程3222220y y xy y x -++-=确定的函数()y y x =的极值,并问此极值是极大值还是极小值,说明理由.(12)求由曲线2y x =与2y x =+围成的图形绕水平线4y =旋转一周所生成的旋转体体积V .(13)设()f x 在[0,1]上连续,(0)0f =,并设()f x 在0x =处存在右导数(0)1f +'=,又设0x +→时,220()()d ()d x x F x x f u u u u =-⎰⎰与n Ax 为等价无穷小,求常数n 及A 的值.六、(每小题8分)(14)设()f x 在闭区间[,]a b 上连续,(,)a b 内可导, (I)叙述并证明拉格朗日中值定理;(II )如果再设()()f a f b =,且()f x 不是常数,试证明至少存在一点(,)a b ξ∈,使()0f ξ'>.(15)设n 为正整数,24021()d d 1nx x e t F x e t t t -=++⎰⎰(I )试证明:函数()F x 有且仅有一个(实)零点(即()0F x =有且仅有一个实根),并且是正的,记此零点n x ;(II )试证明级数21n n x ∞=∑收敛.浙江大学2008-2009学年秋冬学期《微积分》课程期末考试试卷答案一、求导数或微分(每小题6分)(1)sin 2d [(cos )(cos ln cos tan sin )6(arcsin 2)x y x x x x x x x =-+.(2)222d 2d ,3(2)d 1d x t y t t t t +==++,21d d 3(1),6d d t y y t x x =-=+=222222d d()d 66(1)d 2d d 21yy t t t x t x x t t +===+++, 221d 4d t y x =-=-.二、求极限(每小题6分)(3)00111lim()lim 1(1)x x x x x e xx e x e →→---=-- 注1,0x e x x -→ 201lim x x e xx →--= 011lim 22x x e x →-==. (4)limlim x x =lim2x ==-.(5)21201ln(sin cos )lim(sin cos )lim xx x x x x x x x x e →→++=,而22001ln(1sin cos 1)limln(sin cos )lim x x x x x x x x x x→→++-+= 20sin cos 11lim 2x x x x x →+-==, 注:ln(1sin cos 1)sin cos 1,0x x x x x x x ++-+-→所以,21lim(sin cos )x x x x x →+=三、求积分(6) 222111ln d ()ln d (1)(1)x x x x x x x x x x -+=+--⎰⎰ 1ln d ln ln d()1x x x x =--⎰⎰ 21ln 1ln d 21(1)x x x x x x =-+--⎰ 21ln 11ln ()d 211x x x x x x =-+---⎰ 21ln ln ln 1ln 21x x x x C x =-+--+-. (7)112211(2)(24x x x x x x x x --+=++⎰⎰110x x =⎰ 令sin x t =22210sin cos d t t t π=⎰222010sin (1sin )d x x x π=-⎰131510()224228πππ=⋅-⋅⋅=.(8)2(1xxx e -+∞+∞-=--⎰⎰0]xx -+∞=--⎰2024d xu u e u -+∞+∞-==⎰⎰四、(9)12()arctan12xf x x -=+, 221(12)(2)(12)2()12(12)1()12x x f x x x x +---'=-+++ 22422814x x -==-++ 21212012(4)(1)2,2n n n n n x x x ∞∞++===--=--<∑∑, 12120()(0)(1)2d x n n n n f x f x x ∞++==+-∑⎰12121011(1)2,4212n n n n x x n π∞+++==+-<+∑.(10)记!n nn a n =,由11(1)!11(1)limlim lim lim !1(1)(1)n n n n n n n n n nnn a n n n a n en n++→∞→∞→∞→∞++====++. 所以,收敛半径R e =,收敛区间为(,)e e -,在x e =±处,级数成为1!()nnn n e n∞=±∑, 考察!n n n n u e n =,有111(1)n n n u eu n+=>+, 所以lim 0n n u →∞≠,并且也有lim(1)0n n n u →∞-≠,所以在x e =±处,该级数都发散.(11)由3222220y y xy y x -++-=, 求导有2(6421)220y y x y y x '-+++-=,令0y '=,得y x =与3222220y y xy y x -++-=联立,有3222(21)0x x x x x x -+=-+=,解之得唯一解0x =.相应地有0y =, 此时的确可由2(6421)220y y x y y x '-+++-=解出y ',故0x =为驻点. 再有 222()6421x yy y y x -'''=-++ 2222(6421)(22)2()(6421)(6421)y y x y x y y y x y y x ''-++----++=-++. 以0x y ==,及0y '=代入,得20y ''=>,故当0x =时, y 为极小值,极小值0y =.(12)由2,2y x y x ⎧=⎨=+⎩得交点(1,1),(2,4)-,则由上图22221[(4)(4(2)]d V x x x π-=---+⎰2241(1249)d x x x x π-=+-+⎰235211108[1223]55x x x x ππ-=+-+=.(13)220000()d ()d ()lim lim x x n nx x x f u u u uF x Ax Ax++→→-=⎰⎰22201()2()d ()2lim x n x xf x x f u u x x Anx+-→+=⎰2201200()()2limlim (1)x n n x x f u duf x xAnx An n x++--→→==-⎰ 2302()lim (1)n x f x An n x +-→=-25202()(0)lim (1)n x f x f An n x x+-→-=- 按题意, 0()lim 1n x F x Ax +→=,又220()(0)lim (0)1x f x f f x++→-'==, 若5n >则25202()(0)lim (1)n x f x f An n x x+-→--为∞, 若5n <则25202()(0)lim 0(1)n x f x f An n x x +-→-=-为,均与题意不符,故 5n =,于是25202()(0)1lim (1)10n x f x f An n x x A +-→-=-⨯,所以110A =. (14)(I)略,(II)设存在0(,)x x a b =∈,使0()0,f x >在区间0[,]a x 上用拉格郎日中值定理,存在0(,)(,)a x a b ξ∈⊂使得00()()()0f x f a f x aξ-'=>-, 如果存在0(,)x a b ∈,使0()0,f x <在区间0[,]x b 上用拉格郎日中值定理类似可证. (15) (I) 24021()d d 1nx xe t F x e t t t -=++⎰⎰,2014021(0)d d 01t F e t t t -=+<+⎰⎰, 2140211()d d 01e tn F e t t nt -=+>+⎰⎰,24()01nxx nx ne F x ee -'=+>+,故知存在唯一的n x 使 1()0,0n n F x x n =<<.(II) 因为 221nx n <,211n n∞=∑收敛, 故21nn x∞=∑收敛.。

微积分(下)习题解答(第七章)

微积分(下)习题解答(第七章)

