电动力学总结优秀PPT

合集下载

中科大 电动力学 PPT

中科大 电动力学 PPT
《等离子体物理导论》
Copyright by Wandong LIU
规范变换与规范不变性
电磁矢势、标势具有相当大的人为选择的余地 两组不同的矢势标势,可以表示相同的电磁场
A
第十一周
A A
变换


t
A A B A A E t t
A A ei k x t 0 i k x t 0e

2
k 2 c2
洛伦兹规范下,描述平面波的
势仍有变换的自由度,可取




k k A 0
2
Copyright by Wandong LIU
第五章 电磁波辐射
§5.1 电磁场的矢势和标势
第十一周
§5.2 推迟势
波动方程的行波解 点源产生的电磁波 推迟势
§5.3 电磁辐射
§5.4 电磁波衍射 §5.5 麦克斯韦张量
《等离子体物理导论》
Copyright by Wandong LIU
达朗贝尔方程
洛伦兹规范下:
1 A 0 2 c t
第十一周
电磁场(电磁势)运动方程:
2 1 A 2 c 2 1 c2
A 0 J 2 t 2 t 2 0
2
d’Alembert方程
《等离子体物理导论》
Copyright by Wandong LIU
直角坐标下波动方程的解:平面行波
Copyright by Wandong LIU

电磁矢势标势满足的方程
电磁矢势、标势满足的方程 ♨

《电动力学》课件

《电动力学》课件

电场的能量
电场中的电荷具有电势能,当电荷在电场中移动时,它们的电势能可以转化为动能或其他形式的能量。了解电场能 量可以帮助我们理解各种电磁现象。
电势和电势能
电势是描述电场中某个位置的属性,它可以被认为是单位正电荷所具有的势能。电势能则是电荷在电场中具有的能 量。
静电场的高斯定律
静电场的高斯定律描述了电场中电荷的分布对电通量的影响。通过高斯定律, 我们可以更好地理解电场的特性和分布。
《电动力学》PPT课件
探索电动力学的奥秘,理解电荷和电场的关系,学习库仑定律,揭示电场的 概念和性质,掌握电场的能量以及电势和电势能的重要性,钻研静电场的高 斯定律,了解电源和电动势的作用。
电动力学的定义
电动力学是物理学中研究电荷和电场相互作用的学科。通过探索电场的性质 和行为,我们可以理解电荷之间的引力和有的一种性质,可以是正电荷或负电荷。电场则是电荷周围 的力场,通过电荷相互作用的方式传播。
库仑定律
库仑定律描述了电荷之间的电力相互作用。根据库仑定律,电荷之间的力与 它们之间的距离成反比,与它们的电荷量成正比。
电场的概念和性质
电场是电荷周围的力场,它可以被认为是电荷对周围空间产生的一种影响。电场具有方向性和大小,可以通过电场 线来可视化。
电源和电动势
电源是电能的来源,它可以提供电荷的流动。电动势是电源为电荷提供能量的能力,它描述了电荷在电路中流动的 推动力。

