弧度制教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弧度制
教学目标:
知识目标
1) 理解1弧度的角的意义。
2) 理解弧度制的定义,建立弧度制的概念。 能力目标
1) 掌握角度制与弧度制的换算公式并能熟练地进行角度制与弧度制的换算。 2) 牢记特殊角的弧度数与角度数的互化。 情感目标
通过弧度制一弧度角及弧度制定义的探索过程,培养学生主动探索、勇于发 现的精神,渗透由特殊到一般的思想方法。通过弧度制与角度制之间的联系 及转化,渗透广泛联系,透过本质看问题的辨证唯物主义的思想。 重点:
理解弧度的意义,正确进行弧度与角度的换算 难点:
弧度的概念,弧度制与角度制之间的关系 教学方法:目标式教学 课时:1课时 教学过程:
一、 复习引入和预习准备
1. 角分为几类?
2•什么是象限角?什么是轴线角?
3. 与角 终边相同的角的集合?第一象限角如何表示?
4. 请大家回忆什么是角度制?
将圆周等分成360份,每一份所对的圆心角的大小叫做
,这种描述角的方
式叫做——角度制。 二、 创设情境,设置疑问
初中几何研究过角的度量,当时是用度来做单位度量角的。那么 1°的角是如何定
义的?
规定周角的—做为1°的角。
360
我们把用度做单位来度量角的制度叫做角度制, 有了它就可以计算弧长,公
角度制是度量角的一种单位制。单位制这个概念我们并不陌生,比如说测量 长度的
单位制,古代常以人体的一部分作为长度的单位。例如我国三国时期 (公
元三世纪初)王肃编的《孔子家语》一书中记载有:“布指知寸,布手知尺,舒肘 知寻。”两臂伸开长八尺,就是一寻。还有记载说:“十尺为丈,人长八尺,故曰 丈
夫。”可见,古时量物,寸与指、尺与手、寻与身有一一对应的关系。现在国 际上通用的是国际单位制中的“米制” ,米的标准长度,等于光在真空中在
式为I
n r 180
1/299792458秒的时间间隔内所传播路径的长度。“米制”教之“尺、寸……”应用起来要方便得多
在角度制下,当两个带着度、分、秒各单位的角相加、相减时,由于运算进 制非十进制,总给我们带来不少困难。那么我们能否重新选择角单位,使在该单 位制下两角的加减运算与十进制下的加减法运算一样呢?今天我们就来常识研 究这种新单位制。
(从熟悉的单位制出发,让学生意识到给出角度新定义的必要性。意识到单位制 的普遍性。)
三、分组讨论,探索研究
跟上面类似,长度制的选择都是要选定一个不变量来作为基本量。 如“米”
“度”,那么我们要找到一种新的度量角度的角度制,贝U 必须也找到相应的不变 量。
发现什么规律? 结论:圆心角不变则比值不变。
因此比值的大小只与角的大小有关, 是度量角的另外一种单位制一一 弧度制
知识建构
1.定义:长度等于半径长的弧所对的圆心角叫做
1弧度的角。它的单
位符号是rad ,读作弧度。这种用“弧度”做单位来度量角的制度叫 做弧度制。
如下图,依次是1rad , 2rad , 3rad
问题二:(1)若弧是一个半圆,圆心角所对的弧度数是多少?若是一个圆 呢?
问题一:角度为30。,60。的圆心角,当半径r 123,4时,分别计算对应
的弧长I ,再计算弧长与半径的比
。
30 , r
60。, r n r 30 1 r 180 180
6, I 6
n r 30 2
r
180 180
3, I 6
n r 30 3
r
180 180
2, I 6 n r 30
4 2 r
180 180
3 ,I 6 n r 60 1
r
180 180
3, I 3 n r 60
2 2 r
180 180
3 ,I 3 n r 60 3
r
180 180
I 3 n r 60 4 4 r
180
180
3 ,I 3 我们可以利用这个比值来度量角,这就 O
1
时,
I 2时, I
3时, I
4时, I 1时,I
2时, I 3时, I
4时, I
rad
(2)正角的弧度数是什么数?负角呢?零角呢?(从正数,负数,零方面去引导)
(3)在弧度制下弧长的计算公式应该怎么写呢?I | | r(l为弧长,r为半径)
四、落实目标
角度制与弧度制之间怎样换算呢?
弧度制与角度制之间的互化
■/ 360 =2 rad •'•180= rad
1 = rad 0.01745rad
180
180
1rad 57.30 57 18
公式:这个角的弧度数
180这个叫的角度数
、例题讲解与知识的巩固
例11把67 30'化成弧度
1
解:67 30' 67
2
1 3
• 67 30' rad 67 rad
180 2 8
3
例2把3 rad化成度
5
3 3
解:-rad 180 108
5 5
注意几点:
1 •今后在具体运算时,“弧度”二字和单位符号“rad”可以省略女口:
3表示3rad ,sin 表示rad角的正弦;
2 •一些特殊角的度数与弧度数的对应值应该记住: