高考数学专题06 数列中的最值问题(第二篇)(解析版)
2021年高考数学压轴讲与练 专题08 数列中的最值问题(解析版)
![2021年高考数学压轴讲与练 专题08 数列中的最值问题(解析版)](https://img.taocdn.com/s3/m/dfb828dea6c30c2258019e86.png)
专题08 数列中的最值问题【压轴综述】纵观近几年的高考命题,考查常以数列的相关项以及关系式,或数列的前n 项和与第n 项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n 项和,有时与参数的求解、数列不等式的证明等加以综合.探求数列中的最值问题,是数列不等式的综合应用问题的命题形式之一.本专题通过例题说明此类问题解答规律与方法.1.常见思路一:构建函数模型,利用函数的图象和性质解决最值问题;2.常见思路二:构建函数模型,应用导数研究函数的最值;3.常见思路三:构建不等式求解,确定范围,实现求最值;4.常见思路四:应用基本不等式,确定最值.【压轴典例】例1.(2020·北京高考·T8)在等差数列{a n }中,a 1=-9,a 5=-1.记T n =a 1a 2…a n (n =1,2,…),则数列{T n } ( )A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项 D .无最大项,无最小项【解析】选B .设公差为d ,因为a 1=-9,a 5=a 1+4d =-1,所以d =2,所以a 1,...,a 5<0,a 6, 0所以T 1<0,T 2>0,T 3<0,T 4>0,T 5<0,以后都小于0,且越来越小.例2.(2021·山西运城市·高三期末)设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N*-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( ) A .14 B .15C .16D .17【答案】C【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=,7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16.例3.(2021·新疆高三其他模拟)若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202020202020n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为( ) A .2020 B .2019 C .2018 D .1010【答案】D【详解】3212()43n n n f x a x a x a '++=--,∴12(1)430n n n f a a a '++=--=,即有()2113n n n n a a a a +++-=-,∴{}1n n a a +-是以2为首项3为公比的等比数列,∴1123n n n a a -+-=⋅,1201111221123232313n n n n n n n n n n a a a a a a a a a a --++---=-+-+-++-+=⋅+⋅++⋅+=∴31log n n b a n +==∴12231120202020202011120201223(1)n n bb b b b b n n +⎛⎫+++=+++⎪⨯⨯+⎝⎭1111120202020122311n n n n ⎛⎫=-+-++-= ⎪++⎝⎭,又20201n y n =+为增函数,当1n =时,1010n S =,10102020n S ≤<,若n S t ≥恒成立,则t 的最大值为1010.例4.(2021·全国高三其他模拟)数列{}n a 满足:11a =,*,()m n m n a a a mn m n N +=++∈,若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和74n S ≥,则n 最小为( )A .6B .7C .8D .9【答案】B【详解】因为11a =,*,()m n m n a a a mn m n N +=++∈,所以11n n a a n +=++,所以1n n a a n -=+,所以1234...=+++++n a a n ()11234 (2)+=+++++=n n n ,所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 所以12111n n S a a a =+++11111212231n n ⎛⎫=-+-++- ⎪+⎝⎭21nn =+, 因为74n S ≥,所以2714n n ≥+,解得7n ≥, 例 5.(河南省开封市2020高三)已知等比数列满足:,,则取最小值时,数列 的通项公式为( )A .B .C .D .【答案】A【解析】设等比数列的公比为,当时,,则当时,,,两式相减得:,即,,解得,又,当且仅当时,等号成立.取最小值1时,,例6.(安徽省黄山市2020高三)已知数列和的前项和分别为和,且,,,若对任意的 ,恒成立,则的最小值为 ( )A .B .C .D .【答案】B 【解析】因为,所以,相减得,因为,所以,又,所以, 因为,所以,因此,,从而,即的最小值为.例7.(广西柳州市2020高三)已知点在函数的图象上().数列的前项和为,设,数列的前项和为.则的最小值为____【答案】【解析】点在函数图象上,,是首项为,公比的等比数列,,则,是首项为,公差为2的等差数列,当,即时,最小,即最小值为.例8.(2019·天津高考模拟)已知数列{}n a 是正项等比数列,1342310,2a a a a a +=-=,数列{}n b 满足条件123(2)n b n a a a a =.(Ⅰ) 求数列{}n a 、{}n b 的通项公式; (Ⅱ) 设11n n nc a b =-,记数列{}n c 的前n 项和n S . ①求n S ; ②求正整数k ,使得对任意n *∈N ,均有k n S S ≥.【答案】(1)2nn a =,()1;n b n n =+(2)①11;12nn S n ⎛⎫=- ⎪+⎝⎭②4k =. 【解析】(1)设数列{}n a 是正项等比数列的公比为0q >,因为1310a a +=,4232a a a -=所以有1113211110222a a q a a q a q a qq +==⎧⎧⇒⎨⎨-==⎩⎩,所以2;nn a =(1232nb n a a aa =2312322222n n b b n n +++⋅⋅⋅+⇒⨯⨯⨯⋅⋅⋅⨯=⇒=(1)2222(1);n b n n n b n n +⇒=⇒=+(2)①因为 11n n nc a b =-,所以123n n S c c c c =+++⋅⋅⋅+ 123123()()n n n S a a a a b b b b ⇒=+++⋅⋅⋅+-+++⋅⋅⋅+,11[1()]111122[],1122334(1)12n n S n n -⇒=-+++⋅⋅⋅+⨯⨯⨯⨯+-111111111()(1),2223341n n S n n ⇒=---+-+-+⋅⋅⋅+-+11111()1().2112n n n S n n ⇒=--+=-++②令11111111(1)(2)2()()22122(1)(2)n n n n n n n n S S n n n n ++++++--=--+=++⋅++, 由于12n +比(1)(2)n n ++变化的快,所以10n n S S +->,得4n <,即1234,,,S S S S ,递增而456,,,,n S S S S ⋅⋅⋅递减,4S ∴是最大,即当4k =时,对任意*n N ∈,均有k n S S ≥.例9.(2021·广西南宁市·南宁三中高三)根据预测,疫情期间,某医院第()N n n *∈天口罩供应量和消耗量分别为n a 和n b (单位:个),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n天末的口罩保有量是前n 天的累计供应量与消耗量的差. (1)求该医院第4天末的口罩保有量;(2)已知该医院口罩仓库在第n 天末的口罩容纳量()24468800n S n =--+(单位:个).设在某天末,口罩保有量达到最大,问该保有量是否超出了此时仓库的口罩容纳量? 【答案】(1)935;(2)第42天末,口罩保有量达到最大超过了.【详解】(1)第4天末的口罩保有量是前4天口罩供应量和消耗量之差,将1,2,3,4n =代入n a 和n b 得第4天末的口罩保有量为:()()()()1234123420954204306789935a a a a b b b b +++-+++=+++-+++=,所以该医院第4天末的口罩保有量为935;(2)当n n a b >时,保有量始终增加.即104705n n -+≥+,n 为正整数,解得42n ≤, 即第42天末的时候,保有量达到最大,此时()()1234212342a a a a b b b b ++++-++++()()420503864742965878222+⨯+⨯=+-=,而容纳量为()2424424688008736S =--+=,而87828736>,所以保有量超过了容纳量.例10.(2019·江苏高考真题)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M-数列”{c n }θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +成立,求m 的最大值. 【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠.由1111,b S b ==得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n ()*n N∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k k qk q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k k q k k ≤≤-.设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e .列表如下:x(1,e)e (e ,+∞)()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取33q =k =1,2,3,4,5时,ln ln k q k,即k k q ≤,经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【压轴训练】1.(2021·陕西西安市·西安中学高三)在等差数列{}n a 中100a <,110a >,且1110a a >,则在0n S <中,n 的最大值为( )A .17B .18C .19D .20【答案】C【详解】设公差为d ,100a <,110a >,0d ∴>,1110a a >,则1110a a >-,即10110a a +>,()119191019+1902a a S a ==<,()()11020101120+10+02a a S a a ==>,则0nS <时,n 的最大值为19.2.(2021·全国高三专题练习)已知数列{a n }的前n 项和为S n =2n+1+m,且a 1,a 4,a 5-2成等差数列,b n =()()nn n 1a ,a 1a 1+--数列{b n }的前n 项和为T n .,则满足T n ,>20172018的最小正整数n 的值为 A .11 B .10 C .9 D .8【答案】B【解析】根据12n n S m +=+可以求得4,12,2n n m n a n +=⎧=⎨≥⎩,所以有1454,16,32a m a a =+==,根据145,,2a a a -成等差数列,可得432232m ++-=,从而求得2m =-,所以12a =满足2nn a =,从而求得2()n n a n N *=∈,所以112(1)(1)(21)(21)n n n n n n n a b a a ++==----1112121n n +=---,所以1111111113377152121n n n T +=-+-+-+⋯+---11121n +=--,令1120171212018n +->-,整理得122019n +>,解得10n ≥,故选B.3.(2021·全国高三其他模拟)已知数列{}n a 满足()12323213n n a a a na n ++++=-⋅.设4n nnb a =,n S 为数列{}n b 的前n 项和.若n S λ<(常数),*n N ∈,则λ的最小值是( ) A .32B .94C .3112D .3118【答案】C 【详解】()12323213n n a a a na n ++++=-⋅ ①当2n ≥时,类比写出()()11231231233n n a a a n a n --++++-=-⋅ ②,由①-②得 143n n na n -=⋅ ,即143n n a -=⋅.当1n =时,134a =≠,131432n n n a n -=⎧∴=⎨⋅≥⎩,141323n n n b nn -⎧=⎪⎪=⎨⎪≥⎪⎩210214231123333333333n n n n n S --=++++=+++++③23111123-1+3933333n n nn nS -=+++++④③-④得,023********+-39333333n n nn S -=+++++11-23-1931-3n n n =+ 316931-124312n nn S +∴=<⋅n S λ<(常数),*n N ∈,∴λ的最小值是31124.(2021·安徽安庆市·高三)已知等差数列{}n a 满足11a =,1010a =,则数列18n n n a a a ++⎧⎫⎨⎬⎩⎭的最大项为( ) A .118B .115C .344D .114【答案】C【详解】因为数列{}n a 是等差数列,11a =,1010a =,所以1019a a d =+,解得1d =,n a n =,则()()2181818989n n n an n a an n n n n n++===++++++,因为899n n ++≥=+n =2n =时,231011815292a a a ==++,当3n =时,341113844393a a a ==++,故数列18n n n a a a ++⎧⎫⎨⎬⎩⎭的最大项为344,5.(2021·北京高三开学考试)等差数列{}n a 的前n 项和为n S .已知15a =-,31a =-.记(1,2,)==⋅⋅⋅nn nS b n a ,则数列{}n b 的( ) A .最小项为3b B .最大项为3bC .最小项为4bD .最大项为4b【答案】C【详解】由题意,设等差数列{}n a 的公差为d ,因为15a =-,31a =-,可得311(5)2312a a d ----===-,所以5(1)227n a n n =-+-⨯=-,211()(527)622n n n a a n n S n n +-+-===-,则2276n n n S n b a n n -=-=,可得2234237236346749,84b b ⨯-⨯--⨯-⨯====-,所以34b b >,可排除A 、D ;设()2677,[271,)(,)22x x f x x x -=∈+-+∞,则()2222((26)(27)(6)22(721)27)(27)x x x x x x x x x f ----⨯-+--'==,因为2(7)41210∆=--⨯⨯<,所以()0f x '>,所以()f x 在区间71,2⎡⎫⎪⎢⎣⎭和7(,)2+∞上都是单调递增函数,即当1,2,3n =时,数列{}n b 为递增数列,当4,n n N +≥∈时,数列{}n b 也为递增数列,其中12345851,,9,8,,33b b b b b ====-=-, 例如当25n =时,可得25347543b b =>,所以B 不正确,C 正确. 6.(2021·江西高三其他模拟)在等差数列{}n a 中,1411,5a a =-=-.记12(1,2,)n n T a a a n ==,则数列{}n T ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】C【详解】依题意可得公差415112413a a d --+===-,1(1)1122213n a a n d n n =+-=-+-=-,所以当6n ≤时,0n a <,当7n ≥时,0n a ≥,因为1110T =-<,211(9)990T =-⨯-=>,311(9)(7)6930T =-⨯-⨯-=-<,411(9)(7)(5)34650T =-⨯-⨯-⨯-=>,53465(3)103950T =⨯-=-<, 610395(1)103950T =-⨯-=>,又当6n ≥时,1234560n n T a a a a a a a =>,且1121112n n n n nT a a a a T a a a +++==2111n =-≥,即1n n T T +≥,所以当6n ≥时,数列{}n T 单调递增, 所以数列{}n T 无最大项,数列{}n T 有最小项510395T =-.7.(2019·北京师大附中高考模拟)已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12,则1m +9n 的最小值为( ) A .32B .83C .114D .不存在【答案】C【解析】设正项等比数列{a n }的公比为q ,且q >0,由a 7=a 6+2a 5得:a 6q=a 6+62a q,化简得,q 2-q-2=0,解得q=2或q=-1(舍去),因为a m a n =16a 12,所以()()1111m n a qa q --=16a 12,则q m+n-2=16,解得m+n=6,所以191191918(m n)10106663n m m n m n m n ⎛⎛⎫⎛⎫+=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝ . 当且仅当9n m m n =时取等号,此时96n m m n m n ⎧=⎪⎨⎪+=⎩,解得3292m n ⎧=⎪⎪⎨⎪=⎪⎩,因为mn 取整数,所以均值不等式等号条件取不到,则1983m n +>,验证可得,当m=2、n=4时,19m n+取最小值为114,8.(2020·山东枣庄八中高三)已知数列{}n a 的前n 项和为n S ,且12n n S a +=,则使不等式2221286n a a a +++<成立的n 的最大值为( )A .3B .4C .5D .6【答案】B【解析】根据题意,数列{}n a 满足12n n S a +=,当1n =时,1121a a =+,得11a =, 当2n ≥时,()112n n n n n a a S S a ---=-=,即12n n a a -=,所以12nn a a -=, 又∵11a =满足上式,即{}n a 是以2为公比,1为首项的等比数列,则12n n a -=,则214n n a -=,则数列{}2na 是以1为首项,4为公比的等比数列,则()()22212114141143n n n S a a a -=+++==--,若2221286n a a a +++<,则有()141863n-<,变形可得:4259n <,又由*n N ∈,则4n ≤,即n 的最大值为4; 9.(2021·安徽高三开学考试)已知n S 是各项均不为零的等差数列{}n a 的前n 项和,且()2*21n n S a n -=∈N ,使不等式1231a a a +2234345121111142n n n n n a a a a a a a a a λ++⎛⎫++++ ⎪⎝⎭成立,则实数λ的最大值是___________. 【答案】445【详解】因为()()()1212121212n n n n a a S n a ---+==-,所以221n n Sa -=就是()21n n a -2n a =,21n a n =-,*n N ∈.等差数列{}n a 的首项11a =,公差2d =.因为一般项1211211114n n n n n n n a a a a a a a +++++⎛⎫=- ⎪⎝⎭,所以原式1223234511211111114n n n n a a a a a a a a a a a a +++⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()()212121112432123n n n n a a a a n n ++⎛⎫+=-= ⎪++⎝⎭.即()()222113212342n n n n n n λ+⎛⎫≥+ ⎪++⎝⎭.所以存在*n N ∈,使()()432123n n λ≤++成立,又易知()()432123n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭为递减数列,故当1n =时,()()432123n n ++有最大值,故λ≤()()max443212345n n ⎡⎤=⎢⎥++⎢⎥⎣⎦.故实数λ的最大值是445. 10.(2020·江苏高考模拟)已知正项等比数列{}n a 的前n 项和为n S .若9362S S S =+,则631S S +取得最小值时,9S 的值为_______. 【解析】由9362S S S =+,得:q≠1,所以936111(1)(1)(1)2111a q a q a q q q q---=+---,化简得:936112(1)q q q -=-+-,即963220q q q --+=,即63(1)(2)0q q --=,得32q =,化简得631S S +=6131(1)11(1)aq qq a q --+--=11311a q q a -+≥-11311a q q a -=-,即1a =时,631S S +取得最小值,所以919(1)1a q S q -==-9(1)1q q --=311.(2020·广东高考模拟)已知等差数列{a n }的前n 项和为S n ,若S 4=10,S 8=36,当n∈N *时,nn 3a S +的最大值为______. 【答案】71 【解析】由题意,等差数列{}n a 的前n 项和为n S ,若4810,36S S ==,设首项为1a ,公差为d ,则11434102878362a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,解得11a d ==,所以,所以(1)2n n n S +=, 则2322(3)(4)1271272n n a n n n n S n n n n+===++++++,当12n n+取最小值时,3n n a S +取最大值,结合函数()12(0)f x x x x =+>的单调性,可得当3n =或4n =时,317n n maxa S +⎛⎫= ⎪⎝⎭.12.(2019·福建高考模拟(理))在数列{}n a 中,1253a a +=,()()11280n n n a na n N *+--+=∈,若()12n n n n b a a a n N *++=⋅⋅∈,则{}n b 的前n 项和取得最大值时n 的值为__________. 【答案】10 【解析】解法一:因为()11280n n n a na +--+=① 所以()211280n n na n a ++-++=②,①-②,得122n n n na na na ++=+即122nn n a a a ++=+,所以数列{}n a 为等差数列. 在①中,取1n =,得1280a -+=即128a =,又1253a a +=,则225a =, 所以313n a n =-.因此12100a a a >>>>,1112130a a a >>>>所以1280b b b >>>>,99101180b a a a =⋅⋅=-<,10101112100b a a a =⋅⋅=>,1112130b b b >>>>所以12389T T T T T <<, 9101112T T T >>又1089108T T b b T =++>,所以10n =时,n T 取得最大值. 解法二:由()11280n n n a na +--+=,得()12811n n a a n n n n +-=---, 令1n n a c n +=,则11111282811n n c c n n n n -⎛⎫⎛⎫-=--=- ⎪ ⎪--⎝⎭⎝⎭,则11281n c c n ⎛⎫-=- ⎪⎝⎭, 即1211281281n c c a n n ⎛⎫⎛⎫=+-=+- ⎪ ⎪⎝⎭⎝⎭,代入得()()1222812828n n a nc na n n a +==+-=+-,取1n =,得1280a -+=,解得128a =,又1253a a +=,则225a =,故1283n a n +=- 所以313n a n =-,于是()()()12313283253n n n n b a a a n n n ++=⋅⋅=---. 由0n b ≥,得()()()3132832530n n n ---≥,解得8n ≤或10n =, 又因为98b =-,1010b =, 所以10n =时,n T 取得最大值.13.(2021·山东菏泽市·高三期末)已知数列{}n a 的前n 项和是2n S n =.(1)求数列{}n a 的通项公式; (2)记12n n n b a a +=,设{}n b 的前n 项和是n T ,求使得20202021n T >的最小正整数n . 【答案】(1)21n a n =-;(2)1011. 【详解】(1)111a S ==,当2n ≥时,()221121n n n a S S n n n -=-=--=-,1a 符合上式,所以21n a n =-.(2)()()21121212121n b n n n n ==--+-+, ∴11111111335212121n T n n n =-+-++-=--++,令120201212021n ->+,解得1010n >,所以最小正整数n 为1011.14.(2021·广东韶关市·高三一模)已知数列{}n a 的前n 项和为n S ,若2n S n kn =-+(*k ∈N ),且n S 的最大值为25.(1)求k 的值及通项公式n a ; (2)求数列{}112n a n -⋅的前n 项和nT .【答案】(1)10k =,211n a n =-+(*n ∈N );(2)434993n nn T +=-⋅. 【详解】(1)由题可得2224n k k S n ⎫⎛=--+ ⎪⎝⎭,*k ∈Z ,所以当k 为偶数时,()2max2254n k k S S ===,解得10k =;当k 为奇数时,()21max 21254n k k S S +-===,此时k 无整数解.综上可得:10k =,210n S n n =-+.①1n =时,119a S ==.②当2n ≥时,1n n n a S S -=-()()()()22101101n n n n =-+---+-211n =-+,当1n =时也成立. 综上可得:211n a n =-+所以10k =,211n a n =-+(*n ∈N ) (2)112224n a n nn n n --⋅=⋅=1212444n nnT =++⋅⋅⋅+① 231112144444n n n n n T +-=++⋅⋅⋅++② 两式相减得:21311144444n n n nT +=++⋅⋅⋅+-1111131144144334414n n n n n n n T ++⎫⎛- ⎪⎝⎭=-=--⋅- 则14199434n n n n T -=--⋅⋅.则434993n nn T +=-⋅. 15.(2021·江西吉安市·高三期末)已知{}n a 是公差不为0的等差数列,若1313,,a a a 是等比数列{}n b 的连续三项. (1)求数列{}n b 的公比; (2)若11a =,数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 和为n S 且99200nS >,求n 的最小值. 【答案】(1)5;(2)50.【详解】(1)设等差数列{}n a 的公差为d ,由1313,,a a a 是等比数列{}n b 的连续三项,得23113a a a =⋅,即()()2111212a d a a d +=⋅+,化简得2148d a d =.10,2d d a ≠∴=. 设数列{}n b 的公比的公比为q ,则3111111245a a d a a q a a a ++====. (2)若11a =,则1111112,21,(21)(21)22121n n n d a n a a n n n n +⎛⎫==-==- ⎪-+-+⎝⎭, 111112133557(21)(21)n S n n ⎫⎛=++++⎪ ⨯⨯⨯-⨯+⎝⎭111111111111233557212122121nn n n n ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 由99200n S >,得9999,212002n n n >∴>+,故n 的最小值为50.。
2021年高考数学专题复习:数列(含答案解析)
![2021年高考数学专题复习:数列(含答案解析)](https://img.taocdn.com/s3/m/7bee7e713186bceb19e8bbd6.png)
(1)求{an}的通项公式;
(2)设bn=2 an,求{bn}的前n项和Tn.
3.已知等比数列{an}的各项均为正数,且a1+16a3=1,a1a5=16a42.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{ }的前n项和Tn.
(1)求数列{an}的通项公式;
(2)证明: .
13.设数列{an}满足a1=2,an+1=an+2n.
(1)求数列{an}的通项公式;
(2)设bn=log2(a1•a2…an),求数列{ }的前n项和Sn.
14.已知等比数列{an}的各项都为正数,Sn为其前n项和,a3=8,S3=14.
(1)求数列{an}的通项公式;
(2)记Tn ,求使得Tn 成立的正整数n的最小值.
15.设数列{an}的前n项和为Sn(n∈N*),且满足an+Sn=2n+1.
(1)证明数列{an﹣2}是等比数列,并求数列{an}的通项公式;
(2)若bn=n(2﹣an),求数列{bn}的前n项和Tn.
16.已知{an}是等差数列,{bn}是等比数列,b1=a5,b2=3,b5=﹣81.
(1)求数列{an},{bn}的通项公式;
(2)设cn an,数列{cn}的前n项和为Tn,若不等式 1 恒成立,求λ的取值范围.
18.已知递增的等比数列{an}的前n项和为Sn,S3 ,a3a4=a5.
(1)求数列{an}的通项公式;
(2)若4an=3Sn,求正整数n的值.
19.已知等差数列{an}中,a2=3,a4=7.等比数列{bn}满足b1=a1,b4=a14.
高考数学压轴专题专题备战高考《数列》全集汇编含答案解析
![高考数学压轴专题专题备战高考《数列》全集汇编含答案解析](https://img.taocdn.com/s3/m/cbc2a200e518964bcf847c6b.png)
【高中数学】数学高考《数列》试题含答案一、选择题1.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.2.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.5.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.6.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L()332432299=+++=.【点睛】本题考查周期数列求和,属于中档题.7.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.8.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.9.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.10.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.11.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用14.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.15.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.16.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.17.已知数列{}n a 的前n 项和()2*23n S n n n N =+∈,则{}na 的通项公式为( ) A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C【解析】【分析】 首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可.【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立,所以41n a n =+,故选C.【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.18.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+; 接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >S 时,n的最大值为49所以当1300n故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。
高中数学求数列最值的12种题型(含答案)
![高中数学求数列最值的12种题型(含答案)](https://img.taocdn.com/s3/m/0adb7f2a14791711cd791700.png)
求数列最值的12种题型题型一:递推问题1、已知数列{a n }中,a 1>0,且a n +1=3+a n2.(1)试求a 1的值,使得数列{a n }是一个常数数列;(2)试求a 1的取值范围,使得a n +1>a n 对任何自然数n 都成立;(3)若a 1=4,设b n =|a n +1-a n |(n =1,2,3…),并以S n 表示数列{b n }的前n 项和,试证明:S n <52.解:(Ⅰ)欲使数列{a n }是一个常数数列,则a n +1=3+a n2=a n ,又依a 1>0,可以得a n >0并解出:a n =32.a n =-1(舍)即a 1=32(Ⅱ)研究a n +1-a n =3+a n 2-3+a n-12=a n -a n-12(3+a n 2+3+a n-12)(n ≥2)注意到:2(3+a n 2+3+a n-12)>0因此,a n +1-a n ,a n -a n -1,…,a 2-a 1有相同的符号.要使a n +1>a n 对任意自然数都成立,只须a 2-a 1>0即可.由3+a 12-a 1>0,解得:0<a 1<32.(Ⅲ)用与(Ⅱ)中相同的方法,可得当a 1>32时,a n +1<a n 对任何自然数n 都成立.因此当a 1=4时,a n +1-a n <0∴S n =b 1+b 2+…+b n .=|a 2-a 1|+|a 3-a 2|+…+|a n +1-a n |=a 1-a 2+a 2-a 3+…+a n -a n +1=a 1-a n +1=4-a n +1又:a n +2<a n +1即3+a n+12<a n+1,可得a n +1>32,故S n <4-32=52.题型二:最值问题2、已知数列{a n }满足:a 1=1,a n +1=a n2a n +1(*n N ∈),数列{b n }的前n 项和S n =12-12(23)n (*n N ∈).(1)求数列{a n }和{b n }的通项公式;(2)设nn nb C a =,是否存在*m N ∈,使9m C ≥成立?并说明理由.解答:(1)由1111221n n n n na a a a a ++=⇒=++,∴112(1)21n n n a =+-=-,*1()21n a n N n =∈-.由21212()3n n S =-⋅及1121212()(2)3n n S n --=-⋅≥,可得124()(2)3n n n n b S S n -=-=⋅≥,令1n =,则11121212()43b S ==-⋅=也满足上式,∴124()(*)3n n b n N -=⋅∈.1122(2)(21)4()4(21)(33n n n n n b C n n a --==-⋅=-,设m C 为数列{}n C 中的最大项,则12111224(21)()4(23)()33224(21)()4(21)()3327(21)23322521(21)32m m m m m mm m m m C C C C m m m m m m m m ----+⎧-≥-⎪≥⎧⎪⇒⎨⎨≥⎩⎪-≥+⎪⎩⎧⎧-⋅≥-≤⎪⎪⎪⎪⇒⇒⎨⎨⎪⎪-≥+⋅≥⎪⎪⎩⎩,∴3m =.即3C 为{}n C 中的最大项.∵2328020(939C ==<,∴不存在*m N ∈,使9m C ≥成立.题型三:公共项问题3、设A n 为数列{a n }的前n 项的和,A n =32(a n -1),数列{b n }的通项公式为b n =4n +3。
2024年高考数学高频考点(新高考通用)等差数列中Sn的最值问题(精讲+精练)解析版
![2024年高考数学高频考点(新高考通用)等差数列中Sn的最值问题(精讲+精练)解析版](https://img.taocdn.com/s3/m/b3d115a12dc58bd63186bceb19e8b8f67d1cef4d.png)
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展19等差数列中Sn 的最值问题(精讲+精练)一、等差数列的通项公式和前n 项和公式1.等差数列的通项公式如果等差数列{}n a 的首项为1a ,公差为d ,那么它的通项公式是1(1)=+-n a a n d .2.等差数列的前n 项和公式设等差数列{}n a 的公差为d ,其前n 项和11()(1)22+-=+=n n n a a n n S na d .注:数列{}n a 是等差数列⇔2=+n S An Bn (、A B 为常数).二、等差数列的前n 项和的最值1.公差0{}>⇔n d a 为递增等差数列,n S 有最小值;公差0{}<⇔n d a 为递减等差数列,n S 有最大值;公差0{}=⇔n d a 为常数列.2.在等差数列{}n a 中(1)若100,><a d ,则满足1+≥0⎧⎨≤0⎩m m a a 的项数m 使得n S 取得最大值m S ;(2)若100,<>a d ,则满足1+≤0⎧⎨≥0⎩m m a a 的项数m 使得n S 取得最小值m S .即若100>⎧⎨<⎩a d ,则n S 有最大值(所有正项或非负项之和);若100<⎧⎨>⎩a d ,则n S 有最小值(所有负项或非正项之和).【典例1】(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.二、题型精讲精练一、知识点梳理又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.【题型训练-刷模拟】一、单选题若5,故②正确;当8n =或9n =时,n S 取得最大值,所以211k a b +-=或12,故选:B【点睛】关键点点睛:本题考查的是等差数列的前n 项和最大值问题,思路是不难,大,即确定数列是递减数列,判断前多少项为非负项即可,但关键点在于如何求得正负项分界的项,即求得90a =,100a <,所以这里的关键是利用()217e 1ln 21a bS a b --≤≤-+,构造函数()e 1x f x x =--,利用导数判断函数单调性,结合最值解决这一问题.二、多选题三、填空题1四、解答题32.(2023·全国·高三专题练习)设等差数列{}n a 的前n 项和为n S ,且1121526,a S S =-=.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)228n a n =-;(2)227n S n n =-,最小值为182-.【分析】(1)设等差数列{}n a 的公差为d ,根据等差数列前n 项和公式由1215S S =列出方程即可解出d ,从而可得数列{}n a 的通项公式;(2)根据二次函数的性质或者邻项变号法即可判断何时n S 取最小值,并根据等差数列前n 项和公式求出nS。
2024年高考数学专项复习数列考查的九个热点(解析版)
![2024年高考数学专项复习数列考查的九个热点(解析版)](https://img.taocdn.com/s3/m/8b7ccc13b207e87101f69e3143323968011cf4e5.png)
数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516B.440C.258D.2202(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65mB.85mC.100mD.120m3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块2024年高考数学专项复习数列考查的九个热点(解析版)4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m-n+a m+n的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8= ()A.12B.24C.30D.326(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.427(2023·全国高考真题)已知a n为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=.【规律方法】1.等比数列运算问题的一般求法是设出首项a1和公比q,然后由通项公式或前n项和公式转化为方程(组)求解.2.等比数列的通项公式及前n项和公式,共涉及五个量a1,a n,q,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.9(2022·全国·统考高考真题)记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n 的通项公式及其前n 项和.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3).若a 1>1,则A.a 1<a 3,a 2<a 4B.a 1>a 3,a 2<a 4C.a 1<a 3,a 2>a 4D.a 1>a 3,a 2>a 412(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y =1.1x ,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :y =x +1交于点A n x n ,y n 和B n x n,y n,则20n =0y n y n=.(参考数据:取1.122=8.14.)13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.14(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x ,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<416(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.1217(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.19(2021·全国·统考高考真题)设a n 是首项为1的等比数列,数列b n 满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求a n 和b n 的通项公式;(2)记S n 和T n 分别为a n 和b n 的前n 项和.证明:T n <S n2.20(2023·河南郑州·统考模拟预测)已知数列a n 与b n 的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.热点六数列与解析几何交汇22(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,AA ,BB ,CC ,DD 是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA 1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=()A.0.75B.0.8C.0.85D.0.923(重庆·高考真题)设A x 1,y 1 ,B 4,95 ,C x 2,y 2 是右焦点为F 的椭圆x 225+y 29=1上三个不同的点,则“|AF |,|BF |,|CF |成等差数列”是“x 1+x 2=8”的()A.充要条件B.必要而不充分条件C.充分而不必要条件D.既不充分也不必要条件24(2021·浙江·统考高考真题)已知a ,b ∈R ,ab >0,函数f x =ax 2+b (x ∈R ).若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点s ,t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线热点七数列与概率统计交汇25(2023秋·江西·高三校联考阶段练习)甲同学现参加一项答题活动,其每轮答题答对的概率均为13,且每轮答题结果相互独立.若每轮答题答对得5分,答错得0分,记第i 轮答题后甲同学的总得分为X i ,其中i =1,2,⋅⋅⋅,n .(1)求E X 99 ;(2)若乙同学也参加该答题活动,其每轮答题答对的概率均为23,并选择另一种答题方式答题:从第1轮答题开始,若本轮答对,则得20分,并继续答题;若本轮答错,则得0分,并终止答题,记乙同学的总得分为Y .证明:当i >24时,E X i >E Y .26(2023秋·湖北荆州·高三沙市中学校考阶段练习)在正三棱柱ABC -A 1B 1C 1中,点A 处有一只小蚂蚁,每次随机等可能地沿各条棱或侧面对角线向另一顶点移动,设小蚂蚁移动n 次后仍在底面ABC 的顶点处的概率为P n .(1)求P1,P2的值.(2)求P n.27(2019·全国·高考真题(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,⋯,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,⋯,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1-p i}(i=0,1,2,⋯,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.热点八等差数列、等比数列的判断与证明28【多选题】(2022·广东茂名·模拟预测)已知数列a n的前n项和为S,a1=1,S n+1=S n+2a n+1,数列2na n⋅a n+1的前n项和为Tn,n∈N*,则下列选项正确的为()A.数列a n+1是等比数列 B.数列a n+1是等差数列C.数列a n的通项公式为a n=2n-1 D.T n>129(2021·全国·统考高考真题)记S n为数列a n的前n项和,b n为数列S n的前n项积,已知2S n+1b n=2.(1)证明:数列b n是等差数列;(2)求a n的通项公式.热点九数列中的“新定义”问题30(2020·全国·统考高考真题)0-1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1,2,⋯)成立,则称其为0-1周期序列,并称满足a i+m=a i(i=1,2,⋯)的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2⋯a n⋯,C(k)=1 mmi=1a i a i+k(k=1,2,⋯,m-1)是描述其性质的重要指标,下列周期为5的0-1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A.11010⋯B.11011⋯C.10001⋯D.11001⋯31【多选题】(2023秋·湖南长沙·高三周南中学校考阶段练习)古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,⋯称为三角形数,第二行图形中黑色小点个数:1,4,9,16,⋯称为正方形数,记三角形数构成数列a n,正方形数构成数列b n,则下列说法正确的是()A.1b 1+1b 2+1b 3+⋯+1b n<2;B.1225既是三角形数,又是正方形数;C.10i =11b i +1-a i +1=95;D.∀m ∈N *,m ≥2总存在p ,q ∈N *,使得b m =a p +a q 成立;32(2022秋·山东·高三校联考阶段练习)若项数为n 的数列a n 满足:a i =a n +1-i i =1,2,3,⋯,n 我们称其为n 项的“对称数列”.例如:数列1,2,2,1为4项的“对称数列”;数列1,2,3,2,1为5项的“对称数列”.设数列c n 为2k +1项的“对称数列”,其中c 1,c 2⋯c k +1是公差为2的等差数列,数列c n 的最大项等于8,记数列c n 的前2k +1项和为S 2k +1,若S 2k +1=32,则k =.数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516 B.440C.258D.220【答案】D【分析】根据给定条件,利用等差数列性质求出a 4,a 6,再利用前n 项和公式求解作答.【详解】等差数列a n 为递增数列,则a 4<a 6,由a 3+a 7=34,得a 4+a 6=34,而a 4⋅a 6=280,解得a 4=14,a 6=20,所以S 11=11(a 1+a 11)2=11a 6=220.故选:D2(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65m B.85mC.100mD.120m【答案】B【分析】依题意,可以把绕在盘上的卫生纸长度,近似看成300个半径成等差数列的圆周长,然后分别计算各圆的周长,再借助等差数列前n 项和公式求总和即可.【详解】因为空盘时盘芯直径为60mm ,则半径为30mm ,周长为2π×30=60πmm ,又满盘时直径为120mm ,则半径为60mm ,周长为2π×60=120πmm ,又因为卫生纸的厚度为0.1mm ,则60-300.1=300,即每一圈周长成等差数列,项数为300,于是根据等差数列的求和公式,得:S300=300×60π+120π2=27000πmm ,又27000πmm≈84780mm≈85m,即满盘时卫生纸的总长度大约为85m,故选:B.3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设第n环天石心块数为a n,第一层共有n环,则a n是以9为首项,9为公差的等差数列,a n=9+n-1×9=9n,设S n为a n的前n项和,则第一层、第二层、第三层的块数分别为S n,S2n-S n,S3n-S2n,因为下层比中层多729块,所以S3n-S2n=S2n-S n+729,即3n9+27n2-2n9+18n2=2n9+18n2-n9+9n2+729即9n2=729,解得n=9,所以S3n=S27=279+9×272=3402.故选:C4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【答案】2【分析】转化条件为2a1+2d=2a1+d+6,即可得解.【详解】由2S3=3S2+6可得2a1+a2+a3=3a1+a2+6,化简得2a3=a1+a2+6,即2a1+2d=2a1+d+6,解得d=2.故答案为:2.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m 项,可由a m =12(a m -n +a m +n)转化为求a m -n ,a m +n 或a m -n +a m +n 的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=()A.12B.24C.30D.32【答案】D【分析】根据已知条件求得q 的值,再由a 6+a 7+a 8=q 5a 1+a 2+a 3 可求得结果.【详解】设等比数列a n 的公比为q ,则a 1+a 2+a 3=a 11+q +q 2 =1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q 1+q +q 2 =q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 51+q +q 2 =q 5=32.故选:D .6(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.42【答案】D【分析】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,利用等比数列的求和公式求出a 1的值,然后利用等比数列的求和公式可求得此人后3天共走的里程数.【详解】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,所以,a 11-12 6 1-12=6332a 1=378,解得a 1=378×3263=192,所以,此人后三天所走的里程数为a 4+a 5+a 6=192×181-1231-12=42.故选:D .7(2023·全国高考真题)已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【答案】-2【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【解析】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.【规律方法】1.等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.2.等比数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{an }的通项公式;(Ⅱ)记{an }的前n 项和为Sn ,求Sn 的最小值.【答案】(Ⅰ)a n =2n -12;(Ⅱ)-30.【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得a n 的通项公式;(Ⅱ)首先求得S n 的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列a n 的公差为d ,因为a 2+10,a 3+8,a 4+6成等比数列,所以(a 3+8)2=(a 2+10)(a 4+6),即(2d -2)2=d (3d -4),解得d =2,所以a n =-10+2(n -1)=2n -12.(Ⅱ)由(Ⅰ)知a n =2n -12,所以S n =-10+2n -122×n =n 2-11n =n -112 2-1214;当n =5或者n =6时,S n 取到最小值-30.9(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和.已知2S nn+n =2a n +1.(1)证明:a n 是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.【答案】(1)证明见解析;(2)-78.【分析】(1)依题意可得2S n +n 2=2na n +n ,根据a n =S 1,n =1S n-Sn -1,n ≥2,作差即可得到a n -a n -1=1,从而得证;(2)法一:由(1)及等比中项的性质求出a 1,即可得到a n 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为2S nn+n =2a n +1,即2S n +n 2=2na n +n ①,当n ≥2时,2S n -1+n -1 2=2n -1 a n -1+n -1 ②,①-②得,2S n +n 2-2S n -1-n -1 2=2na n +n -2n -1 a n -1-n -1 ,即2a n +2n -1=2na n -2n -1 a n -1+1,即2n -1 a n -2n -1 a n -1=2n -1 ,所以a n -a n -1=1,n ≥2且n ∈N *,所以a n 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8,又a 4,a 7,a 9成等比数列,所以a 72=a 4⋅a 9,即a 1+6 2=a 1+3 ⋅a 1+8 ,解得a 1=-12,所以a n=n-13,所以S n=-12n+n n-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时,S nmin=-78.[方法二]:【最优解】邻项变号法由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,即有a1<a2<⋯<a12<0,a13=0.则当n=12或n=13时,S nmin=-78.【整体点评】(2)法一:根据二次函数的性质求出S n的最小值,适用于可以求出S n的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n的通项公式及其前n项和.【答案】(1)a n=2n+1,2n-1i=2n-1a i=3⋅4n-1;(2)(Ⅰ)证明见解析;(Ⅱ)b n=2n,前n项和为2n+1-2.【分析】(1)由题意得到关于首项、公差的方程,解方程可得a1=3,d=2,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前n项和公式计算可得2n-1i=2n-1a i=3⋅4n-1.(2)(Ⅰ)利用题中的结论分别考查不等式两侧的情况,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,即可证得题中的不等式;(Ⅱ)结合(Ⅰ)中的结论,利用极限思想确定数列的公比,进而可得数列的通项公式,最后由等比数列前n 项和公式即可计算其前n项和.【详解】(1)由题意可得a2+a5=2a1+5d=16a5-a3=2d=4,解得a1=3d=2,则数列a n的通项公式为a n=a1+n-1d=2n+1,求和得2n-1i=2n-1a i=2n-1i=2n-12i+1=22n-1i=2n-1i+2n-1-2n-1+1=22n-1+2n-1+1+2n-1+2+⋯+2n-1+2n-1=22n-1+2n-1⋅2n-12+2n-1=3⋅4n-1.(2)(Ⅰ)由题意可知,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,则b k<a2k-1=2×2k-1+1=2k+1,即b k<2k+1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,此时a n=a2k-1-1=22k-1-1+1=2k-1,据此可得2k-1<b k,综上可得:2k-1<b k<2k+1.(Ⅱ)由(Ⅰ)可知:2k-1<bk<2k+1,2k+1-1<b k+1<2k+1+1则数列b n的公比q满足2k+1-12k+1=2-32k+1<q=b k+1b k<2k+1+12k-1=2+32k-1,当k∈N*,k→+∞时,2-3 2k+1→2,2+32k-1→2,所以q=2,所以2k-1<b12k-1<2k+1,即2k-12k-1=2-12k-1<b1<2k+12k-1=2+12k-1,当k∈N*,k→+∞时,2-1 2k-1→2,2+12k-1→2,所以b1=2,所以数列的通项公式为b n=2n,其前n项和为:S n=2×1-2n1-2=2n+1-2.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【答案】B【分析】先证不等式x≥ln x+1,再确定公比的取值范围,进而作出判断.【详解】令f(x)=x-ln x-1,则f (x)=1-1x,令f(x)=0,得x=1,所以当x>1时,f (x)>0,当0<x<1时,f (x)<0,因此f(x)≥f(1)=0,∴x≥ln x+1,若公比q>0,则a1+a2+a3+a4>a1+a2+a3>ln(a1+a2+a3),不合题意;若公比q≤-1,则a1+a2+a3+a4=a1(1+q)(1+q2)≤0,但ln(a1+a2+a3)=ln[a1(1+q+q2)]>ln a1>0,即a1+a2+a3+a4≤0<ln(a1+a2+a3),不合题意;因此-1<q<0,q2∈(0,1),∴a1>a1q2=a3,a2<a2q2=a4<0,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如x≥ln x+1,e x≥x+1,e x≥x2+1(x≥0).12(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y=1.1x,第n根弦(n∈N,从左数首根弦在y轴上,称为第0根弦)分别与雁柱曲线和直线l:y=x+1交于点A n x n,y n和B n x n ,y n,则20n=0y n y n=.(参考数据:取1.122=8.14.)【答案】914【分析】根据题意可得y n =n +1,y n=1.1n ,进而利用错位相减法运算求解.【详解】由题意可知:y n =n +1,y n =1.1n ,则20n =0y n y n=20n =0n +1 1.1n =1×1.10+2×1.11+⋯+20×1.119+21×1.120,可得1.1×20n =0y n y n =1×1.11+2×1.12+⋯+20×1.120+21×1.121,两式相减可得:-0.1×20n =0y n y n=1.10+1.11+⋯+1.120-21×1.121=1-1.1211-1.1-21×1.121=1-1.121+0.1×21×1.121-0.1=1+1.122-0.1=1+8.14-0.1=-91.4,所以20n =0y n y n=914.故答案为:914.13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.【答案】(1)数列a 2n -1 成等比数列,证明见解析(2)证明见解析【分析】(1)推导出a 2n +1=2a 2n +2=2log 2a 2n -1+2=4a 2n -1,得到结论;(2)先得到a 2n -1=a 1⋅4n -1,a 2n =2(n -1)+log 2a 1,从而得到S 10=341a 1+5log 2a 1+20,令f (x )=341x +5log 2x +20,得到函数单调递增,且由特殊点函数值得到a 1=1,b n =14n2,求出T 1=14<74,当n ≥2时,利用裂项相消法求和,得到T n <12.【详解】(1)数列a 2n -1 成等比数列,证明如下:根据a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗得,a 2n +1=2a 2n +2=2log 2a 2n -1+2=22a 2n -1=4a 2n -1;∵a 1>0,∴a 2n -1>0,a2n +1a 2n -1=4,即数列a 2n -1 成等比数列.(2)由(1)得,a 2n -1=a 1⋅4n -1,a 2n =log 2a 2n -1=2(n -1)+log 2a 1,故S 10=a 140+41+42+43+44 +5log 2a 1+2×(0+1+2+3+4)=341a 1+5log 2a 1+20,由S 10=361,得341a 1+5log 2a 1+20=361.令f (x )=341x +5log 2x +20,当x >0时,f (x )=341x +5log 2x +20单调递增,且f (1)=361=f a 1 ,故a 1=1,a 2n +1=4n =22n ,a 2n +2=log 2a 1+2n =2n ,∴b n =1log 2a 2n +1 ⋅a 2n +2=14n 2,T 1=b 1=14<12,当n ≥2时,b n =14n2<14(n -1)n =141n -1-1n∴T n =b 1+b 2+⋯+b n <141+1-12+12-13+⋯+1n -1-1n=142-1n <14×2=12,综上,知T n <1214(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;【答案】(1)x 1+x 2=1,y 1+y 2=-2(2)存在,c =1,m =1【分析】(1)根据点M 在直线x =12上,设M 12,y M ,利用AM =MB ,可得x 1+x 2=1,分类讨论:①x 1=12,x 2=12;②x 1≠12时,x 2≠12,利用函数解析式,可求y 1+y 2的值;(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2,∴f k n +f n -kn=-2,代入k =0,1,2,⋯,n -1,利用倒序相加法可得S n =1-n ,从而可得数列a n 的通项与前n 项和,利用T m -c T m +1-c <12化简即可求得结论.【详解】(1)根据点M 在直线x =12上,设M 12,y M ,则AM =12-x 1,y M -y 1 ,MB =x 2-12,y 2-y M ,∵AM =MB ,∴x 1+x 2=1.①当x 1=12时,x 2=12,y 1+y 2=f x 1 +f x 2 =-1-1=-2;②当x 1≠12时,x 2≠12,y 1+y 2=2x 11-2x 1+2x 21-2x 2=2x 11-2x 2 +2x 21-2x 1 1-2x 1 1-2x 2 =2(x 1+x 2)-8x 1x 21-2(x 1+x 2)+4x 1x 2=2(1-4x 1x 2)4x 1x 2-1=-2;综合①②得,y 1+y 2=-2.(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2.∴f k n +f n -k n=-2,k =0,1,2,⋯,n -1,∴n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n①S n =f n -1n +f n -2n +f n -3n +⋯+f 1n ②①+②得,2S n =-2(n -1),则S n =1-n .又n =1时,S 1=0满足上式,∴S n =1-n .∴a n =2S n=21-n ,∴T n =1+12+⋯+12n -1=1×1-12 n1-12=2-22n.∵T m -c T m +1-c <12,∴2T m -c -T m +1-c 2T m +1-c<0,∴c -2T m -T m +1c -T m +1<0,∵Tm +1=2-12m ,2T m -T m +1=4-42m -2+12m =2-32m ,∴12≤2-32m <c <2-12m <2,c ,m 为正整数,∴c =1,当c =1时,2-32m<12-12m >1,∴1<2m <3,∴m =1.【点评】作为高考热点,数列与函数的交汇问题,等差数列易于同二次函数结合,研究和的最值问题,而等比数列易于同指数函数结合,利用指数函数的单调性解决问题,递推、通项问题往往与函数的单调性、周期性相结合.热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<4【答案】B【分析】先通过递推关系式确定a n 除去a 1,其他项都在0,1 范围内,再利用递推公式变形得到1a n +1-1a n =13-a n >13,累加可求出1a n >13(n +2),得出100a 100<3,再利用1a n +1-1a n =13-a n<13-3n +2=131+1n +1 ,累加可求出1a n -1<13n -1 +1312+13+⋯+1n ,再次放缩可得出100a 100>52.【详解】∵a 1=1,易得a 2=23∈0,1 ,依次类推可得a n ∈0,1由题意,a n +1=a n 1-13a n ,即1a n +1=3a n 3-a n=1a n +13-a n ,∴1a n +1-1a n =13-a n >13,即1a 2-1a 1>13,1a 3-1a 2>13,1a 4-1a 3>13,⋯,1a n -1a n -1>13,(n ≥2),累加可得1a n -1>13n -1 ,即1a n >13(n +2),(n ≥2),∴a n <3n +2,n ≥2 ,即a 100<134,100a 100<10034<3,又1a n +1-1a n =13-a n <13-3n +2=131+1n +1 ,(n ≥2),∴1a 2-1a 1=131+12 ,1a 3-1a 2<131+13 ,1a 4-1a 3<131+14 ,⋯,1a n -1a n -1<131+1n,(n≥3),累加可得1a n -1<13n -1 +1312+13+⋯+1n ,(n ≥3),∴1a 100-1<33+1312+13+⋯+1100 <33+1312×4+16×96 <39,即1a 100<40,∴a 100>140,即100a 100>52;综上:52<100a 100<3.故选:B .16(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.12【答案】C【分析】由题意可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n,结合等比数列前n 项和解不等式即可.【详解】由题意可知操作1次时有21=2个边长为121=12的小正方形,即S 1=21×1212=121=12,操作2次时有22=4个边长为122=14的小正方形,即S 2=22×122 2=122=14,操作3次时有23=8个边长为123=18的小正方形,即S 3=23×1232=123=18,以此类推可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n ,由等比数列前n 项和公式有S 1+S 2+⋅⋅⋅+S n =12+12 2+⋅⋅⋅+12 n =12×1-12 n1-12=1-12 n,从而问题转换成了求1-12 n ≥20232024不等式的最小正整数解,将不等式变形为12 n ≤12024,注意到12 10=11024>12024,1211=12048<12024,且函数y =12x在R 上单调递减,所以n 的最小值是11.故选:C .17(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)利用等差数列的通项公式以及前n 项和公式,列方程求解首项和公差,即得答案;(2)由(1)结论可得b n =1a n a n +1的表达式,利用裂项求和可得T n 表达式,即可证明结论.【详解】(1)设a n 的公差为d ,由S 4=4S 2得,4a 1+6d =42a 1+d ,解得d =2a 1,∵a 3n =3a n +2,即a 1+3n -1 d =3a 1+n -1 d +2,∴2d =2a 1+2,结合d =2a 1,∴d =2,a 1=1,∴a n =1+2n -1 =2n -1;(2)证明:由b n =12n -1 2n +1=1212n -1-12n +1 .∴T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1,即∴T n =121-12n +1 ,又T n 随着n 的增大增大,当n =1时,T n 取最小值为T 1=13,又n →+∞时,12n +1>0,且无限趋近于0,故T n =121-12n +1 <12,故13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n n +12(2)见解析【分析】(1)利用等差数列的通项公式求得S n a n =1+13n -1 =n +23,得到S n =n +2 a n 3,利用和与项的关系得到当n ≥2时,a n =S n -S n -1=n +2 a n 3-n +1 a n -13,进而得:a n a n -1=n +1n -1,利用累乘法求得a n =n n +1 2,检验对于n =1也成立,得到a n 的通项公式a n =n n +1 2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n =21-1n +1 ,进而证得.【详解】(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a na n-1=n+1n-1,∴a n=a1×a2a1×a3a2×⋯×a n-1a n-2×a na n-1=1×31×42×⋯×nn-2×n+1n-1=n n+12,显然对于n=1也成立,∴a n的通项公式a n=n n+12;(2)1a n =2n n+1=21n-1n+1,∴1 a1+1a2+⋯+1a n=21-12+12-13+⋯1n-1n+1=21-1n+1<219(2021·全国·统考高考真题)设a n是首项为1的等比数列,数列b n满足b n=na n3.已知a1,3a2,9a3成等差数列.(1)求a n和b n的通项公式;(2)记S n和T n分别为a n和b n的前n项和.证明:T n<S n 2.【答案】(1)a n=13n-1,b n=n3n;(2)证明见解析.【分析】(1)利用等差数列的性质及a1得到9q2-6q+1=0,解方程即可;(2)利用公式法、错位相减法分别求出S n,T n,再作差比较即可.【详解】(1)因为a n是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2-6q+1=0,解得q=13,所以a n=13n-1,所以b n=na n3=n3n.(2)[方法一]:作差后利用错位相减法求和T n=13+232+⋯+n-13n-1+n3n,S n 2=12130+131+132+⋯+13n-1 ,T n-S n2=13+232+333+⋯+n3n-12130+131+132+⋯+13n-1 =0-1230+1-1231+2-1232+⋯+n-1-123n-1+n3n.设Γn=0-1230+1-1231+2-1232+⋯+n-1-123n-1, ⑧则13Γn=0-1231+1-1232+2-1233+⋯+n-1-123n. ⑨由⑧-⑨得23Γn=-12+131+132+⋯+13n-1-n-323n=-12+131-13n-11-13-n-323n.所以Γn=-14×3n-2-n-322×3n-1=-n2×3n-1.因此T n-S n2=n3n-n2×3n-1=-n2×3n<0.故T n<S n 2.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得S n=1×1-13n1-13=321-13n,T n=13+232+⋯+n-13n-1+n3n,①1 3T n=132+233+⋯+n-13n+n3n+1,②①-②得23T n=13+132+133+⋯+13n-n3n+1=131-13n1-13-n3n+1=121-13n-n3n+1,所以T n=341-13n-n2⋅3n,所以T n-S n2=341-13n-n2⋅3n-341-13n=-n2⋅3n<0,所以T n<S n 2 .[方法三]:构造裂项法由(Ⅰ)知b n=n13n,令c n=(αn+β)13 n,且b n=c n-c n+1,即n13 n=(αn+β)13 n-[α(n+1)+β]13n+1,通过等式左右两边系数比对易得α=32,β=34,所以c n=32n+34 ⋅13 n.则T n=b1+b2+⋯+b n=c1-c n+1=34-34+n2 13 n,下同方法二.[方法四]:导函数法设f(x)=x+x2+x3+⋯+x n=x1-x n1-x,由于x1-x n1-x'=x1-x n'1-x-x1-x n×1-x'1-x2=1+nx n+1-(n+1)x n(1-x)2,则f (x)=1+2x+3x2+⋯+nx n-1=1+nx n+1-(n+1)x n(1-x)2.又b n=n13n=13n13 n-1,所以T n=b1+b2+b3+⋯+b n=131+2×13+3×132+⋯+n⋅13n-1 =13⋅f 13 =13×1+n13n+1-(n+1)13 n1-132=341+n13n+1-(n+1)13n =34-34+n213 n,下同方法二.20(2023·河南郑州·统考模拟预测)已知数列a n与b n的前n项和分别为A n和B n,且对任意n∈N*,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.【答案】(1)n (n +1);(2)3【分析】(1)利用a n ,S n 求通项公式,再求证{b n }是首项、公差均为2的等差数列,进而求B n ;(2)由题设易得b n +1=3b n ,等比数列前n 项和公式求B n ,进而可得b n +1a n a n +1=1B n -1B n +1,裂项相消法化简已知不等式左侧,得b 1>31-23n +1-1恒成立,进而求最小值.【详解】(1)由题设,a n =A n -A n -1=32[n 2+n -(n -1)2-n +1]=3n 且n ≥2,而a 1=A 1=3,显然也满足上式,故a n =3n ,由a n +1-a n =32b n +1-b n ⇒b n +1-b n =2,又b 1=2,所以{b n }是首项、公差均为2的等差数列.综上,B n =2×(1+...+n )=n (n +1).(2)由a n =B n ,a n +1-a n =32b n +1-b n ,则B n +1-B n =b n +1=32(b n +1-b n ),所以b n +1=3b n ,而b 1≥1,故bn +1b n=3,即{b n }是公比为3的等比数列.所以B n =b 1(1-3n )1-3=b 12(3n -1),则B n +1=b12(3n +1-1),b n +1a n a n +1=B n +1-B n B n +1B n =1B n -1B n +1,而b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13,所以1B 1-1B 2+1B 2-1B 3+...+1B n -1B n +1=1B 1-1B n +1=1b 1-2b 1(3n +1-1)<13,所以1b 11-23n +1-1 <13⇒b 1>31-23n +1-1对n ∈N *都成立,所以1-23n +1-1<1,故b 1≥3,则正整数b 1的最小值为3.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.【答案】(1)a n =n ;b n =2n (2)证明见解析【分析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,根据题意列式求d ,q ,进而可得结果;(2)利用分组求和以及裂项相消法求得T n =-14n +2+4n +13-56,进而根据数列单调性分析证明.【详解】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由a 1=1,a 5=5a 4-a 3 ,可得1+4d =5d ,解得d =1。
专题2.5 数列中的最值问题讲-2017年高考数学文二轮复
![专题2.5 数列中的最值问题讲-2017年高考数学文二轮复](https://img.taocdn.com/s3/m/76603a4b25c52cc58bd6be45.png)
数列中的最值问题在高考中出现的频率较高,注意考查:等差数列前n 项和的最值问题和数列与函数、不等式的结合。
等差数列前n 项和的最值问题是高考考查的热点之一,考查形式为选择或填空小题,也可以是解答题的一个小题,是中档题;数列与函数、不等式的结合,是高考考查的重点和热点,重点考查利用数列的相关知识和函数、不等式知识求数列的最值或已知不等式成立求参数取值范围或是证明不等式,为解答题的一个小题,难度为中档偏上试题.1 等差数列中的最值问题求等差数列前n 项和的最值问题的方法:(1)二次函数法:将n S 看成关于n 的二次函数,运用配方法,借助函数的单调性及数形结合思想,使问题得到解决,注意项数n 是正整数这一条件. (2)通项公式法:若{}n a 是等差数列,求前n 项和的最值时, ①若10a >,0d <,且满足10n n a a +≥⎧⎨≤⎩,则前n 项和n S 最大;②若10a <,0d >,且满足10n n a a +≤⎧⎨≥⎩,则前n 项和n S 最小.(3)不等式法:借助n S 取最大值时,有1*1(2,)n n n n S S n n N S S -+≥⎧≥∈⎨≥⎩,解此不等式组确定n 的范围,进而确定n 的值和对应n S 的值(即为n S 的最值).例 1 【山西省孝义市2017届高三上学期二轮模考】在等差数列{}n a 中,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使n S 达到最大值的n 是( )A .21B .20 C. 19 D .18 【答案】B例2 【2016届北京市石景山高三上学期期末考试】已知数列{}n a 是等差数列,348,4a a ==,则前n 项和n S 中最大的是( )A .3SB .4S 或5SC .5S 或6SD .6S 【答案】B.2 数列与函数、不等式的结合中的最值问题(1)求数列}{n a 的前n 项和n S 的最值,主要是两种思路:①研究数列)(n f a n =的项的情况,判断n S 的最值;②直接研究n S 的通项公式,即利用类型2的思路求n S 的最值. (2) 求数列}{n a 的最值,主要有两种方法:①从函数角度考虑,利用函数)(x f y =的性质,求数列)(n f a n =的最值;②利用数列离散的特点,考察⎩⎨⎧≥≥-+11k k k k a a a a 或⎩⎨⎧≤≤-+11k kk k a a a a ,然后判断数列}{n a 的最值情况.(3)对数列不等式恒成立问题,主要有两种方法:①通过参变分离法转化为数列的最值问题求解;②通过分类讨论,解决恒成立.例3 【2016届云南省玉溪市一中高三第四次月考】数列{}n a 中,112a =,111nn na a a ++=-(其中*n ∈N ), 则使得12372n a a a a ++++≥成立的n 的最小值为 ( )A .236B .238C .240D .242 【答案】B【解析】由111121n n na a a a ++==-,,得23411312132131231122a a a ++-====-==--+-,,, 511131213a -==+,…, 由上可知,数列{}n a 是以4为周期的周期数列,又123411732632a a a a +++=+--=.∵7413 597266⨯=<,∴数列{}n a 的前236项和小于72,加上72为大于72,∴使得12372n a a a a +++⋯+≥成立的n 的最小值为238.故选:B . 例 4 【河北省武邑中学2017届高三上学期第三次调研】已知数列{}n a 是等比数列,首项11a =,公比0q >,其前n 项和为n S ,且113322,,S a S a S a +++,成等差数列.(1)求{}n a 的通项公式;(2)若数列{}n b 满足11,2n na b n n a T +⎛⎫= ⎪⎝⎭为数列{}n b 前n 项和,若n T m ≥恒成立,求m 的最大值.【答案】(1)112n n a -⎛⎫= ⎪⎝⎭;(2)1.例 5 【江苏省苏州市2017届高三暑假自主学习测试】在数列{}n a 中,已知12a =,1=321n n a a n ++-.(1)求证:数列{}+n a n 为等比数列;(2)记(1)n n b a n λ=+-,且数列{}n b 的前n 项和为n T ,若3T 为数列{}n T 中的最小项,求λ的取值范围.【答案】(1)详见解析(2)8194λ≤≤【反思提升】数列的综合问题涉及到的数学思想:函数与方程思想 (如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和, 或 )等.已知数列的前n 项和n s 的相关条件求数列通项公式的基本思路是两个:(1)将和n s 转化为项n a ,即利用1--=n n n s s a 将和转化为项.(2)可将条件看作是数列{}n s 的递推公式,先求出n s ,然后题目即转化为已知数列的前n 项和n s ,求数列通项公式n a .。
2020年高考数学(文)一轮复习专题6.2 等差数列及其前n项和(练)(解析版)
![2020年高考数学(文)一轮复习专题6.2 等差数列及其前n项和(练)(解析版)](https://img.taocdn.com/s3/m/d34ae797910ef12d2bf9e737.png)
专题6.2 等差数列及其前n 项和1.(江西师范大学附属中学2019届高三三模)已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则7S =( )A .2B .7C .14D .28【答案】C 【解析】5632a a a +=+ 44422a d a d a d ∴++=++-,解得:42a =()177477142a a S a +∴===,本题选C 。
2.(安徽省1号卷A10联盟2019届模拟)等差数列{}n a 的前n 项和为n S ,若2163S =,则31119a a a ++=( )A .12B .9C .6D .3【答案】B【解析】由等差数列性质可知:21112163S a ==,解得:113a =311191139a a a a ∴++==本题选B 。
3.(贵州省贵阳市2019届高三模拟)已知{a n }为递增的等差数列,a 4+a 7=2,a 5•a 6=-8,则公差d=( ) A .6 B .6-C .2-D .4【答案】A【解析】∵{a n }为递增的等差数列,且a 4+a 7=2,a 5•a 6=-8, ∴a 5+a 6=2,∴a 5,a 6是方程22x 80x --=的两个根,且a 5<a 6, ∴a 5=-2,a 6=4, ∴d=a 6-a 5=6, 故选A 。
4.(河北衡水中学2019届高三调研)已知等比数列{}n a 中,若12a =,且1324,,2a a a 成等差数列,则5a =( )A .2B .2或32C .2或-32D .-1【答案】B【解析】设等比数列{}n a 的公比为q (q 0≠),1324,,2a a a 成等差数列, 321224a a a ∴=+,10a ≠, 220q q ∴--=,解得:q=2q=-1或,451a =a q ∴,5a =232或,故选B.5.(浙江省金华十校2019届高三模拟)等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( )A .1-B .0C .2D .3【答案】B【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=,则2291812(1)211a d q q =+=+-=->-,可得9a 能取到的最小整数是0,故选B 。
专题06 函数的定义域、值域--《2023年高考数学命题热点聚焦与扩展》【解析版】
![专题06 函数的定义域、值域--《2023年高考数学命题热点聚焦与扩展》【解析版】](https://img.taocdn.com/s3/m/7bb9c4d3760bf78a6529647d27284b73f2423697.png)
【热点聚焦】函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f(x)=|x|,x ∈[0,2]与函数f(x)=|x|,x∈[-2,0].2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.3.常见函数定义域的求法类型x满足的条件n f x(n∈N*)f(x)≥02()(n∈N*)f(x)有意义21()n f x1与[f(x)]0f(x)≠0f x()log a f(x)(a>0且a≠1)f(x)>0a f(x)(a>0且a≠1)f(x)有意义tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型 ④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( ) A .(-∞,-1) B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)【答案】C 【解析】根据函数解析式建立不等关系即可求出函数定义域. 【详解】 因为f (x )=11x-+lg(1+x ), 所以需满足1010x x -≠⎧⎨+>⎩,解得1x >-且1x ≠,所以函数的定义域为(-1,1)∪(1,+∞), 故选:C【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【答案】B 【解析】 【详解】x 满足2101140x x x +>⎧⎪+≠⎨⎪-≥⎩,即1022x x x >-⎧⎪≠⎨⎪-≤≤⎩. 解得-1<x <0或0<x ≤,选B.【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】 【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【答案】()(],00,1-∞⋃ 【解析】 【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可; 【详解】 解:因为()11f x x x =-100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃ 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B 【解析】 【详解】试题分析:因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域. 【答案】[]4,22 【解析】 【分析】根据复合函数定义域的性质进行求解即可.因为()31f x +的定义域为[]1,7,所以17x ≤≤,所以43122x ≤+≤.令31x t +=,则422t ≤≤. 即()f t 中,[]4,22t ∈. 故()f x 的定义域为[]4,22.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .222⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【答案】D 【解析】 【分析】根据(1)y f x +=的定义域可知1122x ≤+≤,故21log 22x ≤≤,即可求出答案. 【详解】解:∵函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦, ∴112x -≤≤,1122x ≤+≤∴函数2(log )y f x =中,21log 22x ≤≤ 24x ≤≤所以函数2(log )y f x =的定义域为2,]. 故选:D 【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【答案】B【详解】试题分析:设()f x =t,则1,32t ⎡⎤∈⎢⎥⎣⎦,从而()F x 的值域就是函数11,,32y t t t ⎡⎤=+∈⎢⎥⎣⎦的值域,由“勾函数”的图象可知,102()3F x ≤≤,故选B .【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4 B .3 C .2 D .1【答案】B 【解析】 【分析】求出①②③④中各函数的值域,即可得出合适的选项. 【详解】对于①,因为()12f x ≤≤,则()[]211,3y f x =-∈,①不满足条件;对于②,对于函数()21y f x =-,21x -∈R ,则函数()21y f x =-的值域为[]1,2,②满足条件;对于③,因为()12f x ≤≤,则()[]1,221f x y -∈=,③满足条件; 对于④,因为()12f x ≤≤,()[]11,2f x +∈,则()[]2log 111,2y f x =++∈,④满足条件. 故选:B.【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】令1x t -=,()f x 转化为()21sin sin 1g t t t t t =+-+,令()21sin sin h t t t t t=+-,根据奇偶性的定义,可判断()h t 的奇偶性,根据奇偶性,可得()h t 在(][2,0)0,2-⋃最大值与最小值之和为0,分析即可得答案. 【详解】由21()[(1)1]sin(1)11f x x x x =---++- 令1x t -=,因为[1,1)(1,3]x ∈-⋃,所以(][2,0)0,2t ∈-⋃;那么()f x 转化为()21sin sin 1g t t t t t =+-+,(][2,0)0,2t ∈-⋃,令()21sin sin h t t t t t=+-,(][2,0)0,2t ∈-⋃,则()()()()()()2211sin sin sin sin h t t t t t t t h t t t ⎛⎫-=--+--=-+-=- ⎪-⎝⎭,所以()h t 是奇函数可得()h t 的最大值与最小值之和为0, 那么()g t 的最大值与最小值之和为2. 故选:B .【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313x f x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【答案】{}1,0- 【解析】 【分析】根据指数函数的性质分析()f x 的值域,进而得到()y f x ⎡⎤=⎣⎦的值域即可 【详解】 ∵()11313xf x =-+,()30,x ∈+∞, ∴令30x t =>,则()()1112,1333f x g t t ⎛⎫==-∈- ⎪+⎝⎭故函数()()y f x g t ==⎡⎤⎡⎤⎣⎦⎣⎦的值域为{}1,0-, 故答案为:{}1,0-【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【答案】 2 22,2⎡⎤-⎣⎦【解析】 【分析】()f x 1x t -换元后化为二次函数可得最大值,函数24y x x =-2cos ([0,])x θθπ=∈,然后利用两角和的余弦公式化函数为一个角的一个三角函数形式,再由余弦函数的性质得取值范围. 【详解】(1)1x -t (t ≥0),所以x =1-t 2.所以y =f (x )=x 1x --t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,y max =f (x )max =2. (2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]),则y =2cos θ244cos θ-θ-2sin θ2()4πθ+,因为5[,]444πππθ+∈, 所以cos ()4πθ+∈22⎡-⎢⎣⎦,所以y ∈[-22].故答案为:2;[2,2]-.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.【答案】(1) 7420x y --=; (2)[]2,3. 【解析】 【分析】对于第一小问,把点()()22f ,代入函数解析式,得切点坐标,通过函数求导,得到过切点的切线的斜率,根据直线的点斜式方程,求切线方程.对于第二小问,解不等式()0f x '>,得函数增区间,解不等式()0f x '<,得函数减区间,结合1,22x ⎡∈⎤⎢⎥⎣⎦,确定函数单调性,求得最值,进而得值域.(1) 因为()211122f x x x =++,所以()21f x x x '=-,所以()23f =,()724f '=, 故所求切线方程为()7324y x -=-,即7420x y --=. (2)由(1)知()()()2322111x x x x f x x x -++-'==,1,22x ⎡∈⎤⎢⎥⎣⎦. 令()0f x '>,得12x <≤;令()0f x '<,得112x ≤<.所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,所以()()min 12f x f ==. 又12128f ⎛⎫= ⎪⎝⎭,()23f =,所以()23f x ≤≤,即()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为[]2,3.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2 B .[]1,3 C .[]0,2 D .[]2,3【答案】A 【解析】 【分析】当1x >时,结合不等式求得其最小值为123a -,当1x ≤时,()()229f x x a a =-+-,根据函数()f x 的最小值为()1f ,列出不等式组,即可求解. 【详解】 当1x >时,22231688883333123x a x a x a a x x x x x+-=++-≥⨯⨯=-, 当且仅当28x x=时,等号成立; 即当1x >时,函数()f x 的最小值为123a -,当1x ≤时,()()222299f x x ax x a a =-+=-+-,要使得函数()f x 的最小值为()1f ,则满足()11102123a f a a ≥⎧⎨=-≤-⎩,解得12a ≤≤,即实数a 的取值范围是[]1,2. 故选:A.【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__. 【答案】[1,+∞) 【解析】 【分析】等价于ax 2+2x +1≥0恒成立,再对a 分类讨论得解. 【详解】解:函数()221f x ax x ++R , 即为ax 2+2x +1≥0恒成立, 若a =0,则2x +1≥0不恒成立; 当a >0,∆=4﹣4a ≤0, 解得a ≥1;当a <0,ax 2+2x +1≥0不恒成立. 综上可得,a 的取值范围是[1,+∞). 故答案为:[1,+∞).【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x af x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________. 【答案】2 (,1)-∞- 【解析】 【分析】试题分析:如图,作出函数3()3g x x x =-与直线 2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由 2'()33g x x =-,知1x =是函数 ()g x 的极小值点,①当0a =时, 33,0(){2,0x x x f x x x -≤=->,由图象可知()f x 的最大值是 (1)2f -=;②由图象知当1a ≥-时, ()f x 有最大值(1)2f -=;只有当 1a <-时,332a a a -<-,()f x 无最大值,所以所求 a 的取值范围是(,1)-∞-.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N【答案】B 【解析】 【分析】利用集合间的基本关系来进行运算即可. 【详解】集合M 表示函数21y x =-2x -1>0,解得12x >.集合N 表示函数2y x 的值域,值域为()0,∞+,故选:B.2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =x B .y =lg xC .y =2xD .y x【答案】D 【解析】 【分析】求出函数lg 10x y =的定义域和值域,对选项逐一判断即可. 【详解】因函数lg 10x y =的定义域和值域均为()0,∞+, 对于A ,y x =的定义域和值域均为R ,故A 错误;对于B ,lg y x =的定义域和值域分别为()0,,R +∞,故B 错误; 对于C ,2y x =的定义域和值域均为R ,故C 错误;对于D ,y x=定义域和值域均为()0,∞+,故D 正确; 故选:D .3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4 D .[]0,4【答案】D 【解析】 【分析】分0a =、0a >、0a <讨论即可求解. 【详解】若()f x 的定义域为R ,则当0a =时,()1f x =满足题意;当0a ≠时,20Δ40a a a >⎧⎨=-≤⎩,解得:04a <≤; 当0a <时,无法满足定义域为R . 综上所述:04a ≤≤,D 正确. 故选:D4.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,4【答案】C 【解析】 【分析】由[]20,1x +∈可求出函数的定义域,由于()2y f x =+的图象是由()y f x =的图象向左平移2个单位得到,所以其值域不变,从而可得答案 【详解】令[]20,1x +∈得[]2,1x ∈--,即为函数()2y f x =+的定义域, 而将函数()y f x =的图象向左平移2个单位即得()2y f x =+的图象, 故其值域不变. 故选:C .5.(2022·江西·高三阶段练习(文))函数()s 2π2inxf x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]【答案】B 【解析】 【分析】根据指数函数与正弦函数的单调性可得函数()f x 在上单调递增,从而可求()f x 的值域. 【详解】解:易知函数()s 2π2inxf x x =+在[0,1]上单调递增,且(0)1f =,(1)3f =, 所以()f x 在[0,1]上的值域为[1,3]. 故选:B .6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1] B .(﹣1,12)C .[﹣1,12)D .(0,1)【答案】C 【解析】 【分析】先求出ln ,1y x x =≥的值域,然后确定(12)3,1y a x a x =-+<的值域所包含的集合,利用一次函数性质可得. 【详解】当x ≥1时,f (x )=ln x ,其值域为[0,+∞),那么当x <1时,f (x )=(1﹣2a )x +3a 的值域包括(﹣∞,0), ∴1﹣2a >0,且f (1)=(1﹣2a )+3a ≥0, 解得:12a <,且a ≥﹣1. 故选:C.7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦ (k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )【答案】B 【解析】 【分析】由题意可得2sin 102x π-≥,然后利用正弦函数的性质求解即可【详解】 由题意,得2sin 102x π-≥,1sin22x π≥, 所以522,Z 626k x k k πππππ≤+≤≤+∈, 解得1544,Z 33k x k k +≤≤+∈,所以函数的定义域为()154,4Z 33k k k ⎡⎤++∈⎢⎥⎣⎦,故选:B8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4C .6D .与m 值有关【答案】C 【解析】 【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解. 【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞, 所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .2【答案】B 【解析】 【分析】 记9t x π=+,()()33sin 2f x h t t t ==+,由三角函数的性质即可求出()g x 的最大值. 【详解】 记9t x π=+,则()()33sin sin sin 32f x h t t t t t π⎛⎫==++= ⎪⎝⎭, 所以()3sin 3,36h t t π⎛⎫⎡=+∈- ⎪⎣⎝⎭, 33π>,所以()()f f x 3故选:B.10.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0【答案】C 【解析】 【分析】根据题意得到()f x 为偶函数,由0x ≥时,()12cos f x x x x =+-,利用导数求得函数的的单调区间,进而求得函数的最小值. 【详解】由题意,函数()12cos f x x x x =+-的定义域为R ,关于原点对称,且满足()()()1122cos cos f x x x x x x x f x -=-+---=+-=,所以()f x 为偶函数,当0x ≥时,()12cos f x x x x =+-, 可得()1sin 11022f x x xx=≥'+>,()f x 在单调递增,又由()f x 为偶函数,所以()f x 在(),0∞-单调递减,[)0,∞+单调递增, 所以()()min 01f x f ==-. 故选:C. 二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 【答案】BD 【解析】 【分析】求出函数定义域为(4,2)-,A 选项错误;利用定义证明函数(1)=-y f x 是偶函数,B 选项正确;函数()f x 在区间[)1,2-上是增函数,故C 选项错误;可以证明f (x )的图象关于直线1x =-对称,故D 选项正确. 【详解】解:函数()()()()()1222log 2log 4log 24f x x x x x ⎡⎤=--+=--+⎣⎦, 由20,40x x ->+>可得42x -<<,故函数定义域为(4,2)-,A 选项错误;()()()21log 33y f x x x ⎡⎤=-=--+⎣⎦的定义域为()3,3-,设()()()2log 33,g x x x ⎡⎤=--+⎣⎦所以()()()()2log 33,g x x x g x ⎡⎤-=-+-+=⎣⎦即()1y f x =-是偶函数,B 选项正确;()()()()222log 24log 28f x x x x x ⎡⎤=--+=---+⎣⎦()22log 19x ⎡⎤=--++⎣⎦()212log 19x ⎡⎤=-++⎣⎦,当[)1,2x ∈-时,()219t x =-++是减函数,外层12log y t =也是减函数,所以函数()f x 在区间[)1,2-上是增函数,故C 选项错误;由()()()()22log 42=f x x x f x ⎡⎤--=-+-⎣⎦,可得f (x )的图象关于直线1x =-对称,故D 选项正确. 故选:BD 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____. 【答案】 2 (][)2,e 22,--+∞【解析】【分析】根据(e)3(0)f f =-可解得b 的值,代入分段函数,结合对数函数及指数函数的值域求解分段函数的值域即可. 【详解】由(e)3(0)f f =-得13(1)b +=-⨯-,即2b =,即函数()ln 2,1e 2,1xx x f x x +>⎧=⎨-≤⎩, 当1x >时,ln 22y x =+>;当1x ≤时,(]e 22,e 2xy =-∈--.故函数()f x 的值域为(][)2,e 22,--+∞.故答案为:2;(][)2,e 22,--+∞.13.(2023·全国·高三专题练习)已知函数()121x f x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 【答案】 1293,142⎡⎤⎢⎥⎣⎦【解析】 【分析】由()f x 是定义在(﹣∞,0)∪(0,+∞)上的奇函数可得f (﹣x )=﹣f (x ),代入可求出实数a ;再判断数f (x )在[1,3]上单调性,即可求出答案. 【详解】解:∵f (x )是(﹣∞,0)∪(0,+∞)上是奇函数, ∴f (﹣x )=﹣f (x ), 即121x -+-a121x =---a , 即212xx+-a 121x=---a , 则2a 121221121212x x xx x x=--=-=----1, 则a 12=, 则f (x )11212x =+-在[1,3]为减函数, 则f (3)≤f (x )≤f (1), 即914≤f (x )32≤, 即函数的值域为[914,32],故答案为:12;[914,32] 四、填空题14.(2022·全国·高三专题练习)函数()02lg 2112x y x x x -=++-的定义域是________.【答案】(3,1)(1,2)--⋃- 【解析】 【分析】要使该函数表达式有意义,只需20x ->,2120x x +->,10x +≠同时成立,解不等式即可求出结果. 【详解】 函数()02lg 2112x y x x x -=++-的解析式有意义,由22012010x x x x ->⎧⎪+->⎨⎪+≠⎩,即2341x x x <⎧⎪-<<⎨⎪≠-⎩,所以31x -<<-或12x -<<, 故该函数的定义域为(3,1)(1,2)--⋃-. 故答案为:(3,1)(1,2)--⋃-15.(2022·上海闵行·二模)已知函数()()41log 42x f x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;【答案】1 【解析】 【分析】根据条件得到()()f a f a =-,即()()41log 42xf x m x =+-为偶函数,根据()()f x f x -=列出方程,求出实数m 的值. 【详解】因为()()41log 42xf x m x =+-的定义域为R ,所以40x m +>恒成立, 故0m ≥,又因为对任意实数a ,都满足()()f a f a ≥-, 则对于实数a -,都满足()()f a f a -≥, 所以()()f a f a =-,所以()()41log 42x f x m x =+-为偶函数, 从而()()4411log 4log 422x x m x m x -++=+-, 化简得:()()4110x m --=,要想对任意x ,上式均成立,则10m -=,解得:1m =故答案为:116.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1a f x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.【答案】3【解析】【分析】根据已知条件及奇函数的定义求出当0x <时函数的解析式,再利用函数的单调性对a 进行分类讨论,确定单调性即可求解.【详解】由题意可知,因为0x >,所以0x -<,所以()1a f x x x -=--+, 因为函数()f x 是定义域为R 的奇函数,所以()()1a f x f x x x=--=+-. 因为函数()y f x =在[)3,+∞上的最小值为3当0a ≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =(舍), 当09a <≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =, 当9a >时,由对勾函数的性质知,函数()f x 在),a ⎡+∞⎣上单调递增;在(a 上单调递减; 当x a =()f x 取得最小值为(11f a a a a ==,因为函数()y f x =在[)3,+∞上的最小值为3,所以213a =,解得1a =(舍), 综上,实数a 的值为3.故答案为:3.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞;②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增:④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.【答案】①②【解析】【分析】由分段函数解析式,讨论参数a ,结合二次函数、对数函数的性质研究()f x 的单调性、最值及对应值域,利用函数()f x 与1y =的交点情况判断参数范围.【详解】由2()y x a =+的对称轴x a =-,当1a >-时,则1x a =-<,且(,)a -∞-上递减,(,1)a -上递增,值域为[0,)+∞, 当1a =-时,则(,1)-∞上递减,值域为[0,)+∞,当1a <-时,则1x a =->,(,1)-∞上递减,值域为2((1),)a ++∞,对于ln y x a =+在[1,)+∞上递增,且值域为[,)a +∞,综上,0a ≥时()f x 的值域为[0,)+∞,①正确;当0a ≥时()f x 最小值为0,当0a <时()f x 最小值为a ,②正确;由211|(1)|ln1x x y a y a a ===+>=+=恒成立,故在(0,)+∞上不可能递增,③错误; 要使1f x 有唯一解,当1a <-时,在[1,)+∞上必有一个解,此时只需2(1)1a +≥,即2a ≤-;当1a =-时,在R 上有两个解,不合题设;当1a >-时,在(,)a -∞-上必有一个解,此时()211{1a a +≤>,无解.所以④错误.故答案为:①② 18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__. 【答案】230⎡⎢⎣⎦, 【解析】【分析】将m 分为000m m m =><,, 三种情况讨论:当0m =时,()210f x x - 满足条件;当0m <时,由二次函数知开口向下,不满足条件;当0m >时,只需二次函数的0∆≥即可,解出m 的取值范围,综上得m 的取值范围.【详解】解:当0m =时,()()22121f x mx m x m x =--+--[0,+∞),满足条件;令()()221g x mx m x m =--+- ,()()0g x ≥当m <0时,()g x 的图象开口向下,故f (x )的值域不会是[0,+∞),不满足条件;当m >0时,()g x 的图象开口向上,只需()2210mx m x m --+-=的0∆≥,即(m ﹣2)2﹣4m (m ﹣1)≥0, ∴2323m ≤≤,又0m > ,所以230m <≤ 综上,230m ≤≤∴实数m 的取值范围是:230⎡⎢⎣⎦,, 故答案为:230⎡⎢⎣⎦,.。
专题06 等差数列、等比数列及数列的求和-高考数学试题探源与变式(解析版)
![专题06 等差数列、等比数列及数列的求和-高考数学试题探源与变式(解析版)](https://img.taocdn.com/s3/m/bd560eee2cc58bd63186bd6f.png)
专题六 等差数列、等比数列及数列的求和【母题原题1】【2019浙江,10】设,a b R ∈,数列{}n a 中,21,n n n a a a a b +==+,b N *∈ ,则( ) A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->【答案】A 【解析】选项B :不动点满足2211042x x x ⎛⎫-+=-= ⎪⎝⎭时,如图,若1110,,22n a a a ⎛⎫=∈< ⎪⎝⎭,排除如图,若a 为不动点12则12n a = 选项C :不动点满足22192024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为ax 12-,令2a =,则210n a =<,排除选项D :不动点满足221174024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为122x =±,令122a =±,则11022n a =±<,排除.选项A :证明:当12b =时,2222132431113117,,12224216a a a a a a =+≥=+≥=+≥≥, 处理一:可依次迭代到10a ;处理二:当4n ≥时,221112n nn a a a +=+≥≥,则117117171161616log 2log log 2n n n n a a a -++>⇒>则12117(4)16n n a n -+⎛⎫≥≥ ⎪⎝⎭,则626410217164646311114710161616216a ⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++> ⎪ ⎪⎝⎭⎝⎭.故选A【母题原题2】【2018浙江,10】已知成等比数列,且.若,则A.B.C.D.【答案】B 【解析】 令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但, 即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如【母题原题3】【2017浙江,6】已知等差数列{}n a 的公差为d,前n 项和为n S ,则“d>0”是465"+2"S S S >的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C【解析】由()46511210212510S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d>0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >” ⇔ “46520S S S +->”,故互为充要条件. 【母题原题4】【2016浙江,文8理6】如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N ,*1122,,n n n n n n B B B B B B n ++++=≠∈N .(P≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则A .{}n S 是等差数列B .{}2n S 是等差数列C .{}n d 是等差数列D .{}2n d 是等差数列 【答案】A【解析】S n 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度的一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,由于1,n A A 和两个垂足构成了直角梯形,那么11sin n n h h A A θ=+⋅,其中θ为两条线的夹角,即为定值,那么1111(sin )2n n n n S h A A B B θ+=+⋅,111111(||sin )2n n n n S h A A B B θ+++=+⋅,作差后:1111(sin )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A.【母题原题5】【2019浙江,20】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)由题意可得:1112432332a d a d a d +=⎧⎪⎨⨯+=+⎪⎩,解得:102a d =⎧⎨=⎩, 则数列{}n a 的通项公式为22n a n =-.其前n 项和()()02212n n n S nn +-⨯==-.则()()()()1,1,12n n n n n b n n b n n b -++++++成等比数列,即:()()()()21112n n n n n b n n b n n b ++=-+⨯+++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,据此有:()()()()()()()()2222121112121n n n n nn n n n b b n n n n n n b n n b b ++++=-++++++-+,故()()()()()22112121(1)(1)(1)(2)n n n n n n b n n n n n n n n n +--++==++++--+.(2)结合(1)中的通项公式可得:2nC==<=<=,则()()()12210221212nC C C n n n+++<-+-++--=【母题原题6】【2018浙江,20】已知等比数列{a n}的公比q>1,且a3+a 4+a 5=28,a4+2是a3,a5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n}的前n 项和为2n 2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n }的通项公式.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由是的等差中项得,所以,解得.由得,因为,所以.(Ⅱ)设,数列前n项和为.由解得.由(Ⅰ)可知,所以,故,.设,所以,因此,又,所以.点睛:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.【命题意图】1.考查等差数列、等比数列的通项公式及求和公式;2.考查数列的求和方法;3.考查运算求解能力、转化与化归思想以及分析问题解决问题的能力.【命题规律】数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显,小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等变难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.【答题模板】解答数列大题,一般考虑如下三步:第一步:确定数列的基本量.即根据通项公式、求和公式,通过布列方程或方程组,求得进一步解题所需的基本量;第二步:确定数列特征,选择求和方法.根据已有数据,研究送来的的特征,选择“分组求和法”“错位相减法”“裂项相消法”等求和方法;第三步:解答综合问题.根据题目要求,利用函数、导数、不等式等,进一步求解.【方法总结】1.公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n项和的公式来求和.对于一些特殊的数列(正整数数列、正整数的平方和立方数列等)也可以直接使用公式求和.2.倒序相加法:类似于等差数列的前n项和的公式的推导方法,如果一个数列{}n a的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.3.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.若n n n a b c =∙,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令112211n n n n n S b c b c b c b c --=++++,则n qS =122311n n n n b c b c b c b c -+++++两式错位相减并整理即得.4.裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.适用于类似1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项不为零的等差数列,c 为常数)的数列、部分无理数列等.用裂项相消法求和,需要掌握一些常见的裂项方法: (1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭,特别地当1k =时,()11111n n n n =-++; (21k=,特别地当1k ==(3)()()221111212122121n n a n n n n ⎛⎫==+- ⎪-+-+⎝⎭(4)()()()()()1111122112n a n n n n n n n ⎛⎫==- ⎪ ⎪+++++⎝⎭(5))()11(11q p qp p q pq <--= 5.分组转化求和法:有一类数列{}n n a b +,它既不是等差数列,也不是等比数列,但是数列{},{}n n a b 是等差数列或等比数列或常见特殊数列,则可以将这类数列适当拆开,可分为几个等差、等比数列或常见的特殊数列,然后分别求和,再将其合并即可.6.并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如()()1nn a f n =-类型,可采用两项合并求解.例如,22222210099989721n S =-+-++-()()()100999897215050=++++++=.7. [特别提醒]:在利用裂项相消法求和时应注意:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项.(3)裂项过程中易忽视常数,如)211(21)2(1+-=+n n n n 容易误裂为112n n -+,漏掉前面的系数12; (4)裂项之后相消的过程中容易出现丢项或添项的问题,导致计算结果错误. 8. [特别提醒]:用错位相减法求和时,应注意(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式.(3)给数列和S n 的等式两边所乘的常数应不为零,否则需讨论;(4)在转化为等比数列的和后,求其和时需看准项数,不一定为n .一、选择题1.【上海市虹口区2019届高三二模】已知等比数列的首项为2,公比为,其前项和记为,若对任意的,均有恒成立,则的最小值为( )A .B .C .D .【答案】B 【解析】S n•,①n 为奇数时,S n •,可知:S n 单调递减,且•,∴S n ≤S 1=2; ②n 为偶数时,S n•,可知:S n 单调递增,且•,∴S 2≤S n.∴S n 的最大值与最小值分别为:2,. 考虑到函数y =3t在(0,+∞)上单调递增,∴A .B .∴B﹣A的最小值.故选:B.2.【浙江省三校2019年5月份第二次联考】已知数列满足,若存在实数,使单调递增,则的取值范围是()A.B.C.D.【答案】A【解析】由单调递增,可得,由,可得,所以.时,可得.①时,可得,即.②若,②式不成立,不合题意;若,②式等价为,与①式矛盾,不合题意.排除B,C,D,故选A.3.【浙江省2019年高考模拟训练卷(三)】已知数列满足,,,数列满足,,,若存在正整数,使得,则()A. B. C. D.【答案】D【解析】因为,,则有,,且函数在上单调递增,故有,得,同理有,又因为,故,所以.故选D.4.【广东省韶关市2019届高考模拟测试(4月)】已知数列{}n a 满足2*123111()23n a a a a n n n N n ++++=+∈,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若*()1n n N T n nλ<∈+恒成立,则实数λ的取值范围为( ) A .1[,)4+∞ B .1(,)4+∞ C .3[,)8+∞ D .3(,)8+∞【答案】D 【解析】数列{}n a 满足212311123n a a a a n n n ++++=+,① 当2n ≥时,21231111(1)(1)231n a a a a n n n -+++⋯+=-+--,② ①﹣②得:12n a n n=,故:22n a n =,数列{}n b 满足:22121214(1)n n n n n b a a n n +++==+221114(1)n n ⎡⎤=-⎢⎥+⎣⎦, 则:2222211111114223(1)n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦21114(1)n ⎛⎫=- ⎪+⎝⎭, 由于*()1n n N T n nλ<∈+恒成立, 故:21114(1)1n n n λ⎛⎫-< ⎪++⎝⎭, 整理得:244n n λ+>+,因为211(1)4441n y n n +==+++在*n N ∈上单调递减,故当1n =时,max213448n n +⎛⎫= ⎪+⎝⎭ 所以38λ>. 故选:D .5.【浙江省温州市2019届高三2月高考适应】已知数列{} 满足0<<<π,且,则( )A .B .C .D .【答案】A 【解析】 由,取特殊值:,,得:=,=,排除C 、D ;==,=>;且,,均小于,猜测,下面由图说明:当时,由迭代蛛网图:当时,由迭代蛛网图:可得,当n分别为奇数、偶数时,单调递增,且都趋向于不动点,由图像得,综上可得,故选A.6.【浙江省湖州三校2019年普通高等学校招生全国统一考试】已知数列满足,,则使的正整数的最小值是()A.2018 B.2019 C.2020 D.2021【答案】C【解析】令,则,所以,从而,因为,所以数列单调递增,设当时, 当时,所以当时,,,从而,因此,选C.二、解答题7.【天津市部分区2019年高三质量调查试题(二)】各项均为正数的等比数列满足,.(1)求数列的通项公式;(2)设,数列的前项和为,证明:.【答案】(1) (2)见证明【解析】解:(1)设等比数列的公比为,由得,解得或.因为数列为正项数列,所以,所以,首项,故其通项公式为.(2)由(Ⅰ)得所以,所以.8.【浙江省浙南名校联盟2019届高三上学期期末】已知等比数列的公比,前项和为.若,且是与的等差中项.(I)求;(II)设数列满足,,数列的前项和为.求证:.【答案】(Ⅰ)(II)见证明【解析】(I)由,得①.再由是,的等差中项,得,即②.由①②,得,即,亦即,解得或,又,故.代入①,得,所以,即;(II)证明:对任意,,,即.又,若规定,则.于是,从而,即.8.9.【浙江省嘉兴市2019届高三上期末】在数列、中,设是数列的前项和,已知,,,.(Ⅰ)求和;(Ⅱ)若时,恒成立,求整数的最小值.【答案】(1),(2)整数的最小值是11.【解析】 (Ⅰ)因为,即,所以是等差数列,又,所以,从而.(Ⅱ)因为,所以,当时,①②①-②可得,,即,而也满足,故. 令,则,即,因为,,依据指数增长性质,整数的最小值是11.10.【河南省濮阳市2019届高三5月模拟】已知数列}{n b 的前n 项和为n S ,2n n S b +=,等差数列}{n a 满足123b a =,157b a += (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)证明:122313n n a b a b a b ++++<.【答案】(Ⅰ)1n a n =+,112n n b -⎛⎫= ⎪⎝⎭;(Ⅱ)详见解析.【解析】 (Ⅰ)2n n S b += ∴当1n =时,1112b S b ==- 11b ∴=当2n ≥时,1122n n n n n b S S b b --=-=--+,整理得:112n n b b -=∴数列{}n b 是以1为首项,12为公比的等比数列 112n n b -⎛⎫∴= ⎪⎝⎭设等差数列{}n a 的公差为d123b a =,157b a += 11346a d a d +=⎧∴⎨+=⎩,解得:121a d =⎧⎨=⎩()()112111n a a n d n n ∴=+-=+-⨯=+(Ⅱ)证明:设()212231111231222nn n n T a b a b a b n -⎛⎫⎛⎫=++⋅⋅⋅+=⨯+⨯+⋅⋅⋅++⋅ ⎪ ⎪⎝⎭⎝⎭()23111112312222n n T n +⎛⎫⎛⎫⎛⎫∴=⨯+⨯+⋅⋅⋅++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭两式相减可得:()()23111111111111421111122222212n n n n n T n n ++-⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=+++⋅⋅⋅+-+⋅=-+⋅+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-13322n n ++=- 332n n n T +=-即12231332n n nn a b a b a b -+++⋅⋅⋅+=-302n n +> 122313n n a b a b a b -∴++⋅⋅⋅+< 11.【浙江省金华十校2019届下学期高考模拟】已知数列{}n a 中,14a =,n a >,1314n n n n a a a a +=-+,记22212111...n nT a a a =+++. (1)证明:2n a >;(2)证明:115116n na a +≤<; (3)证明:8454n n n T -<<. 【答案】(1)见解析;(2)见解析;(2)见解析 【解析】(1)∵3133(2)(2)1422n n n n n n n na a a a a a a a +---=-+-=-,∴31323221212n n n n n n na a a a a a a +---==---,令1n t a =,则2312()122n n a m t t t a +-==---,∵n a >t ∈,∴'2()260m t t t =--<,∴()m t在单调递减,∴16()()10339m t m ->=-=>,即n a 时,1202n n a a +->-恒成立, ∴12n a +-与2n a -同号,又1220a -=>.∴2n a >成立.(2)2124214111514816n n n n n a a a a a +⎛⎫=-+=-+ ⎪⎝⎭221115412816⎛⎫<-+= ⎪⎝⎭,又212111515481616n n n a a a +⎛⎫=-+ ⎪⎝⎭…,∴115116n n a a +≤<. (3)先证4n nT <,因为2n a >,所以2114n a <,所以222121111...44n n n T n a a a =+++<⋅=,再证845n n T >-,∵1314n n n na a a a +=-+,∴()121144n n n n a a a a +-=+, 又21232141115151481616n n n n n a a a a a +⎛⎫=-+=-+> ⎪⎝⎭,∴11615n n a a +>,∴116()31n n n a a a +<+,又10n n a a +-<,∴2211()4()431n n n n n a a a a a ++->-,所以221222121114...()314n n n n n T a a a a a +=+++>-+4488(416)31443145n n n >-+=->-, 故8454n n n T -<<. 12.【浙北四校2019届高三12月模拟】已知数列满足,().(Ⅰ)证明数列为等差数列,并求的通项公式;(Ⅱ)设数列的前项和为,若数列满足,且对任意的恒成立,求的最小值.【答案】(Ⅰ)证明见解析,;(Ⅱ).【解析】∵(n+1)a n+1﹣(n+2)a n=2,∴﹣==2(﹣),又∵=1,∴当n≥2时,=+(﹣)+(﹣)+…+(﹣)=1+2(﹣+﹣+…+﹣)=,又∵=1满足上式,∴=,即a n=2n,∴数列{a n}是首项、公差均为2的等差数列;(Ⅱ)解:由(I)可知==n+1,∴b n=n•=n•,令f(x)=x•,则f′(x)=+x••ln,令f′(x)=0,即1+x•ln=0,解得:x0≈4.95,则f(x)在(0, x0)上单调递增,在(x0,+单调递减.∴0<f(x)≤max{f(4),f(5),f(6)},又∵b5=5•=,b4=4•=﹣,b6=6•=﹣,∴M的最小值为.。