电动力学课件3

电动力学课件3

电动力学课件3一、引言电动力学是研究电磁现象的规律和应用的物理学分支,是电磁学的重要组成部分。

在电动力学中,我们关注电荷、电流、电场和磁场等基本概念,以及它们之间的相互作用和运动规律。

本课件将介绍电动力学的基本原理和重要公式,帮助读者理解和应用电动力学的知识。

二、电场和磁场1.电场电场是指在空间中存在电荷时,电荷之间相互作用的力场。

电场的强度和方向由电荷的大小和位置决定。

电场的单位是牛顿/库仑(N/C)。

电场的计算可以使用库仑定律,即两个点电荷之间的电场力与它们的电荷量的乘积成正比,与它们之间的距离的平方成反比。

库仑定律的数学表达式为:F=k-q1q2-/r^2其中,F是电场力,k是库仑常数,q1和q2是两个点电荷的电荷量,r是它们之间的距离。

2.磁场磁场是指在空间中存在电流时,电流产生的力场。

磁场的强度和方向由电流的大小和方向决定。

磁场的单位是特斯拉(T)。

磁场的计算可以使用安培定律,即电流元产生的磁场与电流的大小和方向有关。

安培定律的数学表达式为:B=μ0(I/(2πr))其中,B是磁感应强度,μ0是真空的磁导率,I是电流的大小,r是电流元到观察点的距离。

三、电磁感应电磁感应是指磁场的变化在导体中产生电动势的现象。

根据法拉第电磁感应定律,电动势的大小与磁通量的变化率成正比。

法拉第电磁感应定律的数学表达式为:ε=-dΦ/dt其中,ε是电动势,Φ是磁通量,t是时间。

四、麦克斯韦方程组麦克斯韦方程组是描述电磁场运动规律的四个方程,包括高斯定律、高斯磁定律、法拉第电磁感应定律和安培定律。

这些方程组将电场和磁场联系在一起,描述了电磁场的传播和相互作用。

1.高斯定律高斯定律描述了电场的发散性质,即电荷产生的电场是从正电荷发散出去,汇聚到负电荷。

高斯定律的数学表达式为:∮EdA=4πkQ_enclosed其中,E是电场强度,dA是高斯面的面积元素,Q_enclosed是高斯面内的总电荷量。

2.高斯磁定律高斯磁定律描述了磁场的发散性质,即磁场线是闭合的,没有磁单极子存在。

电动力学课件1-4

电动力学课件1-4

JP
=
∂P ∂t
(极化电流体密度 )
∇×B
=
µ0J总
=
µ0J + µ0JM
+ µ0JP
+ µ0ε0
∂E ∂t
H=
B
−M
µ0
∴∇×
H
=
J
+
∂D
∂t
各向同性介质 M = χ m H ⇒ B = µH
Maxwell equations (介质中)
∇×E =
∇ × H=
− ∂B
J
∂t + ∂D
第一章 总结
电磁现象的基本规律,从库仑定律及电荷守恒定律,毕奥—沙伐
尔定律出发,研究了静电场、静磁场的基本规律以及电磁场所满
足的基本方程—Maxwell equations.并研究了非连续介质分界面处
所满足的边值关系。
库仑定律:
F
=
Q1Q2
4πε 0r 3
r ,
r
场强:
E=
Q
r
4πε 0r 3
的方向由源点到场点
D = ε0E + P
qp = −∫∫ S P ⋅ dS =∫∫∫ V ρPdV
σP
=−(P2

P1
)

n
∇⋅D = ρf
各向同性介质 P = ε0χeE
D=ε E
2、磁性质

mi
M= i ∆V
IM= ∫ L M ⋅ d=l ∫∫ S JM ⋅ dS
J M = ∇ × M (磁化电流体密度 )
能量密度 δ w = E ⋅δ D + H ⋅δ B
能量变化率
∂w

电动力学(全套课件)ppt课件

电动力学(全套课件)ppt课件

电磁波的传播遵循惠更斯原理,即波 面上的每一点都可以看作是新的波源。
电磁波在真空中的传播速度等于光速, 而在介质中的传播速度会发生变化。
电磁波的能量与动量
01
电磁波携带能量和动量,其能量密度和动量密度与 电场和磁场的振幅平方成正比。
02
电磁波的能量传播方向与波的传播方向相同,而动 量传播方向则与波的传播方向相反。
03
电磁波的能量和动量可以通过坡印廷矢量进行描述 和计算。
06
电动力学的应用与发展前 景
电动力学在物理学中的应用
描述电磁现象
电动力学是描述电荷和电流如何 产生电磁场,以及电磁场如何对 电荷和电流产生作用的理论基础。
解释光学现象
光是一种电磁波,电动力学为光 的传播、反射、折射、衍射等现 象提供了理论解释。
麦克斯韦方程组与电磁波
01
麦克斯韦方程组是描述电磁场的基本方程组,包括高斯定律、 高斯磁定律、法拉第电磁感应定律和安培环路定律。
02
电磁波是由变化的电场和磁场相互激发而产生的,其传播速度
等于光速。
麦克斯韦方程组揭示了电磁波的存在和传播规律,为电磁学的
03
发展奠定了基础。
电磁波的性质与传播
电磁波具有横波性质,其电场和磁场 振动方向相互垂直,且都垂直于传播 方向。
电场能量
W=∫wdV,表示整个电场 中的总能量。
功率
P=UI,表示单位时间内电 场中消耗的能量或提供的 能量。
04
恒磁场
磁感应强度与磁场强度
磁感应强度的定义与物理意义 磁感应强度与磁场强度的关系
磁场强度的定义与计算 磁场的叠加原理
安培环路定理与磁通量
01
安培环路定理 的表述与证明