微积分(下)习题解答(第七章)综合练习71.填空题:(1)令un1(某)某n某2n22nu(某)2n22n21时级数收敛,,则limn1,故某某nu(某)n1时级数发散,故所求收敛半径为1.111n(2)因为,利用d某C某,某1,可得23某1某(3某)n011某n某d某CC,1,从而,n1(3某)23某33n01n某n1n1,某(3,3).2(3某)n13(3)因为级数(an1an)收敛,故其部分和数列Snan1a1极限存在,所n1以极限liman存在.n(4)an收敛,且an0,故由级数收敛的必要条件知,liman0,从而,n1n11lim,故级数必发散.nan1ann(5)an(某1)n12n=an[(某1)]在某2条件收敛,故an收敛,an发2nn1n1n1散,即anyn的收敛半径为R1,由(某1)21,解得0某2,且在n1某0,某2时级数an(某1)2n收敛,故所求收敛域为[0,2].n1(6)令un1(某)102n(2某3)2n1,则limun1(某)102(2某3)2,故nu(某)n102(2某3)21时级数收敛,102(2某3)21时级数发散,所求收敛域为:3131(,).220220(7)limun1(某)an1313lim某2某1,故所求收敛半径为3.nu(某)na2nnn1nnn1n某n11(8)某某某某某n某e某e某1,n1n!n1n!n1n!n1(n1)!n1n!某(,).1n1(9)某的收敛域为[1,1),n某n的收敛域为(2,2),且容易计算幂n2nlnnn22级数(n211n)某n的收敛半径为1,故由幂级数收敛域的性质知,nlnn2(n211n)某n的收敛域为[1,1).nlnn21n(10)由已知limnp(e1)an1,有limn(e1)ane11,从而1,又limnn111p1()nnn1n1nanlim1,由条件an收敛,利用正项级数的比较判别法,知p的取n1p1n1()n值范围是p2.f(3)(0)2.某的系数是(11)令f(某)in某co某,将之展开成某的幂级数时,3!33(1)n某2n(1)n(12)因为co某,某(,),令某1,从而有co1.(2n)!n0n0(2n)!2.选择题:(1)对于un(1),易知(u2n1u2n)=0收敛,但是un(1)n发散,nn1n1n1且lim(1)0,故(A)(C)均不正确,又对任意一个收敛级数un,nnn1均有加括号的新级数(u2n1u2n)收敛,故(D)不对,因此,正确答案n1为(B).00)1000,lim(2)若un收敛,则limun0,而lim(un1n1nn100故(B)0,nunu1(D)错误.令un2,则un收敛,但是n1发散,故(A)也是错误nn1n1un的,因此,正确选项为(C),100+un仅仅是收敛级数前添加一项,对级n1数的收敛性没有影响.(3)(A)选项是典型的莱布尼茨型交错级数,且是条件收敛的.(B)(D)选项是绝对收敛级数.(C)是发散级数,因为级数的一般项不趋于0.故选择(A).(4)(1)(1co)(1)2in,而级数2in2是收敛的(利用n2n2nn1n1n1nn21正项级数的比较判别法:与2比较即可),故(1)n(1co)是绝对收nn1n1n敛的,所以选择(C).(5)若级数an(某2)在某2处收敛,则由阿贝尔定理,知an(某2)n 在nn1n1故选项(D)正确,且an(某2)n的收敛半径R4,某24处绝对收敛,n1故选项(B)也正确.若级数an(某2)n在某2处条件收敛,则该级数n1的收敛半径为4(因为若收敛半径大于4,由阿贝尔定理可得an(某2)n在n1某2处绝对收敛,则为矛盾),故选项(A)也正确.若级数an(某2)nn1在某2处条件收敛,即级数an1n(某2)n在某2处发散,故有an1n(22)4an发散,从而an(某2)n在某6处敛散性不确定,nnn1n1故选项(C)说法错误.综上,本题答案选择(C).in某2nnd某in某d某1co2in(6)因为0,又2in2收敛,01某0n2n2nn1所以利用正项级数的比较判别法知,n1n0in某d某是绝对收敛的,故选择1某(C).(7)因为011212收敛,利用收(an2),又an以及22nn1nn1n2an敛级数的性质及正项级数的比较判别法,知(1)nn1ann2是绝对收敛的,故选择(C).inn(1)ninn(1)n(8)易知级数与均收敛,故级数(2)收敛.另2nnnnn1n1n1inn11inn(1)n111一方面,2,而级数()0222nnnnnnnnn1inn(1)n是发散的(利用收敛级数的性质),故(2)是条件收敛的,nnn1所以选择(B).(9)an条件收敛,故有liman0,从而M0,使得anM,nN.又n1n所以利用正项级数的比较判别法及收敛级数anbnMbn且bn绝对收敛,n1的性质,知anbn是绝对收敛的,故选择(C).n1un1un12(1)n1(10)对于2,lim故选项(A)(C)错误.对于,1,lim2nnununnn1nn1不存在(分奇偶子列讨论),故选项(B)错误.只有选项(B)正确.(11)若级数un与vn都发散,则(unvn)必发散.若不然,因为n1n1n10un,vnunvn,由比较判别法,得到un与vn都绝对收敛,此n1n1为矛盾,故选择(C).(12)若幂级数an(某1)在某1处条件收敛,由Abel定理,知an(某1)nnn1n1的收敛半径为R2,故an(某1)n在(1,3)中的每一点绝对收敛,从而n1级数an绝对收敛,正确答案为(C).n1(13)对于(1)nlnn1n11,令un,则un0且单调减少趋于零,但因为nn11lim(1)ln0,故(1)nln发散,因此(A)错误.对于交错级数nnnn111111n=,虽然满足且(1)u(1)un收敛,但u0nn22323232n1n1n是{un}非单调减少数列,即莱布尼兹判别法仅是交错级数收敛的充分条件而11非必要条件,因此(B)错误.对于(1ln),令un,则un0且单nnn111调减少趋于零,但是级数(1ln)发散(可以利用比较判别法:与比nn1n1n较),故(D)错误.利用结论:若级数an绝对收敛,则级数an必收2n1n1敛,可知选项(C)正确.(14)对于选项(A),用反证法,设(1)un前n项部分和为Sn,假设u2nnn1n1与u2n1均收敛,则加括号后的新级数(u2n1u2n)也收敛,从而其前n 项n1n1部分和nS2nS(n),又u2n10,故S2n1S2nu2n1S。

浙大微分几何习题

浙大微分几何习题

量也是 N 即可, 其中 λ = const..
Hale Waihona Puke (2) 如果曲线 C : x = x(s) 和 C∗ : x∗ = x∗(s∗) 是 Bertrand 曲线, 它们的弧长
参数分别为
s 和 s∗.
则由第 7 题可知, cos θ
=
(1

λk)
ds d s∗
,
sin θ
=
λτ
ds d s∗
,

中 θ = const., λ 为非零常数. 令 µ = λ cot θ, 则 λk + µτ = 1.
k2N2
d s2 ds
=
±(−kT + τB).
(1.16)
因此 τ = 0. 反之, 如果 τ = 0, 由 (1.12) 可知 T ∥ N2. 所以 x2 − x1 = (C2 − C1)N2.
11. 设 C : x(s) 是弧长参数曲线, 它的 Frenet 标架为 {T(s), N(s), B(s)}. 以下曲 线
T′ N′ B′
= = =
−kT
kN −ckN
+ckB
引入参数
t(s)
=
∫s
0
k(σ)dσ 后, 上述方程组化为
dT
dt
=
dN
dt
=
dB
dt
=
−T
N −cN
+cB
(1.8)
3
于是有
d2N
dt2
=
−N − c2N =
−ω2N, 其中 ω =
√ 1 + c2.
于是有
N = cos ωta + sin ωtb,

微积分第七章习题答案

微积分第七章习题答案

第七章习题答案习题7.11. A 在第一卦限 ,B 在第五卦限,C 在第三卦限,D 在y轴负向,E 在xoy 面上2. 证明:2227,7,AB AC BC AB AC BC ===+=是直角三解形。

习题7.21. (2,0,0)A =2. 直线3.(1) 222222134y 134x y z x z y ++=++=绕x 轴 绕轴 (2)222222()1y 1x y z x y z -+=+-=绕x 轴 绕轴4.椭球面5. 222216y 216y z x z -=+=平行于x 轴 3绕轴 3习题7.31.(1)()2222,1x y x y a b ⎧⎫+≤⎨⎬⎩⎭(2 ) (){},,1x y x y x y >-≠且2. (1)(2,3)13f -= (2 ) 3212124(,)f x y x xy y =-+ 习题7.4(1)否(2 ) 否2.(1)0 (2)1 (3)2 (4)03. 不连续习题7.5 1.12222222212(1)(1);ln(1)(1)sec sec 1(2);tan tan 1(3);1(4)ln ;;ln y yz z z x x x z z y x x x x yy y z y z x x y y x x y xx xz y z x x x y y x y x u y u z u y y y y y x x y x z x --∂∂=+=++∂∂∂∂=-=∂∂∂-∂==∂+∂+∂∂∂=-==∂∂∂2. (0,1)1,(0,1)2x y f f ''=-=3. 1128111;1arcsin 2x x y y z z x y ====∂∂==+∂∂4.略5. (1,1,1)df dx dy =-6.(1) (1,1,1)du dx dz =-(2)3132222222222()[()()]dz xy x y dx x y y x y dy ---=-+++-+习题7.6 1. 22cos 33123222(1)(62sin )23(2)sec (3)(34)2t t e t t t t t t t +--++-+2. 22222222arctan 2222arctan (1)(sin 2sin )cos (cos sin 2)sin (sin 2sin )(sin )(cos sin 2)cos (2)arctan arctan y y x x y z uv v u v v u v uv v v uz uv v u v u v u v uv v u v v z y x y e x x x y x y z y e y x ∂=-+-∂∂=--+-∂∂=-∂++∂=∂2222y x x y x x y x y +++3. 1122221112323311(1);();()(2)2;2(3);;u u x u y f f f f x y y y z z zz z f x f y x yu u u f f y f yz f x f xz f xy x y z ∂∂∂''''==-+=-∂∂∂∂∂''==∂∂∂∂∂''''''=++=+=∂∂∂ 4. 2;z z x y x x y∂∂=+=∂∂代入,可证。