2020年高考数学冲刺复习知识点精讲:数列中的最值问题含解析
![2020年高考数学冲刺复习知识点精讲:数列中的最值问题含解析](https://img.taocdn.com/s3/m/d8bfb18a04a1b0717fd5ddcd.png)
数列中的最值问题一、考情分析数列中的最值是高考热点,常见题型有:求数列的最大项或最小项、与n S 有关的最值、求满足数列的特定条件的n 最值、求满足条件的参数的最值、实际问题中的最值及新定义题型中的最值问题等. 二、经验分享(1) 数列的最值可以利用数列的单调性或求函数最值的思想求解.解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列.②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断.(2) 最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1,则a n 最小. (3)求等差数列前n 项和的最值,常用的方法:①利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;②利用等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)为二次函数,通过二次函数的性质求最值.另外,对于非等差数列常利用函数的单调性来求其通项或前n 项和的最值. 三、知识拓展已知等差数列{}n a 的公差为d ,前n 项和为n S ,①若0d >,n S 有最小值,若,则k S 最小,若0k a =则1,k k S S -最小; ①若0d <,n S 有最大值,若,则k S 最大,若0k a =则1,k kS S -最大。
四、题型分析(一) 求数列的最大项或最小项求数列中的最大项的基本方法是: (1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)确定数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)确定数列的最小项.(3)利用函数或数列单调性求最大项或最小项. 【例1】已知数列}{n a 的通项公式为n a =2156nn +,求}{n a 的最大项. 【分析】思路1:利用基本不等式求解.思路2:求满足⎩⎨⎧≥≥-+11n nn n a a a a 的n 的值.【解法一】基本不等式法., 120S <,则当0n S >时, n 的最大值为11,故选A(三) 求满足数列的特定条件的n 的最值【例3】【贵州省凯里市第一中学2018届高三下学期一模】已知{}n a 的前n 项和为,且145,,2a a a -成等差数列,,数列{}n b 的前n 项和为n T ,则满足20172018n T >的最小正整数n 的值为( )A. 8B. 9C. 10D. 11 【分析】先求和,再解不等式. 【答案】C【解析】,当2n ≥时,,由145,,2a a a -成等差数列可得,即,解得2m =-,故2nn a =,则,故,由20172018n T >得,即122019n +>,则111n +≥,即10n ≥,故n 的最小值为10.【小试牛刀】【湖南省邵东县创新实验学校2019届高三月考】已知数列的通项,数列的前项和为,若这两个数列的公共项顺次构成一个新数列,则满足的的最大整数值为( )A .338B .337C .336D .335 【答案】D(四) 求满足条件的参数的最值【例4】已知n S 为各项均为正数的数列{}n a 的前n 项和,.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,若对恒成立,求实数t 的最大值.【分析】(1)首先求得1a 的值,然后利用n a 与n S 的关系推出数列{}n a 为等差数列,由此求得{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后用裂项法求得n T ,再根据数列{}n T 的单调性求得t 的最大值.(2)由32n a n =- ,可得.因为,所以1n n T T +>,所以数列{}n T 是递增数列,所以,所以实数t 的最大值是1.【点评】(1) 求解与参数有关的问题,一般是分离变量,再构造新函数求解.(2)使用裂项法,要注意正负项相消时,消去了哪些项,保留了哪些项.要注意由于数列{}n a 中每一项n a 均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样多的,切不可漏写未被消去的项,未被消去的项有前后对称的特点.【小试牛刀】已知数列{}n a 的通项公式为11n a n =+,前n 项和为n S ,若对任意的正整数n ,不等式恒成立,则常数m 所能取得的最大整数为 .【答案】5 【解析】要使恒成立,只需.因,所以,,数列为等差数列,首项为,,,,,在数列中只有,,为正数的最大值为故选5.【湖南师范大学附属中学2019届高三上学期月考】已知数列的前项和为,通项公式,则满足不等式的的最小值是( )A.62 B.63C.126 D.127【答案】D6.【湖南省岳阳市第一中学2019届高三上学期第三次质检】在数列中,,,若数列满足,则数列的最大项为()A.第5项 B.第6项 C.第7项 D.第8项【答案】B【解析】数列中,,,得到:,,,,上边个式子相加得:,解得:.当时,首项符合通项.故:.数列满足,则, 由于,故:,解得:,∴当n ∈[1,44]时,{a n }单调递减,当n ∈[45,100]时,{a n }单调递减,结合函数f (x )=x - 2 013x - 2 014的图象可知,(a n )max =a 45,(a n )min =a 44,选C.10.已知函数,且,设等差数列{}n a 的前n 项和为n S ,()*n N ∈若()n S f n =,则41n n S aa --的最小值为( ) A .276 B .358 C .143 D .378【答案】【解析】由题意可得等差数列的通项公式和求和公式,代入由基本不等式可得. 由题意可得或解得a=1或a=-4, 当a=-1时, ,数列{a n }不是等差数列;当a=-4时,,,,当且仅当1311n n +=+,即1n =时取等号, ∵n 为正数,故当n=3时原式取最小值378,故选D . 11.已知等差数列{}n a 的通项公式为n a n =,前n 项和为n S ,若不等式恒成立,则M 的最小值为__________. 【答案】625912.【江苏省常州2018届高三上学期期末】各项均为正数的等比数列{}n a 中,若,则3a 的最小值为________.【解析】因为{}n a 是各项均为正数的等比数列,且,所以,则,即,即,即3a 13.【福建省闽侯县第八中学2018届高三上学期期末】已知数列{}n na 的前n 项和为n S ,且2n n a =,则使得的最小正整数n 的值为__________.【答案】5【解析】,,两式相减,故, 112n n a ++=故,故n 的最小值为5.14.【河北省承德市联校2018届高三上学期期末】设等差数列{}n b 满足136b b +=, 242b b +=,则12222n b b b 的最大值为________.【答案】512【解析】依题意有,解得,故.,故当3n =时,取得最大值为92512=.15.【新疆乌鲁木齐地区2018届高三第一次诊断】设n S 是等差数列{}n a 的前n 项和,若250S >, 260S <,则数列的最大项是第________项.【答案】1316.【安徽省淮南市2018届高三第一次(2月)模拟】已知正项数列{}n a 的前n 项和为n S ,当2n ≥时,,且11a =,设,则的最小值是________.【答案】9【解析】当2n ≥ 时,,即,展开化为:∵正项数列{}n a 的前n 项和为n S∴数列{}n S 是等比数列,首项为1,公比为4.则则当且仅当3611n n +=+即5n =时等号成立. 故答案为919.已知数列{}n a 满足:*1a ∈N ,136a …,且,记集合.(1)若16a =,写出集合M 的所有元素;(2)若集合M 存在一个元素时3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解析:(1)6,12,24.(2)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数.由,可归纳证明对任意n k …,n a 是3的倍数.如果1k =,则M 的所有元素都是3的倍数; 如果1k >,因为12k k a a -=或,所以12k a -是3的倍数,或1236k a --是3的倍数,于是1k a -是3的倍数.类似可得,2k a -,…,1a 都是3的倍数.从而对任意1n …,n a 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.。
专题06 概率的最值问题(解析版)
![专题06 概率的最值问题(解析版)](https://img.taocdn.com/s3/m/dad84c96970590c69ec3d5bbfd0a79563d1ed470.png)
概率与统计专题06 概率的最值问题常见考点考点一 概率的最值问题典例1.某种体育比赛采用“五局三胜制”,具体规则为比赛最多进行五场,当参赛的两方有一方先羸得三场比赛,就由该方获胜而比赛结束,每场比赛都需分出胜负.现A ,B 双方参加比赛,A 方在每一场获胜的概率为()01p p <<,假设每场比赛的结果相互独立. (1)当13p =时,求A 方恰在比赛四场后赢得比赛的概率; (2)若B 方在每一场获胜的概率为q ,设比赛场数为ξ. (i )试求ξ的分布列及数学期望()E ξ;(用P ,q 表示) (ⅱ)求()E ξ的最大值,并给出能够减少比赛场数的建议. 【答案】(1)227;(2)(i )分布列见解析,22633p q pq ++;(ⅱ)338,建议A ,B 双方扩大与对方每一场获胜的概率,可减少比赛场数. 【解析】 【分析】(1)根据A 方在前三场中有两场获胜,且第四场获胜,可得结果; (2)(i )ξ取值为3,4,5.求出ξ取各个值的概率即可得分布列;(ⅱ)根据()222121633648E p q pq pq ξ⎛⎫=++=++ ⎪⎝⎭和104pq <≤可得结果,【详解】(1)A 方恰在比赛四场后赢得比赛,则A 方在前三场中有两场获胜,且第四场获胜,所以A 方恰在比赛四场后赢得比赛的概率为223121233327C ⎛⎫⋅= ⎪⎝⎭;建议A ,B 双方扩大与对方每一场获胜的概率,可减少比赛场数.(2)(i )易知1p q +=,ξ取值为3,4,5.()333P p q ξ==+,()22223333433P C p q p C q p q p q pq ξ==⋅+⋅=+,()222222322344566P C p q p C q p q p q p q ξ==⋅+⋅=+,故ξ的概率分布列为:所以点的数学期望为()()()()333332233433566E p q p q pq p q p q ξ=+++++. ()()()()22222231230p q p pq q pq p q p q p q =+-+++++()()22313121230pq pq pq p q =-+-+22633p q pq =++.(ⅱ)()222121633648E p q pq pq ξ⎛⎫=++=++ ⎪⎝⎭,因为1p q +=,01p <<,所以104pq <≤,所以()E ξ在14pq =, 即12p q ==时,取得最大值,最大值为211213364488⎛⎫++= ⎪⎝⎭.由数学期望的表达式可知当10,4pq ⎛⎤∈ ⎥⎝⎦时,()E ξ单调递增,所以pq 接近0时,即当p ,q 相差较大时,也就是0p →,1q →或者1p →,0q →时, 比赛场数的数学期望相对较小,故建议A ,B 双方扩大与对方每一场获胜的概率,可减少比赛场数. 【点睛】本题考查了独立重复试验的概率公式,考查了离散型随机变量的分布列,考查了离散型随机变量的数学期望,属于中档题.变式1-1.一个口袋中有除颜色外其他均相同的2个白球和n 个红球(2n ≥,且*n ∈N ),每次从袋中摸出2个球(每次摸球后把这2个球放回袋中),若摸出的2个球颜色相同,则为中奖,否则为不中奖.设一次摸球中奖的概率为p .(1)试用含n 的代数式表示一次摸球中奖的概率p ; (2)若3n =,求三次摸球恰有一次中奖的概率;(3)记三次摸球恰有一次中奖的概率为()f p ,当n 为何值时,()f p 取得最大值?【答案】(1)22232-+++n n n n ;(2)54125;(3)2n =.【解析】 【分析】(1)求出从()2+n 个球中任选2个的情况,再求出任选的2个球颜色相同的情况即可得出; (2)根据独立重复试验的特点可直接求出; (3)根据题意表示出()f p ,利用导数可求解. 【详解】(1)从()2+n 个球中任选2个,有22C n +种选法,任选的2个球颜色相同,有222C C n +种选法,∴一次摸球中奖的概率2222222C C 2C 32n n n n p n n ++-+==++. (2)若3n =,则一次摸球中奖的概率为25.三次摸球是独立重复试验,则三次摸球中恰有一次中奖的概率是2132254C 155125⎛⎫⨯⨯-=⎪⎝⎭. (3)由题意,得三次摸球恰有一次中奖的概率是()()21323C 1363f p p p p p p =⋅⋅-=-+,01p <<. ()()()291233131f p p p p p '=-+=--,∴()f p 在10,3⎛⎫ ⎪⎝⎭上单调递增,在1,13⎛⎫⎪⎝⎭上单调递减,∴当13p =时,()f p 取得最大值,由(1)知2221323n n p n n -+==++(2n ≥,且*n ∈N ),得2n =,即2n =时,()f p 取得最大值.变式1-2.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓后要么出现一次音乐,要么不出现音乐,设每次击鼓出现音乐的概率为205⎛⎫<< ⎪⎝⎭p p ,且各次击鼓出现音乐相互独立.(1)若一盘游戏中仅出现一次音乐的概率为()f p ,求()f p 的最大值点0p ;(2)以(1)中确定的0p 作为p 的值,玩3盘游戏,出现音乐的盘数为随机变量X ,求每盘游戏出现音乐的概率1p 及随机变量X 的期望. 【答案】(1)013=p ;(2)11927p =;199. 【解析】 【分析】(1)根据独立性重复实验的概率公式计算出()f p ,然后根据函数性质即可求出最大值点; (2)先算每盘不出现音乐的概率,即可算出每盘游戏出现音乐的概率1p ,可知随机变量X 服从二项分布,直接根据公式可计算期望. 【详解】(1)由题可知,一盘游戏中仅出现一次音乐的概率为:()()213231363=-=-+f p C p p p p p ,()()()3311'=--f p p p ,由()0f p '=得13p =或1p =(舍), 当10,3p ⎛⎫∈ ⎪⎝⎭时,()0f p '>;当12,35⎛⎫∈ ⎪⎝⎭p 时,()0f p '<,∴()f p 在10,3⎛⎫⎪⎝⎭上单调递增,在12,35⎛⎫ ⎪⎝⎭上单调递减,∴当13p =时,()f p 有最大值,即()f p 的最大值点013=p . (2)由(1)知,013==p p ,则每盘游戏出现音乐的概率为3111911327⎛⎫=--= ⎪⎝⎭p .由题可知193,27⎛⎫ ⎪⎝⎭X B , ∴()19193279E X =⨯=. 【点睛】本题考查独立性重复实验的概率,以及二项分布的均值的计算.变式1-3.2019年女排世界杯(第13届女排世界杯)是由国际排联()FIVB 举办的赛事,比赛于2019年9月14日至9月29日在日本举行,共有12支参赛队伍.本次比赛启用了新的排球用球MIKASA _200V W ,已知这种球的质量指标ξ(单位:g )服从正态分布2(270,5)N .比赛赛制采取单循环方式,即每支球队进行11场比赛,最后靠积分选出最后冠军.积分规则如下(比赛采取5局3胜制):比赛中以3:0或31:取胜的球队积3分,负队积0分;而在比赛中以3:2取胜的球队积2分,负队积1分.9轮过后,积分榜上的前2名分别为中国队和美国队,中国队积26分,美国队积22分.第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为(01)p p <<.(1)如果比赛准备了1000个排球,估计质量指标在(260,270)内的排球个数(计算结果取整数) (2)第10轮比赛中,记中国队31:取胜的概率为()f p ,求出()f p 的最大值点0p ,并以0p 作为p 的值,解决下列问题.(i )在第10轮比赛中,中国队所得积分为X ,求X 的分布列;(ii )已知第10轮美国队积3分,判断中国队能否提前一轮夺得冠军(第10轮过后,无论最后一轮即第11轮结果如何,中国队积分最多)?若能,求出相应的概率;若不能,请说明理由.参考数据:()2~,X N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.【答案】(1)477个;(2)034p =;(i )见解析;(ii )能提前一轮夺得冠军,189256. 【解析】 【分析】(1)由正态分布3σ原则即可求出排球个数;(2)根据二项分布先求出()f p ,再利用导数求出()f p 取最大值时p 的值;()i 根据比赛积分规则,得出中国队得分可能的取值,然后求出其分布列;()ii 由X 的分布列分析即可得出能否提前一轮夺得冠军并求得其概率. 【详解】解:∵()2~270,5ξN ,∴0.9545(260270)0.477252P ξ<<== 所以质量指标在(260,270)内的排球个数约为10000.47725477.25477⨯=≈个(2)2333()(1)3(1)f p C p p p p =-=-,232()3[3(1)(1)]3(34)f p p p p p p '=-+-=-.令()0f p '=,得34p =.当30,4p ⎛⎫∈ ⎪⎝⎭时,()0f p '>,()f p 在30,4⎛⎫ ⎪⎝⎭上为增函数; 当3,14p ⎛⎫∈ ⎪⎝⎭时,()0f p '<,()f p 在3,14⎛⎫⎪⎝⎭上为减函数.所以()f p 的最大值点034p =.从而34p =.()i X 的可能取值为3,2,1,0.()()322318931256==+-=P X p C p p p , ()()22248121512==-=P X C p p p , ()()32242711512==-=P X C p p , ()()()331313011256==-+-=P X p C p p , ∴X 的分布列为()ii 若3X =,则中国队10轮后的总积分为29分,美国队即便第10轮和第11轮都积3分,则11轮过后的总积分是28分,2928>,所以,中国队如果第10轮积3分,则可提前一轮夺得冠军,其概率为189(3)256P X ==. 【点睛】本题考查正态分布、二项分布、离散型随机变量的分布列及导数的应用,知识点交叉渗透,综合性强,属于中档题.典例2.某市居民用天然气实行阶梯价格制度,具体见下表:从该市随机抽取10户(一套住宅为一户)同一年的天然气使用情况,得到统计表如下:(1)求一户居民年用气费y (元)关于年用气量x (立方米)的函数关系式;(2)现要在这10户家庭中任意抽取3户,求抽到的年用气量超过228立方米而不超过348立方米的用户数的分布列与数学期望;(3)若以表中抽到的10户作为样本估计全市居民的年用气情况,现从全市中依次抽取10户,其中恰有k 户年用气量不超过228立方米的概率为()P k ,求()P k 取最大值时的值.【答案】(1)(](]()3.25,0,2283.83132.24,228,3484.7435,348,x x y x x x x ⎧∈⎪=-∈⎨⎪-∈+∞⎩;(2)分布列见解析,数学期望为910;(3)6.【解析】 【分析】(1)由表格中的数据结合题意,即可求得一户居民年用气费y (元)关于年用气量x (立方米)的函数关系式;(2)由题意知10户家庭中年用气量超过228立方米而不超过348立方米的用户有3户,得到随机变量ξ可取0,1,2,3,利用超几何分布求得相应的概率,得到随机变量的分布列,进而求得期望;(3)由()10103255k kk P k C -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,列出不等式组由10110111010101101110103232555532325555k k k k k k k k k k k k C C C C -+--+---+-⎧⎛⎫⎛⎫⎛⎫⎛⎫≥⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪≥ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩,求得k 的值,即可求解. 【详解】(1)由题意,当(]0,228x ∈时, 3.25y x =; 当(]228,348x ∈时, 3.83132.24y x =-; 当()348,x ∈+∞时, 4.7435x y -=,所以年用气费y 关于年用气量x 的函数关系式为(](]()3.25,0,2283.83132.24,228,3484.7435,348,x x y x x x x ⎧∈⎪=-∈⎨⎪-∈+∞⎩.(2)由题知10户家庭中年用气量超过228立方米而不超过348立方米的用户有3户, 设取到年用气量超过228立方米而不超过348立方米的用户数为ξ,则ξ可取0,1,2,3,则()373107024C P C ξ===,()217331021140C C P C ξ===,()12733107240C C P C ξ===,()3331013120C P C ξ===,故随机变量ξ的分布列为:所以()721719012324404012010E ξ=⨯+⨯+⨯+⨯=. (3)由题意知()()1010320,1,2,3,1055kkkP k C k -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,由10110111010101101110103232555532325555k k k k k k k k k k k k C C C C -+--+---+-⎧⎛⎫⎛⎫⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪≥ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩,解得283355k ≤≤,*k N ∈, 所以当6k =时,概率()P k 最大,所以6k =. 【点睛】本题主要考查了分段函数模型的性质及其应用,以及离散型随机变量的分布列与期望的求解,着重考查了分析问题和解答问题的能力,属于中档试题.变式2-1.某工厂的某种产品成箱包装,每箱20件,每一箱产品在交付用户时,用户要对该箱中部分产品作检验.