电动力学PPT课件

电动力学PPT课件

S
闭合曲面为S。
对于任意封闭曲面某时间间隔内流入闭 曲面的电量等于闭面内电量的增加量
第11页/共68页
电流连续性方程
注意:当电流为恒定电流时,一切物理量不随时间变化, 即有 因此, 这就表示恒定电流的场线处处连续,因而是闭合的。
第12页/共68页
3。洛伦兹力公式--毕奥萨伐定律
(1)磁场对电流元的力密度
Ez H
ra
I2
2 2a3
流进长度为Δl的导线内部的功率为
Sr 2al
I 2l
a2
I2R
第65页/共68页
证明
第66页/共68页
证毕
证明
对于场点求导
第67页/共68页
对于稳恒电流
谢谢您的观看!
第68页/共68页
在没有外场作用时,介质是电中性的,且内部宏观电磁场 为零。
第25页/共68页
2。介质的极化
从极化角度看 a.有极性分子
b.无极性分子
极化的解释 极化强度
外场条件
各向同性线性介质
第26页/共68页
2。介质的极化
单位体积分子数为n
体元内跑出 的正电荷为
表示封闭体内通过界面 S穿出去的正电荷 将净余的负电荷定义为束缚电荷,其密度为
要看五个关系的内部与场论公式有没有无矛盾,
有问题的只有
左式为零,右式为零时是恒流源情况 为使右式为零加一项

引入位移电流概念
第20页/共68页
2。位移电流
第21页/共68页
3。真空中的麦克斯韦方程组
a)电场分布只取决于电荷的 分布和磁场的变化
b)电场的散度与当时当地的 电荷密度成正比,感应电 场是无散的

电动力学课件

电动力学课件

v cosθ为高的斜柱体的体积,即
称为dN矢量vv通c过os面d元sds的v通 d量s。

对于有向曲面s,总可以
将s分成许多足够小的面元ds,
v
θ
于是通过
ds
21
曲面s的通量N即为每一面元通量之积
N
v
ds
s
对于闭合曲面s,通量N为
2、散度
N v ds
s
设封闭曲面s所包围A的 d体s积/ 为VV,则
2
学习电动力学课程的主要目的是:
1) 掌握电磁场的基本规律,加深对电磁场性质和 时空概念的理解;
2) 获得本课程领域内分析和处理一些基本问题的 初步能力,为以后解决实际问题打下基础;
3) 通过电磁场运动规律和狭义相对论的学习,更 深刻领会电磁场的物质性,帮助我们加深辩证唯物主义 的世界观。
3
学习电动力学课程的主要意义是:
18
分,即
d
dl
dl
l
显然,任意两点值差为
B
B A
dl
A
19
§0-2 矢量场的散度 高斯定理 Divergence of Vector Field, Gauss’s Theorem
20
1、通量
一个矢量场空间中,在单位时间内,沿着矢量
场 v方向通过ds的流量是dN,而dN是以ds为底,以
4
要想学好电动力学,必须树立严谨的学习态度和 刻苦的学习作风。
电动力学比电磁学难学,主要体现在思维抽象、习题难解 上。为此,在学习时要注意掌握好概念、原理、结构和方法,这 些在听课、阅读、复习、小结和总复习时都要注意做到,既见树 木,更见森林。要在数学与物理结合上下硬功夫,培养物理与数 学间相互“翻译”的能力,能熟练地运用数学独立地对教材内容 进行推导,并明确它们的物理意义和图象。

《物理电动力学》PPT课件

《物理电动力学》PPT课件

第六章第二节
狭义相对论基本原理 洛仑兹变换
§2
狭义相对论的基本原理
洛仑兹变换
核心 问题
一 基本原理(两个公理) 1 相对性原理(relativity principle)
一切物理定律在所有的惯性系中都具有相同形式; 一切惯性系都等价,不存在特殊的绝对的惯性系。 2 光速不变原理 (principle of constancy of light velocity)
经典力学绝对时间概念只不过是狭义相对论的时间概念在经典力学绝对时间概念只不过是狭义相对论的时间概念在低速情况下的近似若低速情况下的近似若从狭义相对论的基本假设可直接导出时间延缓效应从狭义相对论的基本假设可直接导出时间延缓效应经历的时间测量的时间带电带电介子是不稳定的可衰变为介子是不稳定的可衰变为介子和中微子对介子和中微子对于静止的于静止的介子测得平均寿命为介子测得平均寿命为设在实验设在实验室测得室测得介子运动速度为介子运动速度为求衰变前的平均距离
一、伽利略变换
—— 在两个惯性系中分析描述同一物理事件(event)
在t =0 时刻,物体在O 点, • 在t = t 时刻,物体运动到P 点
系重合
:
:
r x, y, z, t r x , y , z ,t
Y
Y'

v
正 变 换
x x vt
t t
狭义相对论的重点与难点
本章重点: 1、深刻理解经典时空理论和迈克尔逊实验; 2、熟记狭义相对论基本原理、洛仑兹变换; 3、理解同时的相对性和尺缩、钟慢效应,能够 熟练利用洛仑兹速度变换解决具体问题; 4、了解相对论四维形式和四维协变量; 5、掌握相对论力学的基本理论并解决实际问题。 本章难点: 1、同时的相对性、时钟延缓效应的相对性; 2、相对论四维形式的理解; 3、电动力学相对论不变性的导出过程。*

电动力学ppt课件

电动力学ppt课件

磁场
磁体周围空间存在的一种特殊物质, 对放入其中的磁体有力的作用。
电场强度
描述电场强弱的物理量,用E表示, 单位是牛/库仑(N/C)。
磁感应强度
描述磁场强弱的物理量,用B表示, 单位是特斯拉(T)。
麦克斯韦方程组及其物理意义
麦克斯韦方程组
是电磁学的基本方程,由四个方程组 成,分别描述了电场的性质、磁场的 性质以及电场和磁场之间的相互作用 。
磁悬浮列车
磁共振成像
利用恒定磁场产生的排斥力或吸引力,实 现列车悬浮和导向。
利用恒定磁场与射频脉冲相互作用产生磁 共振信号,实现人体内部结构和功能的成 像。
04 时变电磁场理论 及其应用
法拉第电磁感应定律和楞次定律
法拉第电磁感应定律
描述时变磁场中感应电动势的大小和方向,是电磁感应现象的基础。
楞次定律
01
麦克斯韦方程组的时 域形式
由四个偏微分方程组成,分别描述了 电荷如何产生电场、电流如何产生磁 场、变化的电场如何产生磁场以及变 化的磁场如何产生电场。
02
麦克斯韦方程组的频 域形式
通过傅里叶变换将时域信号转换为频 域信号,得到频域下的麦克斯韦方程 组,适用于分析单一频率或窄带信号 的电磁问题。
03
导体和绝缘体在静电场中特性
导体
01
在静电场中,导体内部电场为零,电荷分布在导体表面,形成
表面电荷密度。
绝缘体
02
绝缘体内部存在电场,电荷不能自由移动,因此不会产生电流

静电感应
03
当导体靠近带电体时,导体内部电荷重新分布,使得导体两端
出现异号电荷的现象。
静电场应用实例
电容器
利用静电场存储电能,广泛应 用于电子电路和电力系统中。

电动力学课件

电动力学课件
根据不同的交界条件,边界条件可分为第一类边界条件、第二类边界条件和第 三类边界条件。
04 电磁波的传播
电磁波的产生与性质
电磁波的产生
电磁波是由变化的电场和磁场交替产生并相互激发而传播的。当电荷在空间中运 动或磁场发生变化时,就会在空间中产生电磁波。
电磁波的性质
电磁波在空间中传播,具有波粒二象性。它们具有振幅、频率、相位等波动性质 ,同时也具有能量、动量等粒子性质。
电磁波的反射与折射
电磁波的反射
当电磁波遇到不同介质的分界面时,一部分能量会反射回原介质,剩余能量则继续传播。反射的程度取决于两种 介质的性质以及电磁波的入射角度。
电磁波的折射
当电磁波从一种介质进入另一种介质时,其传播方向会发生改变,这种现象称为折射。折射的程度取决于两种介 质的性质以及电磁波的入射角度。
矢量势的定义与计算
矢量势的基本定义
矢量势是用来描述磁场的一种物理量,它与磁矢势共同描述 磁场。
矢量势的计算方法
通过定义磁矢势和电荷分布,利用安培定律和麦克斯韦方程 组计算矢量势。
磁场的边界条件
边界条件的概念
磁场的边界条件是指在磁场与其它媒质(如真空、导体或介质)交界处磁场的 行为。
边界条件的分类
电场是电荷周围空间中存在的 特殊物质,由电荷产生并受到 电荷的影响。
电场具有传递性和无色性,即 电场可以传递电荷之间的相互 作用力,且电场本身不具有颜 色。
电场具有叠加性和穿透性,多 个电荷产生的电场可以叠加, 且电场可以穿透某些物质。
电势的定义与计算
电势是描述电场中某一点电荷所 具有的势能大小的物理量,通常
衍射实验结果表明,当电磁波通过一个小缝时,会在远处产生一个明亮的衍射图案,这个 图案是由不同方向的波组成的,它们相互叠加产生干涉现象,形成明暗相间的条纹。

中科大 电动力学 PPT

中科大 电动力学 PPT

第三周
(2)式左边两项分别仅与 和 相关,故为常数,记为 和 , 实现第二次变量分离:
sin
d d
dg sin sin 2 g 0 d
(3) (4)
d 2h h 0 2 d
电势的单值性要求,h 应为周期 2 的周期函数,于是
2
球坐标:
《电动力学》
1 2 1 1 2 2 2 r 2 sin 2 2 r r r r sin r sin 2
Copyright by Wandong LIU
分离变量法之一
如果多变量函数可以分离(以球坐标为例):
例:荷电孤立导体球静电能
1 1 Q2 1 W dV a dV a Q 2 2 8 0 a 2 r a
《电动力学》
Q
Copyright by Wandong LIU
第二章 静电场
§2.1 静电势及泊松方程
静电势的引入 泊松(Poisson)方程 势的边值关系 静电场能量
i
i 1, 2,
(2) 在区域 V 中每两子区域边界上满足边值条件:
i j
j i i j n n
( n 由 i 区域指向 j 区域)
(3) 已知区域 V 内的电荷密度 、 ; (4) 给定区域 V 表面上 或
之值。 n
《电动力学》
《电动力学》
1 d 2 df r f dr dr sin d 1 d 2h dg sin sin 2 0 g d 2 d h d
(1) (2)
Copyright by Wandong LIU

电动力学课件0-(带目录)

电动力学课件0-(带目录)

电动力学课件01.引言电动力学是物理学中的一个重要分支,主要研究电荷、电流、电磁场以及它们之间的相互作用规律。

电动力学的发展历程可以追溯到19世纪,当时的科学家们通过实验和理论研究,逐步揭示了电磁现象的本质和规律。

本课件旨在介绍电动力学的基本概念、理论框架和重要应用,帮助读者系统地了解电动力学的基本原理和方法。

2.麦克斯韦方程组麦克斯韦方程组是电动力学的基础,描述了电磁场的基本性质和演化规律。

麦克斯韦方程组包括四个方程,分别是:(1)高斯定律:描述了电荷分布与电场之间的关系,即电荷产生电场,电场线从正电荷出发,终止于负电荷。

(2)高斯磁定律:描述了磁场的无源性质,即磁场线是闭合的,没有磁单极子存在。

(3)法拉第电磁感应定律:描述了时变磁场产生电场的现象,即磁场的变化会在空间产生电场。

(4)安培环路定律:描述了电流和磁场之间的关系,即电流产生磁场,磁场线围绕电流线。

3.电磁波的传播(1)电磁波的传播速度:在真空中,电磁波的传播速度等于光速,即c=3×10^8m/s。

(2)电磁波的能量:电磁波传播过程中,电场和磁场交替变化,携带能量。

(3)电磁波的极化:电磁波的电场矢量在空间中的取向称为极化,可分为线极化、圆极化和椭圆极化。

(4)电磁波的反射、折射和衍射:电磁波在遇到边界时会发生反射和折射现象,同时还会产生衍射现象。

4.动态电磁场(1)电磁场的波动方程:描述了电磁波的传播规律,包括波动方程的推导和求解。

(2)电磁场的能量和动量:研究电磁场携带的能量和动量,以及它们与电荷、电流之间的相互作用。

(3)电磁场的辐射:研究电磁波在空间中的辐射现象,包括辐射源、辐射功率和辐射强度等。

5.电动力学应用(1)通信技术:电磁波的传播特性使其成为无线通信的理想载体,广泛应用于方式、电视、无线电等领域。

(2)能源传输:电磁感应原理使电能的高效传输成为可能,如变压器、发电机等。

(3)电子设备:电磁场的控制和应用是电子设备工作的基础,如电脑、方式、家用电器等。

《电动力学》课件

《电动力学》课件

目录•课程介绍与基础知识•静电场•稳恒电流场•恒定磁场•时变电磁场•电磁辐射与散射课程介绍与基础知识0102 03电动力学的定义和研究范围电动力学是物理学的一个重要分支,主要研究电磁场的基本性质、相互作用和变化规律。