专升本微积分第七章

专升本微积分第七章

1.对于级数,下列说法正确的是( ).A.发散B.收敛于C.收敛于D.敛散性不确定你的答案:发散正确答案:发散解题思路:因为,所以级数发散. 本题题号:470022.对于级数,下列说法正确的是( ).A.收敛于B.发散C.敛散性不确定D.收敛于你的答案:发散正确答案:发散解题思路:因为,所以级数发散. 本题题号:470033.对于级数,下列说法正确的是( ).A.收敛于B.发散C.敛散性不确定D.收敛于你的答案:发散正确答案:发散解题思路:因为,所以级数发散.本题题号:470044.对于级数,下列说法正确的是( ).A.收敛于B.敛散性不确定C.收敛于D.发散你的答案:发散正确答案:发散解题思路:因为,所以级数发散.5.对于级数,下列说法正确的是( ).A.收敛于B.敛散性不确定C.收敛于D.发散你的答案:发散正确答案:发散解题思路:因为,所以级数发散.. 本题题号:470066.对于级数,下列说法正确的是( ).A.发散B.收敛于C.收敛于D.敛散性不确定你的答案:发散正确答案:发散解题思路:因为,所以级数发散..7.对于级数,下列说法正确的是( ).A.发散B.敛散性不确定C.收敛于D.收敛于你的答案:发散正确答案:发散解题思路:因为,所以级数发散. 本题题号:470088.对于级数,下列说法正确的是( ).A.收敛于B.收敛于C.发散D.敛散性不确定你的答案:发散正确答案:发散解题思路:因为,所以级数发散.9.对于级数,下列说法正确的是( ).A.敛散性不确定B.收敛于C.发散D.收敛于你的答案:发散正确答案:发散解题思路:因为,所以级数发散. 本题题号:4701010.对于级数,下列说法正确的是( ).A.发散B.收敛于C.敛散性不确定D.收敛于你的答案:发散正确答案:发散11.对于级数,下列说法正确的是( ).A.敛散性不确定B.收敛于C.发散D.收敛于你的答案:发散正确答案:发散解题思路:因为,所以级数发散. 本题题号:4701212.对于级数,下列说法正确的是( ).A.收敛于B.发散C.收敛于D.敛散性不确定你的答案:发散正确答案:发散13.对于级数,下列说法正确的是( ).A.发散B.收敛于C.敛散性不确定D.收敛于你的答案:发散正确答案:发散解题思路:因为,所以级数发散. 本题题号:4701414.对于级数,下列说法正确的是( ).A.收敛于B.收敛于C.敛散性不确定D.发散你的答案:发散正确答案:发散15.对于级数,下列说法正确的是( ).A.发散B.收敛于C.敛散性不确定D.收敛于你的答案:发散正确答案:发散解题思路:因为,所以级数发散. 本题题号:4701616.对于级数,下列说法正确的是( ).A.敛散性不确定B.发散C.收敛于D.收敛于你的答案:发散正确答案:发散解题思路:因为,所以级数发散.本题题号:4701717.对于级数,下列说法正确的是( ).A.敛散性不确定B.收敛于C.发散D.收敛于你的答案:发散正确答案:发散解题思路:因为级数发散,级数收敛,所以级数发散. 或者因为,所以发散.本题题号:4701818.对于级数,下列说法正确的是( ).A.收敛于B.敛散性不确定C.发散你的答案:发散正确答案:发散解题思路:因为级数发散,级数收敛,所以级数发散.本题题号:4701919.对于级数,下列说法正确的是( ).A.收敛于B.收敛于C.发散D.敛散性不确定你的答案:发散正确答案:发散解题思路:因为,所以级数发散. 本题题号:4702020.若收敛,则( ).A.B.趋于无穷大D.你的答案:正确答案:趋于无穷大解题思路:因为收敛,所以,从而,所以.本题题号:4702121.若收敛,则( ).A.B.C.D.趋于无穷你的答案:正确答案:解题思路:因为收敛,所以,从而,所以.本题题号:4702222.若收敛,且和为,则( ).A.收敛于B.敛散性不确定C.发散D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散. 本题题号:4702323.若收敛,且和为,则( ).A.发散B.收敛于C.敛散性不确定D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4702424.若收敛,且和为,则( ).A.收敛于B.发散C.收敛于D.敛散性不确定你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4702525.若收敛,且和为,则( ).A.敛散性不确定B.收敛于C.发散D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4702626.若收敛,且和为,则( ).A.收敛于B.发散C.敛散性不确定D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4702727.若收敛,且和为,则( ).A.敛散性不确定B.收敛于C.发散D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4702828.若收敛,且和为,则( ).A.发散B.收敛于C.收敛于D.敛散性不确定你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4702929.若收敛,且和为,则( ).A.发散B.收敛于C.收敛于D.敛散性不确定你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4703030.若收敛,且和为,则( ).A.敛散性不确定B.收敛于C.收敛于D.发散你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4703231.若收敛,且和为,则( ).A.收敛于B.收敛于C.发散D.敛散性不确定你的答案:收敛于正确答案:收敛于解题思路:因为,从而. 本题题号:4703332.若收敛,且和为,则( ).A.收敛于B.发散C.收敛于D.敛散性不确定你的答案:收敛于正确答案:收敛于解题思路:因为,从而.本题题号:4703433.若收敛,且和为,则( ).A.收敛于B.敛散性不确定C.收敛于D.发散你的答案:收敛于正确答案:收敛于解题思路:因为,从而. 本题题号:4703534.若收敛,且和为,则( ).A.收敛于B.收敛于C.发散D.敛散性不确定你的答案:收敛于正确答案:收敛于解题思路:因为,从而.本题题号:4703635.若收敛,且和为,则( ).A.发散B.敛散性不确定C.收敛于D.收敛于你的答案:收敛于正确答案:收敛于解题思路:因为,从而.本题题号:4703736.若收敛,且和为,则( ).A.收敛于B.敛散性不确定C.收敛于D.发散你的答案:收敛于正确答案:收敛于解题思路:因为,从而. 本题题号:4703837.若收敛,且和为,则( ).A.收敛于B.收敛于C.敛散性不确定D.发散你的答案:收敛于正确答案:收敛于解题思路:因为,从而. 本题题号:4703938.若收敛,且和为,则( ).A.发散B.敛散性不确定C.收敛于D.收敛于你的答案:收敛于正确答案:收敛于解题思路:因为,从而.本题题号:4704039.若收敛,且和为,则( ).A.收敛于B.敛散性不确定C.收敛于D.发散你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散. 本题题号:4704140.若收敛,且和为,则( ).A.收敛于B.发散C.收敛于D.敛散性不确定你的答案:收敛于正确答案:发散解题思路:因为收敛,则,所以,从而,因此发散.1.若收敛,且和为,则( ).A.收敛于B.收敛于C.敛散性不确定D.发散你的答案:收敛于正确答案:发散解题思路:因为收敛,则,所以,从而,因此发散.本题题号:470432.若收敛,且和为,则( ).A.敛散性不确定B.收敛于C.发散D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,则,所以,从而,因此发散.本题题号:470443.若收敛,且和为,则( ).A.发散B.收敛于C.敛散性不确定D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,则,所以,从而,因此发散.本题题号:470454.若收敛,且和为,则( ).A.收敛于B.敛散性不确定C.发散D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,则,所以,从而,因此发散.本题题号:470465.若收敛,且和为,则( ).A.收敛于B.发散C.收敛于D.敛散性不确定你的答案:收敛于正确答案:发散解题思路:因为收敛,则,所以,从而,因此发散.本题题号:470476.若收敛,且和为,则( ).A.发散B.收敛于C.收敛于D.敛散性不确定你的答案:收敛于正确答案:发散解题思路:因为收敛,则,所以,从而,因此发散.本题题号:470487.若收敛,且和为,则( ).A.收敛于B.敛散性不确定C.收敛于D.发散你的答案:敛散性不确定正确答案:发散解题思路:因为收敛,则,所以,从而,因此发散.本题题号:470498.若收敛,且和为,则( ).A.敛散性不确定B.收敛于C.发散D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,则,所以,从而,因此发散.本题题号:470509.若收敛,且和为,则( ).A.收敛于B.收敛于C.D.发散你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4705110.若收敛,且和为,则( ).A.发散B.收敛于C.敛散性不确定D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4705211.若收敛,且和为,则( ).A.敛散性不确定B.发散C.收敛于D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4705312.若收敛,且和为,则( ).A.收敛于B.发散C.敛散性不确定D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4705413.若收敛,且和为,则( ).A.敛散性不确定B.收敛于C.收敛于D.发散你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4705514.若收敛,且和为,则( ).A.收敛于B.敛散性不确定C.发散D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4705615.若收敛,且和为,则( ).A.敛散性不确定B.收敛于C.发散D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4705716.若收敛,且和为,则( ).A.发散B.收敛于C.收敛于D.敛散性不确定你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散. 本题题号:4705817.若收敛,且和为,则( ).A.收敛于B.发散C.敛散性不确定D.收敛于你的答案:收敛于正确答案:发散解题思路:因为收敛,所以,从而,因此发散.本题题号:4705918.对于级数,下列说法正确的是().A.发散,并且一般项趋于B.不确定C.收敛D.发散,并且一般项不趋于你的答案:发散,并且一般项不趋于正确答案:发散,并且一般项不趋于解题思路:因为,所以级数发散. 本题题号:4706019.对于级数,下列说法正确的是( ).A.收敛B.敛散性不确定C.发散,并且一般项趋于D.发散,并且一般项不趋于你的答案:发散,并且一般项趋于正确答案:发散,并且一般项不趋于解题思路:因为,所以级数发散. 本题题号:4706120.对于级数,下列说法正确的是( ).A.发散,并且一般项趋于B.敛散性不确定C.发散,并且一般项不趋于D.收敛你的答案:发散,并且一般项不趋于正确答案:发散,并且一般项不趋于解题思路:因为,所以级数发散. 本题题号:4706221.对于级数,下列说法正确的是( ).A.敛散性不确定B.发散,并且一般项不趋于C.发散,并且一般项趋于D.收敛你的答案:发散,并且一般项不趋于正确答案:发散,并且一般项不趋于解题思路:因为,所以级数发散. 本题题号:4706322.对于级数,下列说法正确的是( ).A.发散,并且一般项不趋于B.收敛C.发散,并且一般项趋于D.不确定你的答案:发散,并且一般项不趋于正确答案:发散,并且一般项不趋于解题思路:因为,所以级数发散.本题题号:4706423.对于级数,下列说法正确的是( ).A.发散,并且一般项趋于B.收敛C.发散,并且一般项不趋于D.不确定你的答案:发散,并且一般项不趋于正确答案:发散,并且一般项不趋于解题思路:因为,所以级数发散. 本题题号:4706524.级数的一般项为( ).A.B.C.D.你的答案:正确答案:解题思路:由符号规律知,各项的分子与项数相同,分母比项数大. 本题题号:4706625.级数的一般项为( ).A.B.C.D.你的答案:正确答案:解题思路:由符号规律知是交错级数,各项的分子与项数相同,分母比项数大. 本题题号:4706726.级数的一般项为( ).A.B.C.D.你的答案:正确答案:解题思路:由符号规律知是交错级数,各项的分子与项数相同,分母比项数大. 本题题号:4706827.级数的一般项为( ).A.B.C.D.你的答案:正确答案:解题思路:由符号规律知,各项的分母与项数相同,分子比项数大. 本题题号:4706928.级数的一般项为( ).A.B.C.D.你的答案:正确答案:解题思路:由符号规律知是交错级数,各项的分母与项数相同,分子比项数大. 本题题号:4707029.级数的一般项为( ).A.B.C.D.你的答案:正确答案:解题思路:由符号规律知是交错级数,各项的分母与项数相同,分子比项数大. 本题题号:4707130.级数的一般项为( ).A.B.C.D.你的答案:正确答案:解题思路:由符号规律知,各项的分母为偶数,分子为奇数,且分子比分母小.本题题号:4707231.级数的一般项为( ).A.B.C.D.你的答案:正确答案:解题思路:由符号规律知是交错级数,各项的分母为偶数,分子为奇数,且分子比分母小.本题题号:4707332.级数的一般项为( ).A.B.C.D.你的答案:正确答案:解题思路:由符号规律知是交错级数,各项的分母为偶数,分子为奇数,且分子比分母小. 本题题号:4707433.级数的前两项和为( ).A.B.C.D.你的答案:正确答案:解题思路:.本题题号:4707534.级数的前三项和为( ).A.B.C.D.你的答案:正确答案:解题思路:.本题题号:4707635.级数的一般项为( ). A.B.C.D.你的答案:正确答案:解题思路:由符号规律可知,.本题题号:4707736.级数的前三项和为( ).A.B.C.D.你的答案:正确答案:解题思路:. 本题题号:4707837.级数的前两项和为( ).A.B.C.D.你的答案:正确答案:解题思路:.本题题号:4707938.已知,则( ).A.B.C.D.你的答案:正确答案:解题思路:由级数的部分和与一般项的关系可知,. 本题题号:4708039.已知,则( ).A.B.C.D.你的答案:正确答案:解题思路:由级数的部分和与一般项的关系可知,;.本题题号:4708140.已知,则( ).A.B.C.D.你的答案:正确答案:解题思路:由级数的部分和与一般项的关系可知,;当时,,所以().1.已知,则( ).A.B.C.D.你的答案:正确答案:解题思路:由级数的部分和与一般项的关系可知,.本题题号:470832.已知,则( ).A.B.C.D.你的答案:正确答案:解题思路:由级数的部分和与一般项的关系可知,;.本题题号:470843.已知,则( ).A.B.C.D.你的答案:正确答案:解题思路:由级数的部分和与一般项的关系可知,;当时,,所以().本题题号:470884.设,则( ).A.收敛于B.发散C.收敛于D.收敛于你的答案:收敛于正确答案:收敛于解题思路:的首项是,第二项是,依次递推,.本题题号:47089。

大学微积分第七章习题答案

大学微积分第七章习题答案

习题七(A )1.求下列函数的定义域,并画出定义域的图形: (1)y x z -=; (2)2arcsinyx z =;(3)221)ln(yx x x y z --+-=;(4)2222221ry x y x R z -++--=)0(R r <<.解 (1) {}y x y y x ≥≥,0),(;(2) {}22,0),(yx y y y x ≤≤-≠;(3){}1,),(22<+>y x x y y x ;(4){}2222),(R y x r y x ≤+<.2.设22),(y x xy y x f -=+,求),(y x f .解 设⎪⎩⎪⎨⎧==+vxy u y x ,解得⎪⎩⎪⎨⎧+=+=v uv y v u x 11,代入得 =),(v u f 22),(y x xy y x f -=+vv u vuv vu +-=+-+=1)1()1()1(222,即=),(y x f yy x +-1)1(2.3.设)(y x f y x z -++=,且当0=y 时,2x z =.求函数f 和z 的表达式. 解 由题意知,2)()(x x f x y x f y x z =+=-++=,整理得x x x f -=2)(. 又)()()(2y x y x y x f ---=-,代入得2)(2)(y x y y x f y x z -+=-++=.4.若函数),(y x f z =恒满足),(),(y x f t ty tx f k=,则称该函数为k 次齐次函数.证明下列函数为齐次函数,并说明是几次齐次函数: (1)2243),(y x x y x f +=; (2)yx y x f -=1),(;(3)xy ex y x f -=3),(; (4)xy x x y x y x f +--+=2222ln),(.解 (1)因),()()(3)(),(4224y x f t ty tx tx ty tx f =+=,所以是4次齐次函数. (2)因),(1),(1y x f ttytx ty tx f -=-=,所以是1-次齐次函数.(3)因),()(),(33y x f t e tx ty tx f txty ==-,所以是3次齐次函数. (4)因),()()()()(ln),(2222y x f txty tx tx ty tx ty tx f =+--+=,所以是0次齐次函数.5.求下列函数在给定点处的偏导数: (1)2222)(yx y x xy z +-=,求)1,1(xz ',)1,1(y z '; (2)22yx e z +=,求)1,0(xz ',)0,1(y z '; (3)322y x z +=,求)1,1(xz ',)2,1(y z '; (4))2ln(xy x z +=,求)0,1(xz ',)0,1(y z '. 解 (1)222222222)()(2)](2)([y x y x xxy y x x xy y x y z x+--++-='2222244)(]4[y x y x y x y ++-=,222222222)()(2)](2)([y x y x yxy y x y xy y x x z y +--+--='2222244)(]4[y x y x y x x +--=,则1)1,1(='xz ,1)1,1(-='y z . (2)222yxxxe z +=' , 222yxy ye z +=',则0)1,0(='xz ,0)0,1(='y z . (3)3222)(32-+='y x x z x, 3222)(32-+='y x y z y ,则32)1,1(3='xz ,1554)2,1(3='y z .(4))21(212xy xy x z x-+=', xxy x z y 2121⋅+=',则1)0,1(='xz ,21)0,1(='y z .6.函数).0,0(),(),0,0(),(,0,1sin )(),(2222=≠⎪⎩⎪⎨⎧++=y x y x yx y x y x f 求)0,0(x f ',)0,0(y f '.解 0)(1sin)(lim)0,0()0,(lim)0,0(22=∆∆∆=∆-∆='→∆→∆xx x xf x f f x x x ,0)(1sin)(lim)0,0(),0(lim)0,0(22=∆∆∆=∆-∆='→∆→∆yy y yf y f f x y y .7.求下列函数的一阶偏导数: (1)5ln 1332+-=xyz ; (2)xyy x z -+=1arctan;(3)xy y z )(arcsin =; (4)xy x x y x z ++-+=2222ln;(5)y zy x e e u +=; (6))sin (cos y x y e z x +=; (7)z y xu )(=; (8)y zx u =.解 (1)3431-='xz x,36--='y z y .(2)22211)1())((1)1(11xxy y y x xy xy y x z x+=--+--⋅-++=',22211)1())((1)1(11yxy x y x xy xyy x z y +=--+--⋅-++='.(3))ln(arcsin )(arcsin y y y z xx=', 12))(arcsin 1(arcsin --+='x y y yxy y z .(4)=+++-+-⋅-+++='2222222222222)()()(x y x yx yy x yxy x x y x z x222yx +-,222222222222)(2yx y x x y x yx xyx y x xy x z y +=+++⋅-+++='.(5)yxxe yu 1=',)(12yzyx y ze xeyu +-=',yz ze yu 1='.(6))sin cos (sin y x y y e z xx++=',)cos sin (y x y e z xy +-='. (7)z xyx x z u )(=',z y y x y z u )(-=',y xy x u z zln )(='. (8)1-='yz xxyz u ,x x yz u yzy ln 2-=',x x yu yzzln 1='.8.证明下列各题: (1)若yx yx y x z ln +-=,则0=∂∂+∂∂yz yxz x;(2)若x y y x z =,则)ln (z y x z yz yxz x++=∂∂+∂∂;(3)若)ln(nn y x z +=且2≥n ,则nyz yxz x1=∂∂+∂∂;(4)若)tan tan ln(tan z y x u ++=,则22sin 2sin 2sin =∂∂+∂∂+∂∂z zu y yu x xu ;(5)若))()((y x x z z y u ---=,则0=∂∂+∂∂+∂∂z u yu xu .证明 (1)x z ')(ln)(21ln)()(22y x x y x yx y x y yxy y x y x y x y x y x y x +-++=⋅⋅+-++--+=y z ')(ln )(2)(ln )()(222y x y y x yx y x x yx xy yx y x yx y x y x y x +--+-=-⋅⋅+-++----=,代入计算得0=∂∂+∂∂yz yxz x .(2)x z 'y y x xy x y y x ln 11+=-+, y z 'x x y yxyx x y ln 11+=-+,代入计算得)ln (z y x z yz yx z x ++=∂∂+∂∂.(3)xz '1111-⋅+=nnnx nyx , y z '1111-⋅+=nnny nyx ,代入计算得nyz yxz x1=∂∂+∂∂.(4)x u 'x z y x 2sec tan tan tan 1++=,y u 'y zy x 2sec tan tan tan 1++=,z u 'z zy x 2sec tan tan tan 1++=,代入计算得22sin 2sin 2sin =∂∂+∂∂+∂∂z zu y yu x xu .(5)x u '))(())((x z z y x y z y --+--=,y u '))(())((z x z y y x x z --+--= z u '))(())((y x z y y x z x --+--=,代入计算得0=∂∂+∂∂+∂∂zu yu xu .9.求下列函数的全微分:(1))cos(xy z =; (2)y x z ln =;(3)2222cotyx y x arc z +-= ; (4)yx y xy x z arctanarctan22-=;(5)2)ln (y e z x +=; (6)22ln y x z +=;(7)xyz u =; (8)3222z y x u ++=.解 (1))(sin xdy ydx xy dz +-=.(2))ln ln ()(ln ln ln dy yx dx xy x e d dz y x y +==.(3)2222222222222222)()22)(())(22(11yx y x y x ydy xdx y x y x ydy xdx yx y x dz +-++--+-⋅+-+-=dy yx y dx yx x y44442-+--=.(4)222211arctan2xydxxdy xy x dx xy x dz -⋅+⋅+=222211arctan2yxdyydx yx y dy yx y -⋅+⋅--dy yx y x dx y xy x )arctan2()arctan2(-+-=.(5))1)(ln (2dy ydx e y e dz x x ++=.(6))(122ydy xdx yx dz ++=.(7))ln ln ()(ln dz zxy zdy x zdx y z ed du xyzxy ++==.(8))()(3232222zdz ydy xdx z y x du ++++=-.10.求下列函数在给定条件下的全微分之值: (1)22yx xy z -=;2=x ,1=y ,01.0=∆x ,08.0=∆y ;(2))ln(22y x z +=;2=x ,1=y ,1.0=∆x ,1.0-=∆y ;(3)xye z =;1=x ,1=y ,15.0=∆x ,1.0=∆y .