设每件产品为不合格品的概率都为()01p p <<,且各件产品是否合格相互独立. (1)记某一箱20件产品中恰有2件不合格品的概率为()f p ,()f p 取最大值时对应的产品为不合格品概率为0p ,求0p ;(2)现从某一箱产品中抽取3件产品进行检验,以(1)中确定的0p 作为p 的值,已知每件产品的检验费用为10元,若检验出不合格品,则工厂要对每件不合格品支付30元的赔偿费用,检验费用与赔偿费用的和记为X ,求X 的分布列和数学期望. 【答案】(1)0110p =;(2)分布列见解析;()39E X =. 【解析】 【分析】(1)根据二项分布概率公式可得()f p ,利用导数可确定()f p 单调性,从而得到最大值点; (2)首先确定X 所有可能的取值和对应的概率,由此得到分布列;根据数学期望计算公式计算可得期望. 【详解】(1)20件产品中恰有2件不合格品的概率()()1822201f p C p p =⋅⋅-, ()()()()1817222202021181f p C p p C p p '∴=⋅⋅-+⋅⋅--()()()()171722222020121181220Cp p p p C p p p ⎡⎤=---=--⎣⎦,令()0f p '=,又01p <<,解得:110p =, ∴当10,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>;当1,110p ⎛⎫∈ ⎪⎝⎭时,()0f p '<;()f p ∴在10,10⎛⎫ ⎪⎝⎭上单调递增,在1,110⎛⎫⎪⎝⎭上单调递减,∴当110p =时,()f p 取得最大值,即0110p =. (2)由题意得:X 所有可能的取值为:30,60,90,120,()3031729301101000P X C ⎛⎫∴==-=⎪⎝⎭;()2131124360110101000P X C ⎛⎫==⨯⨯-= ⎪⎝⎭; ()223112790110101000P X C ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭;()33311120101000P X C ⎛⎫==⨯= ⎪⎝⎭;X ∴的分布列为:∴数学期望()729243271306090120391000100010001000E X =⨯+⨯+⨯+⨯=. 【点睛】本题考查二项分布概率问题的求解以及服从于二项分布的随机变量的分布列与数学期望的求解问题;解题关键是能够利用导数的知识确定关于概率的函数的单调性,进而确定最值点.变式2-2.2019年泉州市农村电商发展迅猛,成为创新农产品交易方式、增加农民收入、引导农业供给侧结构性改革、促进乡村振兴的重要力量,成为乡村振兴的新引擎.2019年大学毕业的李想,选择回到家乡泉州自主创业,他在网上开了一家水果网店.2019年双十一期间,为了增加水果销量,李想设计了下面两种促销方案:方案一:购买金额每满120元,即可抽奖一次,中奖可获得20元,每次中奖的概率为p (01p <<),假设每次抽奖相互独立.方案二:购买金额不低于180元时,即可优惠x 元,并在优惠后的基础上打九折.(1)在促销方案一中,设每10个抽奖人次中恰有6人次中奖的概率为()f p ,求()f p 的最大值点0p ;(2)若促销方案二中,李想每笔订单得到的金额均不低于促销前总价的八折,求x 的最大值; (3)以(1)中确定的0p 作为p 的值,且当x 取最大值时,若某位顾客一次性购买了360元,则该顾客应选择哪种促销方案?请说明理由.【答案】(1)35;(2)20元;(3)选择方案一,理由见解析 【解析】 【分析】(1) 依题意得:()()46610C 1p p f p =-,利用求导,即可求出最值 (2) 设顾客一次购买水果的促销前总价为y ,当180y ≥元时,有()90%80%y x y -⨯≥⨯恒成立,利用参变分离法,把x 和y 分别放在不等式两边即可求解.(3)分别列出参加两种活动的方案,然后分别计算出减负金额即可判断应选择哪种促销方案 【详解】解:(1)依题意得:()()46610C 1p p f p =-, 则()()()()()433656561010C 61460111C p p p p p f p p p '⎡⎤=---⎣-=-⎦, 当30,5p ⎛⎫∈ ⎪⎝⎭时,()0f p '>;当3,15p ⎛⎫∈ ⎪⎝⎭时,()0f p '<,故()f p 在35p =时取得最大值,所以035p =. (2)设顾客一次购买水果的促销前总价为y , 当180y ≥元时,有()90%80%y x y -⨯≥⨯恒成立, 即()98y x y -≥恒成立,所以min209y x ⎛⎫≤= ⎪⎝⎭,故x 的最大值为20元. (3)若参加活动一,顾客可抽奖三次.设X 表示顾客在三次抽奖中中奖的次数,由于顾客每次抽奖的结果相互独立,则35~3,X B ⎛⎫⎪⎝⎭,所以()33 1.85E X np ==⨯=.由于顾客每中一次可获得20元现金奖励,因此该顾客在三次抽奖中可获得的奖励金额的均值为1.82036⨯=元, 若参加活动二,顾客可得减负金额为()3603602090%54--⨯=元. 又因为3654<,所以顾客应该选择活动二. 【点睛】本题考查利用导数求最值,参变分离法,以及二项分布的数学期望问题,属于基础题.变式2-3某省2021年开始将全面实施新高考方案.在6门选择性考试科目中,物理、历史这两门科目采用原始分计分;思想政治、地理、化学、生物这4门科目采用等级转换赋分,将每科考生的原始分从高到低划分为A ,B ,C ,D ,E 共5个等级,各等级人数所占比例分别为15%、35%、35%、13%和2%,并按给定的公式进行转换赋分.该省组织了一次高一年级统一考试,并对思想政治、地理、化学、生物这4门科目的原始分进行了等级转换赋分.(1)某校生物学科获得A 等级的共有10名学生,其原始分及转换分如下表:现从这10名学生中随机抽取3人,设这3人中生物转换分不低于95分的人数为X ,求X 的分布列和数学期望;(2)假设该省此次高一学生生物学科原始分Y 服从正态分布(75.836)N ,.若2~(,)Y N μσ,令Y μησ-=,则~(0,1)N η,请解决下列问题:①若以此次高一学生生物学科原始分C 等级的最低分为实施分层教学的划线分,试估计该划线分大约为多少分?(结果保留为整数)②现随机抽取了该省800名高一学生的此次生物学科的原始分,若这些学生的原始分相互独立,记ξ为被抽到的原始分不低于71分的学生人数,求()P k ξ=取得最大值时k 的值.附:若~(0,1)N η,则(0.8)0.788P η≈,( 1.04)0.85P η≈.【答案】(1)分布列详见解析,数学期望为32;(2)①69分;②631k =. 【解析】 【分析】(1)写出随机变量X 的所有可能的取值,根据超几何分布求出X 的每个值对应的概率,列出分布列,求出数学期望;(2)①设该划线分为m ,由~(75.8,36)Y N 求出,μσ.由Y μησ-=,得675.8Y η=+.由题意()0.85P Y m ≈≥,又( 1.04)0.85,~(0,1)P N ηη≈,故()1.040.85η≥-≈P ,故75.81.046m -≈-,即可求出m ;②由题意()()()()11P k P k P k P k ξξξξ⎧=≥=-⎪⎨=≥=+⎪⎩,根据独立重复实验的概率计算公式,求出()()(),1,1P k P k P k ξξξ==-=+,代入不等式组,即求k 的值. 【详解】(1)随机变量X 的所有可能的取值为0,1,23,. 由题意可得:0355310101(0)12012C C P X C ====,1255310505(1)12012C C P X C ====,2155310505(2)12012C C P X C ====,3055310101(3)12012C C P X C ====,∴随机变量X 的分布列为数学期望15513()0123121212122E X =⨯+⨯+⨯+⨯=. (2)①设该划线分为m ,由~(75.8,36)Y N 得75.8,6μσ==, 令75.86Y Y μησ--==,则675.8Y η=+,由题意,()0.85P Y m ≈≥,即()75.8675.80.856m P m P ηη-⎛⎫+=≈ ⎪⎝⎭≥≥, ~(0,1)N η,( 1.04)0.85P η≈,∴()1.040.85η≥-≈P ,75.81.046m -∴≈-,69.56m ∴≈,取69m =. ②由①讨论及参考数据得()()()()71675.8710.80.80.788P Y P P P ηηη=+=-=≈≥≥≥≤,即每个学生生物统考成绩不低于71分的事件概率约为0.788,~(800,0.788)B ξ∴,800800()0.788(10.788)kk k P k C ξ-==-.由()()()()1,1,P k P k P k P k ξξξξ⎧=≥=-⎪⎨=≥=+⎪⎩即80011801800800800117998008000.788(10.788)0.788(10.788),0.788(10.788)0.788(10.788),k k k k k k k k k k k k C C C C -----++-⎧-≥-⎨-≥-⎩ 解得630.188631.188k ≤≤,k ∈N ,631k ∴=,∴当631k =时,()P k ξ=取得最大值.【点睛】本题考查超几何分布、二项分布及正态分布,考查学生的数据处理能力和运算求解能力,属于较难的题目.巩固练习练习一 概率的最值问题1.某次围棋比赛的决赛,由甲乙两人争夺最后的冠军,决赛先进行两天,每天实行三盘两胜制,即先赢两盘者获得该天胜利,此时该天比赛结束.若甲乙中的一方能连续两天胜利,则其为最终冠军;若前两天双方各赢一天,则第三天只进行一盘附加赛,该附加赛的获胜方为最终冠军.设每盘比赛甲获胜的概率为(01)p p <<,每盘比赛的结果没有平局且结果互相独立. (1)记第一天需要进行的比赛盘数为X .(ⅱ)求()E X ,并求当()E X 取最大值时p 的值; (ⅱ)结合实际,谈谈(ⅱ)中结论的意义;(2)当12p =时,记总共进行的比赛盘数为Y ,求(5)≤P Y .【答案】(1)(i )()2222E X p p =-++,()E X 取最大值时,12p =(ii )结合实际,当12p =时双方实力最接近,比赛越激烈,则一天中进行比赛的盘数会更多 (2)12 【解析】 【分析】(1)X 可能取值为2,3,分别求解对应的概率,根据期望的定义求解()E X ,再根据二次函数的性质求最值即可;(2)5Y ≤即4Y =或5Y =,即获胜方两天均为2:0获胜或者获胜方前两天的比分为2:0和2:1或者2:0和0:2再加附加赛,分别计算概率即可(1)(i )X 可能取值为2,3,222(2)(1)221P X p p p p ==+-=-+;2(3)2(1)22P X p p p p ==-=-+故()()222()2221322222E X p p p p p p =-++-+=-++即215()222E X p ⎛⎫=--+ ⎪⎝⎭,则当12p =时,()E X 取得最大值.(ii )结合实际,当12p =时双方实力最接近,比赛越激烈,则一天中进行比赛的盘数会更多. (2)当12p =时,双方前两天的比分为2:0或0:2的概率均为111224⨯= 比分为2:1或1:2的概率均为111122224⨯⨯⨯=5Y ≤则4Y =或5Y =,4Y =即获胜方两天均为2:0获胜,故111(4)2448P Y ==⨯⨯=;5Y =即获胜方前两天的比分为2:0和2:1或者2:0和0:2再加附加赛, 故111113(5)222444428P Y ⎛⎫==⨯⨯⨯+⨯⨯⨯= ⎪⎝⎭ 所以131(5)(4)(5)882P Y P Y P Y ≤==+==+=2.在新冠肺炎疫情肆虐之初,作为重要防控物资之一的口罩是医务人员和人民群众抗击疫情的武器与保障,为了打赢疫情防控阻击战,我国企业依靠自身强大的科研能力,果断转产自行研制新型全自动高速口罩生产机,“争分夺秒、保质保量”成为口罩生产线上的重要标语(1)在试产初期,某新型全自动高速口罩生产流水线有四道工序,前三道工序完成成品口罩的生产且互不影响,第四道是检测工序.已知批次A 的成品口罩生产中,前三道工序的次品率分别为1135P =,2134P =,3133P =.求批次A 成品口罩的次品率()P A .(2)已知某批次成品口罩的次品率为(01)p p <<,设100个成品口罩中恰有1个不合格品的概率为()p ϕ,记()p ϕ的最大值点为0p ,改进生产线后批次J 的口罩的次品率0()p J p =.某医院获得批次A ,J 的口罩捐赠并分发给该院医务人员使用.经统计,正常佩戴使用这两个批次的口罩期间,该院医务人员核酸检测情况如条形图所示;求出0p ,并判断是否有99.9%的把握认为口罩质量与感染新冠肺炎病毒的风险有关? 【答案】(1)335(2)00.01p =,有99.9%的把握认为口罩质量与感染新冠肺炎病毒的风险有关. 【解析】 【分析】(1)根据对立事件的概率的求法,可得批次A 成品口罩的次品率为[]123()1(1)(1)(1)P A P P P =----,代入数据计算即可;(2) 由题意可得199100()(1)p C p p ϕ=⋅-,求出导数,得出函数()p ϕ的单调区间,从得出0p 的值.再列出22⨯列联表,再由公式求出2K ,再与临界值比较,得出结论.(1)批次A 成品口罩的次品率为[]1233433323()1(1)(1)(1)135343335P A P P P =----=-⨯⨯=; (2)100个成品口罩中恰有1个不合格的概率为199100()(1)p C p p ϕ=⋅-, 所以999898()100(1)99(1)100(1)(1100)p p p p p p ϕ'⎡⎤=---=--⎣⎦,令()0p ϕ'=,解得0.01p =,当(0,0.01)p ∈时,()0p ϕ'>,当(0.01,1)p ∈时,()0p ϕ'<, 所以()p ϕ在(0,0.01)上单调递增,在(0.01,1)上单调递减. 所以()p ϕ的最大值点为00.01p =, 由条形图可建立22⨯列联表如下:则222()100(1257283)20011.76510.828()()()()4060158517n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯, 因此,有99.9%的把握认为口罩质量与感染新冠肺炎病毒的风险有关.3.为考察本科生基本学术规范和基本学术素养,某大学决定对各学院本科毕业论文进行抽检,初步方案是本科毕业论文抽检每年进行一次,抽检对象为上一学年度授予学士学位的论文,初评阶段,每篇论文送3位同行专家进行评审,3位专家中有2位以上(含2位)专家评议意见为“不合格”的毕业论文,将认定为“存在问题毕业论文”.3位专家中有1位专家评议意见为“不合格”,将再送2位同行专家(不同于前3位)进行复评.复评阶段,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”,将认定为“存在问题毕业论文”.每位专家,判定每篇论文“不合格”的概率均为()01p p <<,且各篇毕业论文是否被判定为“不合格”相互独立.(1)若12p =,求每篇毕业论文被认定为“存在问题毕业论文”的概率是多少;(2)学校拟定每篇论文需要复评的评审费用为180元,不需要复评的评审费用为90元,则每篇论文平均评审费用的最大值是多少? 【答案】(1)2532; (2)130元. 【解析】 【分析】(1)根据二项分布和独立事件概率公式可表示出所求概率,代入12p =即可得到结果;(2)分别求得评审费用X 所有可能取值对应的概率,可得()()2270190E X p p =-+,利用导数可求得()()21g p p p =-的最大值,由此可确定结果. (1)设每篇毕业论文被认定为“存在问题毕业论文”为事件A ,则()()()()223221331111p A p C p p C p p p ⎡⎤=+-+---⎣⎦, 12p =,()2532p A ∴=; (2)设每篇文章的评审费用为X 元,则X 的可能取值为90,180,则()()2131801P X C p p ==-,()()2139011P X C p p ==--; ()()()()222113390111801270190E X C p p C p p p p ⎡⎤∴=⨯--+⨯-=-+⎣⎦. 令()()21g p p p =-,()0,1p ∈,则()()()()()2121311g p p p p p p '=---=--.当10,3p ⎛⎫∈ ⎪⎝⎭时,()0g p '>,()g p 在10,3⎛⎫⎪⎝⎭上单调递增,当1,13p ⎛⎫∈ ⎪⎝⎭时,()0g p '<,()g p 在1,13⎛⎫⎪⎝⎭上单调递减,()g p ∴的最大值为14327g ⎛⎫= ⎪⎝⎭,∴每篇论文平均评审费用的最大值是130元.4.某地区出现了一种病毒性传染病疫情,该病毒是一种人传人,不易被人们直接发现,潜伏时间长,传染性极强的病毒.我们把与该病毒感染者有过密切接触的人群称为密切接触者,一旦发现感染者,社区会立即对其进行流行病学调查,找到其密切接触者进行隔离观察.通过病毒指标检测,每位密切接触者为阳性的概率为1(01)p p -<<,且每位密切接触者病毒指标是否为阳性相互独立.调查发现某位感染者共有10位密切接触者,将这10位密切接触者隔离之后立即进行病毒指标检测.检测方式既可以采用逐个检测,又可以采用“k 合1检测法”.“k 合1检测法”是将k 个样本混合在一起检测,混合样本中只要发现阳性,则该组中各个样本必须再逐个检测;若混合样本为阴性,则可认为该混合样本中每个人都是阴性.(1)若逐个检测,发现恰有2个人样本检测结果为阳性的概率为()f p ,求()f p 的最大值点0p ; (2)若采用“ 5合1检测法”,总检测次数为X ,求随机变量X 的分布列及数学期望()E X ; (3)若采用“10合1检测法”,总检测次数Y 的数学期望为()E Y ,以(1)中确定的0p 作为p 的值,试比较()E X 与()E Y 的大小(精确到0.1). 附:15232768=. 【答案】(1)0.8(2)分布列见解析, 51210p - (3)()()E X E Y < 【解析】 【分析】(1)根据独立事件的乘法公式结合导数得出()f p 的最大值点0p ;(2)总检测次数为X 可能为2,7,12,求出相应概率,列出分布列计算数学期望; (3)先计算出()E X 与()E Y ,再比较大小. (1)有2个人样本检测结果为阳性的概率为()22810(1)C p f p p =-2827271010()C 2(1)8(1)2C (1)(45)f p p p p p p p p '⎡⎤∴=--+-=--⎣⎦令()0f p '=,得0.8p =,当00.8p <<时,()0f p '>;当0.81p <<时,()0f p '< 即函数()f p 在()0,0.8上为单调递增,在()0.8,1上单调递减,即()f p 的最大值点00.8p =(2)采用“5合1检测法”,总检测次数为X 可能为2,7,12()()210555(2),(7)21,(12)1P X p P X p p P X p ====-==-∴随机变量X 的分布列为数学期望为()()2105555()21411211210E X p p p p p =+-+-=-(3)当00.8p p ==时,51555582()12100.81210121012100.338.71010E X =-⨯=-⨯=-⨯≈-⨯=采用“10合1检测法”,总检测次数Y 可能是1,111010(1),(11)1P Y p P Y p ====-数学期望()1010102()111111011100.339.9E Y p p p =+-=-≈-⨯≈()()E X E Y ∴<【点睛】方法点睛:求离散型随机变量的分布列以及期望的步骤: (1)理解随机变量X 的意义,写出X 的所有可能取值 (2)求X 取每个值的概率 (3)写出X 的分布列 (4)由均值的定义求()E X5.学习强国中有两项竞赛答题活动,一项为“双人对战”,另一项为“四人赛”.活动规则如下:一天内参与“双人对战”活动,仅首局比赛可获得积分,获胜得2分,失败得1分;一天内参与“四人赛”活动,仅前两局比赛可获得积分,首局获胜得3分,次局获胜得2分,失败均得1分.已知李明参加“双人对战”活动时,每局比赛获胜的概率为12;参加“四人赛”活动(每天两局)时,第一局和第二局比赛获胜的概率分别为p ,13.李明周一到周五每天都参加了“双人对战”活动和“四人赛”活动(每天两局),各局比赛互不影响.(1)求李明这5天参加“双人对战”活动的总得分X 的分布列和数学期望;(2)设李明在这5天的“四人赛”活动(每天两局)中,恰有3天每天得分不低于3分的概率为()f p .求p 为何值时,()f p 取得最大值.【答案】(1)分布列见解析,()7.5E X =(分) (2)17p = 【解析】 【分析】(1)X 可取5,6,7,8,9,10,求出对应随机变量的概率,从而可求出分布列,再根据期望公式求出数学期望即可;(2)先求出一天得分不低于3分的概率,再求出恰有3天每天得分不低于3分的概率为()f p ,再根据导出求出函数()f p 的单调区间,即可得出答案. (1)解:X 可取5,6,7,8,9,10,()55115?232P X C ⎛⎫=== ⎪⎝⎭,()41511562232P X C ⎛⎫==⨯⨯= ⎪⎝⎭, ()23251157?2216P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()32351158?2216P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()4451159?2232P X C ⎛⎫==⨯= ⎪⎝⎭,()5551110?232P X C ⎛⎫=== ⎪⎝⎭, 分布列如下:所以()15555156789107.5323216163232E X =⨯+⨯+⨯+⨯+⨯+⨯=(分); (2)解:设一天得分不低于3分为事件A ,则()()()122111111333p P A p p ⎡⎤+⎛⎫=---=--=⎪⎢⎥⎝⎭⎣⎦, 则恰有3天每天得分不低于3分的概率()()()323235212140121133243p p f p C p p ++⎛⎫⎛⎫=⋅-=+- ⎪⎪⎝⎭⎝⎭,01p << 则()()()()()223404032112211243243f p p p p p '=⨯+--⨯+- ()()()24021117243p p p =+--, 当107p <<时,()0f p '>,当117p <<时,()0f p '<, 所以函数()f p 在10,7⎛⎫⎪⎝⎭上递增,在1,17⎛⎫ ⎪⎝⎭上递减,所以当17p =时,()f p 取得最大值.6.某校开展“学习新中国史”的主题学习活动.为了调查学生对新中国史的了解情况,需要对学生进行答题测试,答题测试的规则如下:每位参与测试的学生最多有两次答题机会,每次答一题,第一次答对,答题测试过关,得5分,停止答题测试;第一次答错,继续第二次答题,若答对,答题测试过关,得3分;若两次均答错,答题测试不过关,得0分.某班有12位学生参与答题测试,假设每位学生第一次和第二次答题答对的概率分别为m ,0.5,两次答题是否答对互不影响,每位学生答题测试过关的概率为P .(1)若0.5m =,求每一位参与答题测试的学生所得分数的数学期望;(2)设该班恰有9人答题测试过关的概率为()f p ,当()f p 取最大值时,求p ,m . 【答案】(1)3.25 (2)34p =,12m = 【解析】 【分析】(1)设每一位参与答题测试的学生所得分数为X ,求出对应概率,进而得出数学期望;(2)该班恰有9人答题测试过关的概率为()99312(1)C p f p p -=,再由导数得出其单调性,进而得出取得最大值时p ,m 的值. (1)设每一位参与答题测试的学生所得分数为X ,则X 可取0,3,5(0)0.50.50.25P X ==⨯=(3)0.50.50.25P X ==⨯=(5)0.5P X ==即每一位参与答题测试的学生所得分数的数学期望为()00.2530.2550.5 3.25E X =⨯+⨯+⨯= (2)11(1)1222mp m m ⎛⎫=+--=+ ⎪⎝⎭根据题意,该班恰有9人答题测试过关的概率为()99312(1)C p f p p -=983992982121212()9(1)3(1)3(1)(34)f p C p p C p p C p p p '=---=--3()004f p p '>⇒<<,3()014f p p '<⇒<< 故()f p 在30,4⎛⎫ ⎪⎝⎭上单调递增,在3,14⎛⎫⎪⎝⎭上单调递减故当34p =时,()f p 取最大值,此时131,2242m m +== 7.为落实立德树人根本任务,坚持五育并举全面推进素质教育,某学校举行了乒乓球比赛,其中参加男子乒乓球决赛的12名队员来自3个不同校区,三个校区的队员人数分别是3,4,5.本次决赛的比赛赛制采取单循环方式,即每名队员进行11场比赛(每场比赛都采取5局3胜制),最后根据积分选出最后的冠军.积分规则如下:比赛中以3:0或3:1取胜的队员积3分,失败的队员积0分;而在比赛中以3:2取胜的队员积2分,失败的队员的队员积1分.已知第10轮张三对抗李四,设每局比赛张三取胜的概率均为()01p p <<.(1)比赛结束后冠亚军恰好来自不同校区的概率是多少? (2)第10轮比赛中,记张三3:1取胜的概率为()f p . ①求出()f p 的最大值点0p ;②若以0p 作为p 的值,这轮比赛张三所得积分为X ,求X 的分布列及期望. 【答案】(1)4766;(2)①034p =;②分布列答案见解析,数学期望:1323512. 【解析】 【分析】(1)利用互斥事件的概率公式即得;(2)由题可求()()2331f p C p p =-,然后利用导数可求最值,再利用条件可求随机变量的分布列,。
高中数学专题复习 微专题9 数列中的最值、范围问题
![高中数学专题复习 微专题9 数列中的最值、范围问题](https://img.taocdn.com/s3/m/b916fe5feef9aef8941ea76e58fafab069dc442b.png)
所以 Tn≥T1=13,
又显然 Tn=121-2n1+1<21, 所以13≤Tn<21, 即 Tn 的取值范围为13,12.