电动力学的发展历史从库仑定律、安培定律到麦克斯韦方程组的建立,电动力学经历了漫长的发展历程。

电动力学在物理学中的地位电动力学是经典物理学的基础之一,对于理解物质的微观结构和相互作用具有重要意义。

电动力学概述03电磁场与物质的相互作用洛伦兹力、电磁辐射等。

01静电场和静磁场的基本性质电荷守恒定律、库仑定律、高斯定理等。

02电磁感应和电磁波的基本性质法拉第电磁感应定律、麦克斯韦方程组等。

电磁现象与基本规律数学物理方法简介向量分析和场论基础向量运算、微分和积分运算、场论的基本概念等。

微分方程和偏微分方程基础常微分方程、偏微分方程、分离变量法等。

复变函数和积分变换基础复数运算、复变函数、傅里叶变换和拉普拉斯变换等。

特殊函数和数学物理方程简介勒让德多项式、贝塞尔函数、超几何函数等,以及波动方程、热传导方程、泊松方程等数学物理方程的基本概念和求解方法。

静电场库仑定律与电场强度库仑定律描述两个点电荷之间的相互作用力,其大小与电荷量的乘积成正比,与它们之间的距离的平方成反比。

电场强度表示电场中某点的电场力作用效果的物理量,其方向与正电荷在该点所受的电场力方向相同。

电场强度的计算通过库仑定律和叠加原理,可以计算多个点电荷在某点产生的电场强度。

电势与电势差电势描述电场中某点电势能的物理量,其大小等于将单位正电荷从该点移动到参考点时电场力所做的功。

电势差表示电场中两点间电势的差值,等于将单位正电荷从一点移动到另一点时电场力所做的功。

电势的计算通过电势的定义和叠加原理,可以计算多个点电荷在某点产生的电势。

1 2 3在静电场中,导体内部电场强度为零,电荷分布在导体的外表面。

导体的这种性质使得它可以用来屏蔽电场。

2024版《电动力学》ppt课件

2024版《电动力学》ppt课件
9
电势分布及等势面描绘方法
电势定义
单位正电荷在电场中某点所具有的电势能。
电势差与电势分布
描述电场中两点间电势的差值,电势分布可通过求解泊松方程或 拉普拉斯方程得到。
等势面描绘
电势相等的点构成的曲面,其描绘方法包括解析法、图解法等。
2024/1/24
10
导体在静电场中特性研究
导体静电平衡条件
导体内部电场强度为零,电荷只分布在导体表面。
物理意义
揭示了电磁现象的基本规律,是电磁学的基础理 论。
方程组包括
高斯定律、高斯磁定律、麦克斯韦-安培定律和法 拉第感应定律。
2024/1/24
5
电磁波传播特性及波动方程
2024/1/24
电磁波
01
电场和磁场相互激发并在空间中传播形成的波动现象。
传播特性
02
电磁波在真空中以光速传播,具有能量和动量。
铁磁材料在恒定磁场中表现出非线性、磁饱和、磁滞等特性。
2024/1/24
03
应用举例
利用铁磁材料的特性制作电感器、变压器、电机等电气设备,以及用于
磁记录、磁放大等领域。
16
恒定磁场能量储存与转换
2024/1/24
恒定磁场能量密度 恒定磁场中储存的能量与磁场强度的平方成正比,能量密 度w=(1/2)BH。
26
无线通信系统基本原理简介
无线通信系统组成
包括发射机、信道、接收机等部分,实现信息 的传输和接收。
2024/1/24
无线通信基本原理
利用电磁波作为信息载体,通过调制将信息加载到载 波上,经过信道传输后,在接收端进行解调还原出原 始信息。
无线通信关键技术
包括调制与解调、信道编码与解码、多址接入、 抗干扰等技术,保证通信系统的可靠性和有效 性。

电动力学第一章.ppt

电动力学第一章.ppt

(1)库仑定律:
F

k
Q1Q2 r3
r
实验表明, 长度的数量级为1109cm时, 精确成立. 当距离较
小时,例如,卢瑟福由薄箔对粒子的散射的分析证实:假定可以
把粒子和原子核当作静电相互作用的经典点电荷看待,并且可以
忽略电子的电荷云,则一直到距离的数量级为10-11cm时,库仑定律
仍然有效. 当距离更小时,必须用相对论性量子力学,这时强相互
作用使问题复杂且难于解答. 然而,用质心系能量高达5GeV的阳、
阴电子做的弹性散射实验表明,量子电动力学(点电子与无质量光
子相互作用的相对论性理论)一直到距离的数量级为10-15cm时保
持有效. 结论:在整个经典距离范围乃至深入到量子领域,光子
质量可以当作为零(力的平方反比律成立). 已经知道平方反比律
第一章 电磁现象的普
遍规律
电磁场的描述
电磁现象的描述
电磁场由随时空变化的两个矢量函数描述
电场强度 E(x, y, z,t)
磁感应强度 B(x, y, z,t)
电磁场的运动规律