解 (1))1,2(22222)1,2()()22())((y x ydy xdx xy y x ydx xdy dz----+=121)14()08.001.02(4)14)(01.008.02(2=--⋅--+⋅=.(2)25112)1.0(121.022222)1,2(22)1,2(=+-⋅⋅+⋅⋅=++=yx ydy xdx dz.(3)e e ydx xdy e dzxy25.0)15.01.0()()1,1()1,1(=+=+=.11.计算下列各题的近似值:(1)05.402.1; (2)33)97.1()02.1(+. 解 (1)令y x z =,1=x ,4=y ,02.0=∆x ,05.0=∆y .08.002.04)(ln )4,1()4,1(=⋅=+=dx xy xdy x dzy,则08.108.0102.1405.4=+=.(2)令33y x z +=,1=x ,2=y ,02.0=∆x ,03.0-=∆y .05.032)03.0402.0(32)(3)2,1(3322)2,1(-=⋅⋅-=++=yx dy y dx x dz,则95.205.081)97.1()02.1(33=-+=+.12.求下列复合函数的全导数或偏导数: (1)v u z ln 2=,xy u =,22y x v +=,求xz ∂∂,yz ∂∂.(2)21)(az y e u ax+-=,x a y sin =,x z cos =,求dxdu .(3))ln(yxe e z +=,3x y =,求dxdz .(4)222zy x e u ++=,x y z sin 2=,求xu ∂∂,yu ∂∂.(5)yxz 2=,v u x 2-=,u v y 2+=,求u z ∂∂,vz ∂∂.(6)uve z =,22ln y x u +=,xy v arctan=,求xz ∂∂,yz ∂∂.解 (1))ln()(222y x xyz +=,则=+++-='2222222)()ln()(2yx x x yy x x yxy z x)]ln([22222232y x yx xxy +-+,=+++='222222)()ln()1(2yx y x y y x x x y z y )]ln([2222222y x y x y x y +++. (2)21)cos sin (ax x a e u ax+-=,则=++-+=)]sin cos ()cos sin ([112x x a e x x a aeadxdu axaxx e axsin .(3))ln()ln(3x x y x e e e e z +=+=,则3323xxxx ee e x e dxdz ++=.(4)2222)sin (x y y x eu ++=,则)cos sin 22(4sin2422x x y x e u xy y xx+='++,)sin42(23sin2422x y y e u xy y xy+='++.(5)uv v u z 2)2(2+-=,则22222)2(2122)2(2)2()2)(2(2u v uvv u u v v u u v v u z u++-=+--+-=',22222)2(4916)2()2()2)(2(4u v vu uv u v v u u v v u z v++-=+--+--='.(6)xy yx ez arctanln 22+=,则xy yx xeyx yx y xyx z arctanln 222222ln arctan+⋅++-=',xy y x y eyx yx x x yy z arctanln 222222ln arctan +⋅+++='.13.求下列方程所确定的隐函数的导数:(1)xy y x 5322=+; (2)xy e y x xy +=22)sin(;(3)xy yx arctanln22=+; (4)y x x y =.解 (1)由ydx xdy ydy xdx 5562+=+,得xy x y y 5625--='.(2)由)(22))(cos(22ydx xdy e ydy x dx xy ydx xdy xy xy +++=+,得xy y -='. (3)由222222xydxxdy yx xyx ydy xdx -⋅+=++,得yx y x y -+='.(4)由)(ln )(ln dx xy xdy x dy yx ydx y yx+=+,得xxy x y xy y y ln ln 22--='.14.求下列函数的全微分,其中f 可微:(1)),(xy x f z =; (2)),(22xy e y x f z +=; (3)),(zy y x f u =; (4))sin ,(x y xe f z y=.解 (1)dy f x dx f y f xdy ydx f dx f dz 22121)()('+'+'=+'+'=. (2))()22(21ydx xdy e f ydy xdx f dz xy+'++'=dy f xe f y dx f ye f x xyxy )2()2(2121'+'+'+'=.(3)2221zydzzdy f yxdyydx f du -'+-'=dz f zy dy f yx f zdx f y221221)1(1'-'-'+'=.(4)221cos)(x ydxxdy xy f dy xe dx e f dz y y -⋅'++'=dy f xy xf xe dx f xy xy f e yy)cos1()cos(21221'+'+'-'=.15.求下列方程所确定的隐函数),(y x z z =的全微分: (1))arctan(22xz z y =; (2)xz e xyz =;(3)1sin cos sin 32222=++z y x ; (4))ln(2232z x e z y x y ++=++. 解 (1)由)2(1122422xzdz dx z zx yzdy dz y ++=+,得xzz x y dy z x yz dx z dz 2)1()1(2422422-++-=.(2)由)(zdx xdz e xzdy xydz yzdx xz+=++,得xzxzxexy xzdy dx yz zedz ---=)(.(3)由03cos sin 22sin cos 2cos sin 223322=⋅+⋅-dz z z z ydy y y xdx x ,得]2sin 22sin [2sin 31232dy y y xdx zz dz +-=.(4)由)(2232222z x zdz xdx dy e dz z ydy dx y +++=++,得zz x z dxz x x dy y e z x dz y 2)(3)2()2)((2222222-+--+-+=.16.设)(u f y z +=,22y x u -=,其中f 可微,证明:x yz xxz y=∂∂+∂∂.证 )()(22y x f y u f y z -+=+=,则x y x f z x2)(22-'=', y y x f z y 2)(122-'-=',代入计算得x yz xxz y=∂∂+∂∂.17.设),,(y x x z z y f u ---=,其中f 具有连续的偏导数,证明:0=∂∂+∂∂+∂∂zu yu xu .证 32f f u x '+'-=',31f f u y '-'=',21f f u z'+'-=',代入得0=∂∂+∂∂+∂∂zu yu xu .18.设z y x z y x 32)32sin(2-+=-+,证明:1=∂∂+∂∂yz xz .证 方程两边作微分运算得,dz dy dx dz dy dx y y x 32)32)(32cos(2-+=-+-+,整理有)32cos(63)]32cos(42[)]32cos(21[z y x dyz y x dx z y x dz -+--+-+-+-=,31=∂∂xz ,32=∂∂yz .故1=∂∂+∂∂yz xz .19.函数),(y x z z =由方程0),(11=++--zx y zy x F 所给出,其中F 具有连 续的偏导数,证明:xy z yz yx z x-=∂∂+∂∂.证)1(221xz F F xF -'+'=∂∂,212F F yz yF '+'-=∂∂,xF F yzF 1121'+'=∂∂,由隐函数求导公式得)()(21212F y F x x F z F x y z x'+''-'-=',)()(21122F y F x y F z F y x z y '+''-'-='.代入计算得xy z yz yxz x-=∂∂+∂∂.20.求下列函数的二阶偏导数:(1)yx z =; (2)xyey x z -=sin ;(3)2222yx y x z +-=; (4)xy z ln=.解 (1)1-='y x yx z ,x x z y y ln =',2)1(--=''y xx x y y z ,)ln 1(1x y x z y xy+=''-,2)(ln x x z yyy=''. (2)xy xye y z -='sin ,xyy xe y x z -='cos ,xyxxe y z 2-='', )1(cos xy e y z xy xy+-='',xyyy e x y x z 2sin --=''. (3)22222222222)(4)(2)()(2y x xyy x xy x y x x z x+=+--+=',22222222222)(4)(2)()(2y x y x y x yy x y x y z y +-=+--+-=',32222442222222222)(124)()(16)(4y x y x y y x y x y x y x y z xx+-=++-+='',32222422223222)()(8)()(16)(8y x y x xy y x y x xy y x xy z xy+-=++-+='',32222442222222222)(124)()(16)(4y x y x x y x y x y x y x x z yy++-=++++-=''.(4)xz x 1-=',yz y 1=',21xz xx='',0=''xyz ,21yz yy -=''.21.求下列复合函数二阶偏导数: (1)),(yx x f z =; (2)),(22xy y x f z -=.解 (1)211f yf z x'+'=',22f yx z y '-=',]1[1122211211f yf yf yf z xx''+''+''+''=''222121112f yf yf ''+''+''=,][1122222122f yx yf yf yx z xy''-+'-''-=''222231221f yf yx f yx '-''-''-=,222223)(2f yx yx f yx z yy''--'=''2322422f xy f yx '+''=-.(2)212f y x f z x'+'=',212f x f y z y '+'-=', ]2[]2[22222112111f y f x y f y f x x f z xx''+''+''+''+'=''122212112244f f y f xy f x '+''+''+''=, ]2[]2[2222121211f x f y y f f x f y x z xy''+''-+'+''+''-=''122222211)22(4f y x f f xy f xy ''-+'+''+''-=, ]2[]2[22222112111f x f y x f x f y y f z yy''+''-+''+''--'-='' 121121222442f xy f y f f x ''-''+'-''=. 22.求下列方程所确定的隐函数的二阶偏导数:(1))arctan(xz y =; (2)1=++zx yz xy . 解 (1)等式两端关于x 和y 求偏导得,)()(1102xz x z xz '++=,y z x xz '+=2)(111,整理有xz z x -=',xzx z y 221+='.上式再关于x 和y 求偏导得,02=''+'xxx z x z , 0=''+'xy y z x z ,yy y z x z z x ''='22,整理化简得22xz z xx='',2221xz x z xy+-='',)1(222z x z z yy+=''. (2)等式两端关于x 和y 求偏导得,0='++'+xx z x z z y y ,0='++'+y y z x z z y x ,整理有yx y z z x++-=',yx z x z y ++-='.上式再关于x 和y 求偏导得,02=''+'+''xxx xx z x z z y ,01=''+'+'+''+xy y x xy z x z z z y ,02=''+''+'yy yy y z x z y z ,整理化简得2)()(2y x z y z xx++='',2)(2y x z z xy+='', 2)()(2y x z x z yy++=''.23.设yx z u arctan=,证明:0222222=∂∂+∂∂+∂∂zu yu xu .证 2221)(1yx zy yy x z u x+=⋅+=',2222)()(1yx zx yx yx zu y +-=-⋅+=',yx u zarctan =',222)(2y x xzy u xx+-='',222)(2y x xzy u yy+='',0=''zzu ,代入计算得 0222222=∂∂+∂∂+∂∂zu yu xu .24.设)2(cos 22y x z -=,证明:02222=∂∂∂+∂∂yx z yz .证 )2sin()2cos(4y x y x z x---=',)2sin()2cos(2y x y x z y --=',)2cos(2y x z xy-='',)2cos(y x z yy --='',代入计算得02222=∂∂∂+∂∂yx z yz .25.求下列函数的极值,并判定是极大值还是极小值: (1)44y x z +=;(2)by ax y xy x z 3322--++=; (3))2(22y y x e z x++=;(4))0,0(2050>>++=y x yxxy z ;(5))0,0(5ln 2ln 222>>+--+=y x y x y x z ;(6))sin(sin sin y x y x z +++= 20π≤≤x ,20π≤≤y .解 (1)解方程组⎪⎩⎪⎨⎧=='=='040433y z x z yx,得)0,0(,显然0)0,0(=z 为极小值. (2)解方程组⎩⎨⎧=-+='=-+='032032b y x z a y x z y x,得)2,2(a b b a --.又因2=''xxz , 1=''xyz ,2=''yy z ,02<-AC B ,0>A ,故ab b a a b b a z 333)2,2(22+--=--为极小值.(3)解方程组⎪⎩⎪⎨⎧=+='=+++='0)22(0)2(22222y e z e y y x e z xy xx x,得)1,21(-.又因 )12(422+++=''y y x e z xxx ,)44(2y e z xxy+='',xyye z 22='',02<-AC B ,0>A ,故2)1,21(e z -=-为极小值.(4)解方程组⎪⎪⎩⎪⎪⎨⎧=-='=-='02005022y x z x y z y x ,得)2,5(.又因3100x z xx ='',1=''xy z ,340y z yy ='', 02<-AC B ,0>A ,故30)2,5(=z 为极小值.(5)解方程组⎪⎪⎩⎪⎪⎨⎧=-='=-='022022y y z x x z y x ,得)1,1(.又因222x z xx +='',0=''xy z , 222yz yy+='',02<-AC B ,0>A ,故7)1,1(=z 为极小值.(6)解方程组⎩⎨⎧=++='=++='0)cos(cos 0)cos(cos y x y z y x x z y x,得)3,3(ππ.又因)sin(sin y x x z xx+--='',)sin(y x z xy +-='',)sin(sin y x y z yy +--='', 02<-AC B ,0<A ,故233)3,3(=ππz 为极大值.26.求下列函数在给定条件下的条件极值: (1)xy z =,2=+y x ;(2)1-=xy z ,1)1)(1(=--y x ,0>x ,0>y ;(3)y x z +=,111=+yx,0>x ,0>y .解 (1)设)2(),,(-++=y x xy y x F λλ,解方程组⎪⎩⎪⎨⎧=-+='=+='=+='0200y x F x F y F y x λλλ,得1,1==y x .将x y -=2代入得)2(x x z -=,因为x z x 22-=',02<-=''xxz ,所以1=x 是)2(x x z -=的极大值点,故 1)1,1(=z 是极大值.(2)设)(1),,(y x xy xy y x F --+-=λλ,解方程组⎪⎩⎪⎨⎧=--='=-+='=-+='00)1(0)1(y x xy F x x F y y F y x λλλ,得2,2==y x .将1-=x x y 代入得112--=x xz ,因为2)1(11--='x z x,0,)1(223>''-=''=x xxxxz x z ,所以2=x 是112--=x xz 的极小值点,故3)2,2(=z 是极小值.(3)将1-=x x y 代入得1111-++=-+=x x x x x z .令0)1(112=--='x z x解得2,2==y x ,又因0,)1(223>''-=''=x xxxxz x z ,所以2=x 是111-++=x x z 的极小值点,故4)2,2(=z 是极小值.27.某公司通过电台和报纸两种方式做销售其产品的广告,根据统计资料分析 可知,销售收入R (万元)与电台广告费x (万元),报纸广告费y (万元)有如下的经验公式:221028321415y x xy y x R ---++=(1)在广告费用不限的情况下,求总利润最大的广告策略. (2)若提供的广告费用为5.1万元,求相应的最优广告策略.解 (1)y x y x xy y x C R y x L -----++=-=221028321415),(, 解方程组⎩⎨⎧=---='=---='0120832014814y x L x y L y x ,得)45,43(,因驻点唯一,所以)45,43(是所求最大值点,即当电台广告费为43万元,报纸广告费为45万元时总利润达到最大.(2)设)5.1(1028311315),,(22-++---++=y x y x xy y x y x F λλ, 解方程组⎪⎩⎪⎨⎧=-+='=+--='=+--='05.102083104813y x F y x F x y F y x λλλ,得)5.1,0(,因驻点唯一,所以)5.1,0(是所求最大值点,即当电台广告费为0万元,报纸广告费为5.1万元时总利润达到最大.28.设某种产品的产量是劳动力x 和原料y 的函数414360),(y x y x f =,假定每 单位劳动力费用100元,每单元原料费用200元,现有3万元资金用于生产,为得到最多的产品,应如何安排劳动力和原料?解 设)30000200100(60),,(4143-++=y x y x y x F λλ,解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+='=+='--03000020010002001501004543434141y x F y x F y x F y x λλλ,得)5.37,225(,因驻点唯一,所以)5.37,225(是所求最大值点,即当劳动力为225人,原料为5.37个单位时产量达到最大.29.某企业在雇用x 名技术工人,y 名非技术工人时,产品的产量为223128y xy x Q -+-=,若企业只能雇用230人,那么该雇用多少技术工人,多少非技术工人才能使产量Q 最大?解 设)230(3128),,(22-++-+-=y x y xy x y x F λλ,解方程组⎪⎩⎪⎨⎧=-+='=+-='=++-='0230061201216y x F y x F y x F y x λλλ,得)140,90(,因驻点唯一,所以)140,90(是所求最大值点,即当雇用90名技术工人,140名非技术工人时产量达到最大.30.抛物面22y x z +=被平面1=++z y x 截成一个椭圆,求原点到这个椭圆 的最长距离与最短距离.解 设),,(z y x M 是椭圆上任意一点,它与原点的距离为222z y x d ++=.由题意构造拉格朗日函数为)1()(),,,,(22222-+++-++++=z y x z y x z y x z y x F ηληλ. 解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++='=-+='=+-='=++='=++='010020*******z y x F z y x F z F y y F x x F z y x ηληληληλ,得两个点)32,231,231(-+-+-,)32,231,231(+----.由题意知一定存在一个最近点与一个最远点,故359min -=d ,359max +=d .(B)1.已知函数),(y x f z =满足xyy xz -+-=∂∂11sin 及3sin 2),0(y y y f +=.求函数f 的表达式.解 等式两端对x 积分,得)(1ln 1sin ),(y g xy yy x y x f z +---==,其中)(y g 为待定函数.将),0(y f 代入得3sin 2)(y y y g +=,故31ln 1sin )2(),(y xy yy x y x f +---=.2.设二元函数f 具有连续的偏导数,且1)1,1(=f ,2)1,1(='x f ,3)1,1(='y f .如 果)),(,()(x x f x f x =φ求)1(φ'.解 因)],(),())[,(,()),(,()(2121x x f x x f x x f x f x x f x f x '+''+'='φ,代值得17]32[32)1(=++='φ.3.设)(22y x f y z -=,其中一元函数f 具有连续导数,且0)(≠t f ,求yz y xz x ∂∂+∂∂11.解 22222)]([)(2y x f y x f xy z x--'-=',22222222)]([)(2)(y x f y x f y y x f z y --'+-=',代入计算得)(11122y x yf yz y xz x -=∂∂+∂∂.4.设⎰-=dt ey x f txy2),(,求222222yf x y yx f xf y x ∂∂+∂∂∂-∂∂.解 y e f xy x 2)(-=',2)(32xy xx e xy f --='',]21[22)(2y x e f xy xy -=''-,x e f xy y 2)(-=', 2)(32xy yyye x f --='',代入计算得222222222yx eyf x y yx f xf y x --=∂∂+∂∂∂-∂∂.5.设函数),,(z y x f u =有连续的偏导数,且),(y x z z =由方程zyxze yexe =-所确定,求du .解 方程z y x ze ye xe =-两端微分得dz z e dy y e dx x e z y x )1()1()1(+=+-+,整理有)1()1()1(z e dyy e dx x e dz zyx++-+=.将其代入得='+'+'=dz f dy f dx f du 321dy ez y f f dx ez x f f zy z y zx z x )11()11(--++'-'+++'+'.6.已知)()(z yg z xf xy +=,0)()(≠'+'z g y z f x ,其中),(y x z z =是x 和y 的函数,求证:yz z f y xz z g x ∂∂-=∂∂-)]([)]([.证 等式)()(z yg z xf xy +=两端关于x 求导得,x x z z g y z z f x z f y ''+''+=)()()(,整理有)()()(z g y z f x z f y z x '+'-='.同理可得,)()()(z g y z f x z g x z y '+'-='.代入计算得yz z f y xz z g x ∂∂-=∂∂-)]([)]([.7.求由方程08822222=+-+++z zy z y x 所确定的隐函数),(y x z z =的极 值.解 方程两端关于x 和y 求偏导得,0824='-'+'+xx x z z y z z x ,08824='-'++'+y y y z z y z z z y ,再关于x 和y 求偏导得,082)(242=''-''+''+'+xxxx xx x z z y z z z , 08822=''-''+'+''+''xyxy x xy y x z z y z z z z z , 08162)(242=''-''+'+''+'+yy yy y yyy z z y z z z z . 解方程组⎪⎪⎩⎪⎪⎨⎧=--+='=--='02818402814z y z y z zy x z y x ,得⎩⎨⎧-==z y x 20,再由方程可解得⎪⎪⎪⎩⎪⎪⎪⎨⎧-===787160z y x ,⎪⎩⎪⎨⎧=-==120z y x . 对于点)716,0(:0,017168)78(2417168)78(2402<<-+-⋅-⋅-+-⋅--=-A AC B ,故78)716,0(-=z 为极大值.对于点)2,0(-:0,0)1)2(8124(022><--+⋅--=-A AC B ,故1)2,0(=-z 为极小值.8.当0>x ,0>y ,0>z 时,求函数z y x z y x f ln 3ln 2ln ),,(++=在球面22226R z y x =++上的最大值,并由此证明:当a ,b ,c 为正实数时,632)6(108cb ac ab ++≤成立.解 设)6(ln 3ln 2ln ),,,(2222R z y x z y x z y x F -+++++=λλ.解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++='=+='=+='=+='06023220212222R z y x F z z F y y F x x F z y x λλλλ,得)3,2,(R R R .因驻点唯一,且由题意知一定存在最大值,故)36ln()3,2,(6R R R R f =为最大值. 令c z b y a x ===222,,,则62cb a R ++=,代入得z y x z y x f ln 3ln 2ln ),,(++=c bc a ln=))6(36ln()3,2,(3cb a R R R f ++=≤,整理得632)6(108cb ac ab ++≤.9.求二元函数)4(),(2y x y x y x f z --==在由直线6=+y x ,x 轴和y 轴 所围成的闭区域D 上的最大值与最小值. 解 (1)点在区域D 内部:解方程组⎪⎩⎪⎨⎧=---='=---='0)4(0)4(2222y x y x x z y x y x xy z y x,得)1,2(.2268y x y z xx --='',xy x x z xy4382--='',x z yy 4-=''. 因为0,02<<-A AC B ,所以)1,2(为极大值点,极大值4)1,2(=z . (2)点在区域D 边界上:点在x 轴上,有0=y ,从而0=z . 点在y 轴上,有0=x ,从而0=z .点在直线6=+y x 上,设)6()4(),,(2-++--=y x y x y x y x F λλ,解方程组⎪⎩⎪⎨⎧=-+='=+--='=+--='06024023823222y x F yx x x F xy y x xy F y x λλλ得)2,4(,64)2,4(-=z . 综上知,最大值是4)1,2(=z ,最小值是64)2,4(-=z .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 级数习题7.11(1)13,115,135,163(2)1234,,,3579(3)111221n(4)122.(1)(1)ln 3()12nnq qS qq,收敛,ln32ln 3(2)1nnSn,收敛,1(3)111551nSn,收敛,15(4)11ln ln(1)2nSn;收敛;1ln2(5)111nSn,收敛,—1 (6)arctan(1)arctan1nS n,收敛,4.3. (1)级数为212(1)n n n ,和为1 (2)级数为123nn,和为1.4. (1)发散(2)发散(3)发散(4)发散(5)收敛5. (1)发散(2)发散(3)发散(4)发散(5)发散(6)发散(7)收敛,32(8)收敛,12.6. (1)提示:利用级数收敛的定义及“若1nn u收敛,则必有0()nun”之结论(2)例如(1),1,2,nnu n(3)提示:利用2121()k kku u与1nnu的部分和之间的关系7.12(1)eeππ+-习题7.21.(1)发散(2)收敛(3)发散(4)收敛(5)收敛(6)收敛(7)发散(8)收敛2.(1)提示:用比较判别法(2)提示:2122122222nn n n n nn n nua a a a a na a(3)提示:用比较判别法的极限形式3.(1)收敛 (2)收敛 (3)收敛 (4)发散 (5)收敛 (6)当1p 时收敛;当1p时发散.4.(1)收敛 (2)收敛 (3)发散 (4)收敛 (5)发散 (6)收敛 (7)收敛 (8)收敛 (9)当01a 时收敛,当1a 时发散; 当1a 时:1s 收敛,1s 发散(10)收敛. 5.(1)0p时收敛,0p 时发散 (2)当01a 时收敛,当1a 时发散(3)收敛 (4)当12a 时收敛,当12a 时发散 (5)当2p时收敛,2p 时发散 (6)当1a 时收敛,当01a 时发散(7)当1p 时收敛;当1p 时:1q 收敛,1q发散;当1p 时发散(8)当1a 时收敛,当1a 时发散 (9)0p 时收敛,0p 时发散6.(3)提示:2112np u n 7.(4nu n,再利用(3) 8. 提示:23112()d ()d ()d n n n n n f x x f x xf x x ,再利用()f x 的单调、正值性质。