求描述电磁场的物理量(

E ,B
)的时空变化关系
数学上,就是求( E ,B )所满足的偏微分方程
§1.1 电荷和电场
内容概要
1. 库仑定律 2. 高斯定理和电场的散度 3. 静电场的旋度
1. 库仑定律(1785年)

F
q2
12
F

1
4π 0
QQ' r3
r
r
q1
er12
q1

F 21
q2
r
er21
r为由Q到Q 的矢径. 0是真空电容率(真空介电常量).

电动力学ppt课件

电动力学ppt课件

a)
b)
B与 E E B
E, B, k
同相位;
E构 B成 右E手 k螺 E旋关0系
c) E v,振幅比为波速(因为
B E,
B,
k k
相互垂直且
B
k
E
)。
12
机动 目录 上页 下页 返回 结束
(5)波形图
假定在某一时刻( t t0),取 E, B 的实部。
k
13
机动 目录 上页 下页 返回 结束
(2)波长与周期 波长 2
k
周期 T 1 2 f
波长定义:两相位差为 2
两等相面相位差:k(Rs Rs
的等相面间的距离。
) 2 Rs Rs
2
k
波长、波 k k 2
v f
速、频率
v
2
间的关系 T 1 2 v
f
T
(3)横波特性(TEM波) k E k B 0
第四章
电磁波的传播
1
本章重点:
1、电磁场波动方程、亥姆霍兹方程和平面电磁波 2、反射和折射定律的导出、振幅的位相关系、偏振 3、导体内的电磁波特性、良导体条件、趋肤效应 4、了解谐振腔和波导管中电磁波的运动形式
本章难点:
1、振幅的位相关系 2、导体内电磁波的运动 3、波导管中电磁波解的过程
2
机动 目录 上页 下页 返回 结束
9
机动 目录 上页 下页 返回 结束
2.平面电磁波的传播特性 平面波:波前或等
相面为平面,且波
(1)解为平面波

S
面ES上为x相,t与位kE垂k0直eix的kx平k面tR。s 在
沿等相面法线方向
传播。
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
n
S
1
1
n
S
17
(2)导体表面上的边值关系
|s 常数
n
s
En
三.静电场的能量 仅讨论均匀介质
1. 一般方程: 能量密度
w
1
E
D
总能量
W
1 2
2
E DdV
2. 若已知 ,总能量为
W 1 dV 1 不是能量密度
2V
2
18
唯一性定理*
区域内 分布已知, 满足 2 若V边界上
r r 导体中的欧姆定律*
J E
8
5.电磁场的边值关系
边值关系一般表达式*

(D2
D1 )

(B2
B1 )
0
nˆ nˆ
E2 H2
E1 H1
0
理想介质边值关系表达式

( D2
D1 )
0

(
B2
B1 )
0
nˆ nˆ
E2 E1 0 H2 H1 0
20
一、拉普拉斯方程的适用条件
1、空间 0 ,自由电荷只分布在某些介质(或导
体)表面上,将这些表面视为区域边界, 可用 拉普拉斯方程。
2、在所求区域的介质中若有自由电荷分布,则要求 自由电荷分布在真空中产生的势为已知。 一般所求区域为分区均匀介质,则不同介质分界
面上有束缚面电荷。区域V中电势可表示为两部分
rr
dV
毕奥—萨伐尔定律
rr
rr
ÑL B • dl
0
S
J r
• dS r
安培环路定律*
旋度方程 B 0J
磁场的散度方程 B 0 4
法拉第电磁感应定律
i
r
ÑL Ei
r
r dl
d dt
B
d dt
(其中
rr
S B dS
B
S r
Ei
rr B dS)
r B
t
Ei 0 感生电场是有旋无源场
的和,即 0 ,0 为已知自由电荷产生 的电势,不满足 2 0 , 为束缚电荷产生
第一章电磁现象的普遍规律
1
1. 电荷与电场 2. 电流和磁场 3.麦克斯韦方程组 4.介质理论 5.电磁场的边值关系 6.电磁场的能量和能流
2
1. 电荷与电场
点电荷Q在r处激发的电场强度为:
E
Q
4 0r3
r
如果电荷是在某区域连续分布,分布函数是
E(r)
(r)(r r) 4 0 r r 3 dV
一个闭合曲面的电通量与曲面内包含的电荷成正比。
Q
E • dS
S

E
(r)
0
0
r
高斯定理的积分形式* 高斯定理的微分形式*
E 0
3
2. 电流和磁场
电荷守恒定律
I
ÒS
J
r • dS
t
佑V
dV
V
t
dV
电荷守恒定律的积分表达式

r J
0
电荷守恒定律的微分表达式
t
r B(x)
0
4
V
r J
(
x) r3
dV nr
V
rr J2 J1
f
t
10
7.电磁场的能量和能流
单位体积的能量 --- 能量密度
w
1
D
H B
2
能流密度矢量(玻印亭矢量):它表示单位时间、 垂直通过单位面积的能量,用来描述能量的传播。
S H
电磁场能量守恒公式
dW
S
d
dA
S
w
f
v
dt
dt
t
11
第二章 静电场
S
6
r r rr
洛伦兹力公式 f E J B
对于点电荷
r F
r qE
qvr
r B
4.介质理论
极化强度
r
P lim V 0
r pi V
rr
Ñ 极化电荷密度
r 磁化强度 M
V PdV lim
rS mi
P dS
V 0 V
r
P P
r r rrr
r
Ñ 磁化电流密度
极化电流密度
Im
r JP
1.静电势的引入
E 0
静电场标势 [简称电势]
E
① 的选择不唯一,相差一个常数,只要
知道
即可确定
E
② 取负号是为了与电磁学讨论一致
③ 满足迭加原理
E E1
E1 E2
1
E2
2
1 2 (1 2 )
14
机动 目录 上页 下页 返回 结束
2、电势差*
3、电荷分布在有限区几种情况的电势
本章重点: 静电势及其特性、分离变量法、镜象法 本章难点: 分离变量法(柱坐标)、电多极子
12
静电场的基本特点:
① J 0
② E, B, , P 等均与时间无关
③不考虑永久磁体(
M
0)
④ BH 0

H
0
,
B
0
,H
B
0
为唯一解)
基本方程: E 0
D
边值关系:
13
一、静电场的标势*
介质1

介质2
一侧为导体的边
值关系表达式*
nˆ D

B
0
nˆ nˆ
H E0α
9
其它边值关系*
Ñ s Ñ L
r P r M
r dS
r dL
V
r
p
s
dV nr
rr P2 P1
r dS
nr
r M2
p
r M1
r M
s
r Jf
r dS
d dt
rr r
总电场为:
r E
E r B ,
ES Ei r
E
t
t
r 0
r 位移电流 JD
总磁场的旋度
0
E rt
B
r
0 J
00
r E t
5
真空中的电磁场基本方程 ——麦克斯韦方程组
E dl
B
dS
L
S t
L
B
dl
0I
00
d dt
E dS
S
Q
E dS
S
0
B dS 0
(1)点电荷
(P) Qr
dl
Qdr
Q
P 4 0r3
P 4 0r2 4 0r
15
(2)电荷组
n
(P)
Qi
i1 4 0 ri
(3)无限大均匀线性介质中点电荷
Q 4r
点电荷在均匀介质中 的空间电势分布(Q 为自由电荷)
Q 产生的电势 QP产生的电势
f
Qf
4 0r
P
QP
4 0 r
(QP
(0
1)Q f
)
f
P
Q f QP
4 0 r
(4)连续分布电荷 (P)
Qf
4(rx)dV V 4 0 r
16
机动 目录 上页 下页 返回 结束
二、静电势的微分方程和边值关系 1. 电势满足的方程
泊松方程 2
适用于均 匀介质
2.静电势的边值关系* (1) 两介质分界面
1 S 2 S
S 已知,或V边界上
n
S
已知,则 V
内场(

电场)唯一确定。
2.区域内含有多个均匀介质区域
区域内 分布已知, 满足 2 若V边界上
S 已知,或V边界上
n
S
已知,则 V
内场(

电场)唯一确定。
19
3.有导体时的唯一性定理
区域内 分布已知, 满足 2
两种可能的边界条件 a 给定每个导体的电势 或者 b 给定给个导体所带的电荷 空间中电势分布函数唯一。
S Jrm P t
dS
M dl
L
Jm M
7
介质中的麦克斯韦方程*
rrJrrtDr
r t
D
r 0
r rr
D r
0
E
r
P
r
B 0(H M )
rr
r B
r
ÑL E
r
ÑL H
dl r dl I
S t
d dt
dS rr D dS
rr
ÑS Dr
dS r
Q
ÑS B dS 0
相关文档
最新文档