习题7.31.(1)发散 (2)发散 (3)绝对收敛 (4)绝对收敛 (5)绝对收敛 (6)发散 (7)条件收敛 (8)绝对收敛 (9)条件收敛 (10)条件收敛2. 收敛(提示:利用Dirichlet 判别法)3.(1)提示:2sin sin ()1cos 222nxnx nxnn n n4.不能,例如 2sin()sin ()sin(),nn nx nx nx a b n nn5.绝对收敛6.提示:利用Abel 判别法.7. 提示:10111()()nk k n n k k a a a a a na习题7.41.(1)2,4 (2)11,33(3)1,1 (4)2,1 (5)1,1 (6)1,2(7)当1p 时,1,1;当01p 时,1,1;当0p 时,1,1(8)11,e e(9)2,2 (10)22,22 2.(1)21,(1,1)(1)x x (2)3(1),1(1)x x x x (3)11ln ,(1,1)21xxx x(4)ln(1)ln(1),1x x x x x(5)111lnarctan ,(1,1)412x x x x (6)21,1(1)xx x3. 22323(2),3423x x xx4.(1)4 (2)ln 22(3)ln 2 (44ln 3. 5.收敛域为2,2,和函数()S x 为:(1)0,(0)12ln S S ,2222()1ln(2),2,0,11x S x x xxx .习题7.51. 121(1)(23)!!11,1,122!n nnnn x x x x n2. 111(),0,1(1)!(1)!n nnnx nf x x nn .3.(1)211,(21)!n n x x n (2)211(2)1(1),2(2)!nn n x xn(3)21221111(1)cos (1)sin ,(21)!(22)!n n n n n n x x aa xn n(4)1ln10,10,1010nnnx x n (5)111(1),1,1(1)n n nxx xn n(6)1221(1),1n n n x x (7)211(21)!!(1),1,1(2)!!(21)nn n n xx xn n(8)21(1),121n n n x x n (9)211,1,121n n x xn(10)121211(1),(22)!(21)!n n n x xn n4.(1)111,223nn nn x x(2)1132(1)(5),5223nn n n n x x .5.(1)111(3)1,333n n n n x x (2)21(1),11nnx x n (3)11(1)2,212nnnn x x6. 11(2)ln 2(1),222nn nn x x n 7.16!2!习题7.61.(1)0.309017054 (2)0.2231372.(1)31120(2)4,1a b 3.(1) 2.8354 (2)作积分变换1x t,原积分变为123d 0.13171t t t4.(1)2111(1)(21)(21)!n n n x C n n (2)121(1)n nnx C n(3)410(1)(41)(2)!n nn x n n (4)2111(1)!(21)n n n x n n5. 1.97446.(1)2.00039 (2)1.09864 (3)0.48723 (4)0.921996习题7.7*1.(1)1,e e(2)1,1(3),11,(4)1,2(5)0, (6)(2,(21)),0,1,2,k k k (7)对0x 皆发散2.(1)和函数21,0()0, 0x x S xx (2)21ln1ln(1)Nx(3)在0,1上不一致收敛,在1,12上一致收敛 3. 一致收敛 4.(1)不一致收敛 (2)一致收敛.5.(1)一致收敛 (2)一致收敛 (3)一致收敛 (4)一致收敛 (5)一致收敛6.(1)一致收敛 (2)一致收敛7.(1)一致收敛 (2)一致收敛 (3)一致收敛 (4)一致收敛 (5)(i )一致收敛 (ii )不一致收敛 8. 提示:利用Cauchy 准则 9.(1) 110lim()d ,lim ()d 04n n nnf x xf x x(2)提示:先证若()n f x 在0,1上一致收敛,则有 110lim ()d (lim ())n n nnf x xf x dx10.(1)()n f x 收敛于()e xf x (2)利用一致收敛定义;(3)利用第9题(2)中提示的结论,2e 3 11. 提示:利用定理7.7.13习题7.81.(1)21241()cos(21),,(2)()2(21)k f x k x x f x f x k(2)121()(1)()~((1)1)cos ()sin ()4n nn b a b a f x nx b a nx S x n n(),(,),(2)(),(),2f x x S x S x xb a x .(3)222221e ee e ()~(1)(2cos sin )44nn f x nx n nx n 22(),(,)(),(2)(),,2f x x S x S x S x x e e x ππππππ-∈-⎧⎪=+=∀∈⎨+=±⎪⎩(4)122()~(1)cos sin (1)(1)sin 22nn n n f x n n n ππππππ∞=⎡⎤-++--⎢⎥⎣⎦∑ (),,,,22220,()1,221,22f x x x S x x x πππππππππ⎧⎛⎫⎛⎫⎛⎫∈--- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎪=±⎪⎪=⎨-=-⎪⎪⎪=⎪⎩(2)(),S x S x x.(5)21212(1)()4cos ,,3n n f x nx x n(2)(),f x f x x(6)21111()~((1)1)cos (1)(1)sin 21n n n e f x e nx e nx n πππππ∞=-⎡⎤+--+--⎣⎦+∑ ()()(),,00,1(),021,2f x x S x x e x ππππ⎧⎪∈-⎪⎪==⎨⎪⎪=±⎪⎩, (2)(),S x S xx.2. 4311sin cos 2cos 4,828xx x x.3. (1)正弦级数:121(1)(1)1,0()~sin 0, n n x x f x nxxn余弦级数:212(1)12()~cos 1,02n n f x nx x xn(2)正弦级数;1(),(0,)12()~sin 220,0,2n f x x f x nx n x余弦级数:211(1)()cos 2,0,822n n f x nx x n πππ∞=--⎛⎫=+∈ ⎪⎝⎭∑ (3)正弦级数2112()~(12cos )sin sin 22n n nf x nx n n,0220,20, 0, 22xxxx x余弦级数:21322()~sin (cos 1)cos 822n n nf x nx nn,0220, 2, 22xx xx(4)正弦级数:214()sin sin ,0,2nnf x nx xn余弦级数:212cos1(1)2()cos ,0,4nn nf x nx xn4.2122212(1)4cos ,,3n n xnx x n , 22116n n π∞==∑,1221(1)12n n n π-∞=-=∑. 5. 3241(1)612()~11cos 4n nn f x nx n n33, 0,0x xx x ;441190n n6. 2121()~sin cos sin ().22n n n f x nx S x n n πππ∞=⎛⎫- ⎪⎝⎭∑.0,,,22,,22(),(2)(),,42,42x x xS x S x S x x x x35S S.,0244S x在2,2上的图形为:()x x nx nx在,上的正交性。

7.提示:利用三角函数系1,cos,sin,,cos,sin,。

相关文档
最新文档