热点二 求n的最值或范围
核心归纳 求n的值或最值,一般涉及数列的项或和的最值与范围,通常化归 为解关于n的不等式,或根据数列的单调性求解.
例2
(2023·湖州质检)已知数列{an}是递增的等比数列.设其公比为q,前n项和为Sn, 且满足a1+a5=34,8是a2与a4的等比中项. (1)求数列{an}的通项公式;
2.(2022·北京卷)已知数列{an}的各项均为正数,其前 n 项和 Sn 满足 an·Sn=9(n= 1,2,…).给出下列四个结论: ①{an}的第 2 项小于 3;②{an}为等比数列; ③{an}为递减数列;④{an}中存在小于1100的项,其中所有正确结论的序号是 _①__③__④___.
板块二 数列
高考定位
近几年高考试题中,与数列有关的最值范围问题既有解答题,也有选择、 填空题,难度中档或偏上.
【 真题体验 】
1.(2022·浙江卷)已知数列{an}满足 a1=1,an+1=an-13a2n(n∈N*),则
√ 5 5
77
A.2<100a100<2 B.2<100a100<3 C.3<100a100<2 D.2<100a100<4
一方面,由an1+1-a1n=3-1 an>13, 累加可得an1+1>31n+1,(*)
所以a1100>31×99+1=34, 从而 100a100<100×314=5107<3. 另一方面,由(*)式可得 an+1<n+3 3, 所以 an<n+3 2(n≥2),
2025版高考数学一轮总复习学案 第6章 高考大题规范解答——高考中数列问题的热点题型
![2025版高考数学一轮总复习学案 第6章 高考大题规范解答——高考中数列问题的热点题型](https://img.taocdn.com/s3/m/3996cb82162ded630b1c59eef8c75fbfc77d94ea.png)
n2-1+22n-5+n214+24n+6=3n2+2 7n.(10 分)
当 n>5 时,Tn-Sn=3n2+2 7n-(n2+4n)=n2-2 n=nn2-1>0,
所以Tn>Sn.(11分) 综上可知,当n>5时,Tn>Sn.(12分)
第六章 数列
高考一轮总复习 • 数学
名师点拨:求解数列与不等式综合问题的步骤 1.根据题目条件,求出数列的通项公式; 2.根据数列项的特征,选择合适的方法(公式法、分组转化法、裂项 相消法、错位相减法等)求和; 3.利用2中所求得的数列的和,证明不等式或求参数的范围; 4.反思解题过程,检验易错点,规范解题步骤. 提醒:解决数列与不等式的综合问题时,若是证明题,则要灵活选 择不等式的证明方法,如比较法、综合法、分析法、放缩法等;若是含 参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决.
第六章 数列
高考一轮总复习 • 数学
(2)第 1 步:取等差数列{bn}的前 3 项,再利用 bn=n2a+n n,得 a1 与 d 的关系式
因为 bn=n2a+n n,且{bn}为等差数列, 所以 2b2=b1+b3,即 2×a62=a21+1a23, 所以a1+6 d-a11=a1+6 2d,所以 a21-3a1d+2d2=0,
(1)求{an}的通项公式; (2)证明:当n>5时,Tn>Sn.
第六章 数列
高考一轮总复习 • 数学
[解题思路] (1)要求数列{an}的通项公式,就需求出首项与公差.观 察已知条件知,可利用等差数列的通项公式与前n项和公式建立方程组 求出.(2)由于数列{bn}的通项分n为奇数与n为偶数给出,为此在求Tn时, 也需分n为奇数与n为偶数求解.而数列{bn}的奇数项与偶数项分别构成等 差数列,故求和时选用分组法,然后利用作差法证明不等式.
等差数列前n项和最值问题
![等差数列前n项和最值问题](https://img.taocdn.com/s3/m/cb3c7d4daf1ffc4ffe47ac2f.png)
等差数列前n 项和的最值问题问题引入:已知数列{},n a 的前n 项和212n S n n =+,求这个数列的通项公式.数列是等差数列吗?如果是,它的首项与公差分别是什么? 解:当n>1时:1122n n n a s s n -=-==-当n=1时:211131122a s ==+⨯= 综上:122na n =-,其中:132a =,2d = 探究1:一般地,如果一个数列{}n a 的前n 项和为:2,ns pn qn r =++其中:p.q.r 为常数,且p ≠0,那么这个数列一定是等差数列吗?如果是,它的首项和公差分别是什么?结论:当r=0时为等差,当r ≠0时不是一、 应用二次函数图象求解最值 例1:等差数列{}n a 中, 1490,a S S >=,则n 的取值为多少时?n S 最大分析:等差数列的前n 项和n S 是关于n 的二次函数,因此可从二次函数的图象的角度来求解。
解析:由条件1490,a S S >=可知,d<0,且211(1)()222n n n d dS na d n a n -=+=+-, 其图象是开口向下的抛物线,所以在对称轴处取得最大值,且对称轴为496.52n +==,而n N *∈,且6.5介于6与7的中点,从而6n =或7n =时n S 最大。
1.已知等差数列{n a }中1a =13且3S =11S ,那么n 取何值时,n S 取最大值.解析:设公差为d ,由3S =11S 得:3×13+3×2d/2=11×13+11×10d/2 d= -2,n a =13-2(n-1), n a =15-2n,由⎩⎨⎧≤≥+0a 0a 1n n 即⎩⎨⎧≤+-≥-0)1n (2150n 215得:6.5≤n ≤7.5,所以n=7时,n S 取最大值.2.已知a n 是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,求数列a n 前 5 项和取得最大值.结合二次函数的图象,得到二次函数图象的开口向下,根据图象关于对称轴对称的特点,得到函数在对称轴处取到最大值,,注意对称轴对应的自变量应该是整数或离对称轴最近的整数.a n 是各项不为零的等差数列,其中a 1>0,公差d <0,S 10=0,根据二次函数的图象特点得到图象开口向下,且在n==5时,数列a n 前5项和取得最大值.二、转化为求二次函数求最值 例2、在等差数列{n a }中,4a =-14, 公差d =3, 求数列{n a }的前n 项和n S 的最小值分析:利用条件转化为二次函数,通过配方写成顶点式易求解。
重难点06两种数列最值求法(核心考点讲与练新高考专用)(解析版)
![重难点06两种数列最值求法(核心考点讲与练新高考专用)(解析版)](https://img.taocdn.com/s3/m/dd268150a517866fb84ae45c3b3567ec102ddc60.png)
重难点06两种数列最值求法(核心考点讲与练)题型一:单调性法求数列最值一、单选题1.(2022·安徽淮南·二模(文))已知等差数列{}n a 的前n 项和为n S ,5711125,26,n n na S a ab a +=-+==,则数列{}n b ( )A .有最大项,无最小项B .有最小项,无最大项C .既无最大项,又无最小项D .既有最大项,又有最小项【答案】D【分析】根据等差数列的首项1a ,公差d 列方程,可得1a 和d ,进而可得{}n a ,{}n b 通项,进而根据{}n b 的单调性,即可得最值.【详解】等差数列{}n a 的首项为1a ,公差为d , 由571125,26,S a a =-+=得1115102511216263a d a a d d +=-=-⎧⎧⇒⎨⎨+==⎩⎩ ,故()1131314n a n n =-+-=-11=13-14n n n a b a n +=+ 当5,n n N ≥∈时, {}n b 单调递减,故5671b b b >>>>,且52b =当15,n n N ≤<∈时, {}n b 单调递减,故12341b b b b >>>>,且14101112b b ==, 故{}n b 有最大值为2,最小值为12 故选:D2.(2022·北京·二模)已知等差数列{}n a 与等比数列{}n b 的首项均为-3,且31a =,448a b =,则数列{}n n a b ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】A【分析】求出等差数列和等比数列的通项公式,n n a b ,得出n n a b ,确定数列{}n n a b 中奇数项都是负数,偶数能力拓展项都是正数,然后设n n n c a b =,用作差法得出{}n c 的单调性,从而可得数列{}n n a b 的最值. 【详解】13a =-,31a =,则1(3)22d --==,32(1)25n a n n =-+-=-, 4438a b ==,438b =,34118b q b ==-,12q =-,111(1)33()22n n n n b ---⋅=-⨯-=,1(1)3(25)2n n n n n a b --⋅-=,显然奇数项都是负数,偶数项都是正数, 设13(25)2n n n n n c a b --==,则113(23)3(25)3(72)222n n n n nn n n c c +-----=-=, 3.5n <,即3n ≤时,10n n c c +->,1n n c c +>,4n ≥时,10n n c c +-<,1n n c c +<,即数列{}n c ,从1c 到4c 递增,从4c 往后递减,由于{}n n a b 中奇数项都是负数,偶数项都是正数, 所以{}n n a b 中,44a b 最大, 又334c =,5153164c =>,所以55a b 是最小项. 故选:A .3.(2022·安徽·芜湖一中三模(文))已知等差数列{}n a 的首项11a =,且4329a a =+,正项等比数列{}n b 的首项112b =,且24332b b =,若数列{}n a 的前n 项和为n S ,则数列{}n n b S 的最大项的值为( ) A .89B .1C .98D .2【答案】C【分析】先求出n a ,的得到n S ,再求出n b ,从而得出n n b S ,然后分析出数列{}n n b S 的单调性,得出答案. 【详解】设等差数列{}n a 的公比为d ,由4329a a =+,则()112932a a d d =+++ 即()211329d d ++=+,故2d =,则()1121n a a n d n =+-=- 则()2112n n n n S na d -=+⨯=设正项等比数列{}n b 的公比为()0q q >,由24332b b =,则()2321132b q b q =所以232113222q q ⎛⎫⨯=⨯ ⎪⎝⎭,解得12q =,则1112n n n b b q -==22n n n b S n =,设22=n n n c ,则()221122n n n n c n c n++==当02n <≤时,11n nc c +>,即123c c c << 当3n ≥时,11n nc c +<,即345c c c >>>所以233333928c b S ===最大.故选:C4.(2022·广东·一模)已知正项数列{}n a 满足1*()n n a n n =∈N ,当n a 最大时,n 的值为( ) A .2 B .3 C .4 D .5【答案】B【分析】先令1x y x =,两边取对数,再分析ln ()xf x x=的最值即可求解. 【详解】令1xy x =,两边取对数,有1ln ln ln xxy x x==, 令ln ()xf x x=,则21ln ()x f x x -'=,当()0f x '>时,0e x <<;当()0f x '<时,e x >. 所以()f x 在(0,e)上单调递增,在(e,+)∞上单调递减. 所以e x =时,()f x 取到最大值,从而y 有最大值,因此,对于1*()nn a n n =∈N ,当2n =时,1222a =;当3n =时,1333a =.而113232>,因此,当n a 最大时,3n =. 故选:B 二、多选题5.(2021·广东·高三阶段练习)设数列{}n a 的前n 项和为n S ,若n a =,则下列结论中正确的是( ) A .()211n n n a n n ++=+B .211n n n S n +-=+C .32n a ≤D .满足2021n S ≤的n 的最大值为2020 【答案】ACD【分析】A 选项,对n a =B 选项,对通项公式分离常数后利用裂项相消法求和;C 选项,{}n a 是单调递减数列,故132n a a ≤=;D 选项,在B 选项的基础上进行求解即可..【详解】()211n n n a n n +++,故A 正确; 因为()1111111n a n n n n =+=+-++,所以2111111211223111n n n S n n n n n n +⎛⎫⎛⎫⎛⎫=+-+-++-=+-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,故B 错误; 因为()()()1111112n n n n +>++++,所以1n n a a +>,所以{}n a 是单调递减数列,所以132n a a ≤=,故C 正确; 因为11101n a n n =+->+,所以n S 单调递增,且20202021S <,20212021S >,所以满足2021n S ≤的n 的最大值为2020,故D 正确. 故选:ACD6.(2022·全国·高三专题练习)等比数列{}n a 各项均为正数,120a =,43220a a a +-=,数列{}n a 的前n 项积为n T ,则( ) A .数列{}n a 单调递增 B .数列{}n a 单调递减 C .当5n =时,n T 最大 D .当5n =时,n T 最小【答案】BC【分析】由等比数列基本量求得等比数列{}n a 的公比,由0n a >可得数列{}n a 的增减性,然后由1+n nT T 判断数列{}n T 的单调性,从而得到n T 的最值.【详解】设等比数列{}n a 的公比为q ,43220a a a +-=,222220a q a q a ∴+-=,等比数列{}n a 各项均为正数,20a ∴>,2210q q ∴+-=,12q ∴=, 120a =,1202nn a ⎛⎫∴=⨯ ⎪⎝⎭,∴数列{}n a 单调递减;121n n n T a a a a -=,11211n n n n T a a a a a +-+∴=,111202nn n n T a T ++⎛⎫∴==⨯ ⎪⎝⎭,当14n ≤≤时,1112012n n n n T a T ++⎛⎫==⨯> ⎪⎝⎭;当5n ≥时,1112012nn n n T a T ++⎛⎫==⨯< ⎪⎝⎭;∴数列{}n T 中,从1T 到5T 递增,从5T 开始递减,5n ∴=时,数列{}n T 中5T 最大.故选:BC7.(2021·河北·高三阶段练习)已知d ,n S 分别是等差数列{}n a 的公差及前n 项和,798S S S >>,设12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,则下列结论中正确的是( )A .满足0n S >的最小n 值为17B .89a a <C .78910a a a a ⋅>⋅D .8n =时,n T 取得最小值【答案】AC【分析】由已知可得80a <,90a >,890a a +<,公差0d >,利用等差数列前n 项和公式以及等差数列的性质可判断A ;由890a a +<可判断B ;作差结合890a a +<可判断C ;由n T 的单调性以及n b 的符号即可求出n T 的最小值可判断D ,进而可得正确选项.【详解】由题意知:8870a S S =-<,9980S a S =->,97890S S a a -=+<, 选项A 中:()()89116161616022a a a a S ++==<,()117179171702a a S a +==>,所以满足0n S >的最小n 值为17,故选项A 正确;选项B 中:89890a a a a -=-->,即89a a >,故选项B 错误; 选项C 中:由80a <,90a >可知公差0d >,则91078a a a a -=()()()88882a d a d a a d ++--()2882422d da d d a =+=+()8920d a a =+<所以78910a a a a ⋅>⋅,故选项C 正确;选项D 中:当8n ≤时,0n a <,当9n ≥时,0n a >,所以当6n ≤时,0n b <,1n n T T +<;77890b a a a >=,889100b a a a =<,当9n ≥时,0n b >, 所以76T T >,78T T >;当8n ≥时,1n n T T +>,()()867878989108971089890T T b b a a a a a a a a a a a a a a -=+=+=+=+>,所以86T T >,所以当6n =时,n T 取得最小值,故选项D 不正确,故选:AC.8.(2022·江苏·高三专题练习)在n n n A B C (1,2,3,n =)中,内角,,n n n A B C 的对边分别为,,n n n a b c ,n n nA B C 的面积为n S ,若5n a =,14b =,13c =,且222124n n n a c b ++=,222124n n n a b c ++=,则( )A .n n n ABC 一定是直角三角形 B .{}n S 为递增数列 C .{}n S 有最大值D .{}n S 有最小值【答案】ABD【解析】先结合已知条件得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,得A 正确,再利用面积公式得到递推关系1221875=644n n S S ++,通过作差法判定数列单调性和最值即可. 【详解】由222124n n n a c b++=,222124n n n a b c ++=得,222222112244n n n n n n a c a b bc+++++=+()2221122n n n a b c =++()2225122n n b c =++,故()222211125=252n n n n b c b c +++-+-, 又221125=0b c +-,22250n n b c ∴+-=,22225=n n n b c a ∴+=,故n n n A B C 一定是直角三角形,A 正确;n n n A B C 的面积为12n n n S b c =,而()4222222222221124224416n n n n n n n n n n n n a b c a b c a c a b b c +++++++=⨯=, 故()42222222222111241875161875==1616641n n n n n n n n n n n a b c a b bS S c c S +++++++==+,故22212218751875==6446434n n n n n S S SS S +-+--,又22125=244n n n n n b c b c S +=≤(当且仅当=n n b c22121875=06344n n n S SS +∴--≥,又由14b =,13c =知n n b c ≠不是恒成立,即212n n S S +>,故1n n S S +>,故{}n S 为递增数列,{}n S 有最小值16=S ,无最大值,故BD 正确,C 错误. 故选:ABD.【点睛】本题解题关键是利用递推关系得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,再逐步突破.数列单调性常用作差法判定,也可以借助于函数单调性判断. 9.(2021·江苏·盐城中学一模)对于数列{}n a ,若存在数列{}n b 满足1n n nb a a =-(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( )A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;B .若31n a n =-,则其“倒差数列”有最大值;C .若31n a n =-,则其“倒差数列”有最小值;D .若112nn a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.【答案】ACD【分析】根据新定义进行判断.【详解】A .若数列{}n a 是单增数列,则11111111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1110n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确; B .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确; D .若112nn a ⎛⎫=-- ⎪⎝⎭,则111()121()2n n n b =-----, 首先函数1y x x=-在(0,)+∞上是增函数,当n 为偶数时,11()(0,1)2nn a =-∈,∴10n nnb a a =-<, 当n 为奇数时,11()2nn a =+1>,显然n a 是递减的,因此1n n n b a a =-也是递减的,即135b b b >>>,∴{}n b 的奇数项中有最大值为13250236b =-=>,∴156b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .【点睛】本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值. 三、填空题10.(2022·上海徐汇·二模)已知定义在R 上的函数()f x 满足()()121f x f x +=+,当[)0,1x ∈时,()3f x x =.设()f x 在区间[)()*,1N n n n +∈上的最小值为n a .若存在*n ∈N ,使得()127n a n λ+<-有解,则实数λ的取值范围是______________.【答案】3(,)32-∞ 【分析】根据题意,利用换元法,分别求出当[)1,2x ∈,[)2,3x ∈,[),,1x n n ∈+时,()f x 的解析式,进而求出21nn a =-,然后,得到存在*n ∈N ,使得()127n a n λ+<-有解,则有272nn λ-<有解,进而必有max272n n λ-⎡⎤<⎢⎥⎣⎦,进而求出max 272n n -⎡⎤⎢⎥⎣⎦,即可求解. 【详解】当[)0,1x ∈时,()3f x x =,因为定义在R 上的函数()f x 满足()()121f x f x +=+,()()312121f x f x x +=+=+,令11t x =+,则11x t =-,所以,当[)11,2t ∈时,有311()2(1)1f t t =-+,所以,当[)1,2x ∈时,3()2(1)1f x x =-+,()()31214(1)3f x f x x +=+=-+,令21t x =+,则21x t =-,[)22,3t ∈,有322()4(2)3f t t =-+,所以,当[)2,3x ∈时,3()4(2)3f x x =-+,同理可得,[)3,4x ∈时,3()8(3)7f x x =-+,根据规律,明显可见当[),1x n n ∈+,()2()21n n n f x x n =-+-,且此时的()f x 必为增函数,又因为n a 为()f x 在区间[)()*,1N n n n +∈上的最小值,所以,1231,3,7,21n n a a a a ===⋯=-,所以,若存在*n ∈N ,使得()127n a n λ+<-有解,则有272nn λ-<有解,进而必有max 272n n λ-⎡⎤<⎢⎥⎣⎦,根据该函数的特性,明显可见,当5n =时,有max 273232n n -⎡⎤=⎢⎥⎣⎦,所以,此时有332λ<故答案为:3(,)32-∞ 11.(2022·浙江台州·二模)已知等差数列{}n a 的各项均为正数,且数列{}n a 的前n 项和为n S ,则数列n n S na ⎧⎫⎨⎬⎩⎭的最大项为___________.(用数字作答) 【答案】1【分析】由等差数列各项均为正数可判定该数列为递增数列,结合等差数列的通项公式和前n 和公式,可判定数列n n S na ⎧⎫⎨⎬⎩⎭为递减数列,进而可得到该数列的最大项.【详解】由题,等差数列{}n a 的各项均为正数,所以10a >,0d >, 且()()111n a a n d nd a d =+-=+-, 所以数列{}n a 是递增数列,又()12n n a a n S +⋅=,所以()1111222n n n n S a a a na a nd a d +==+⎡⎤+-⎣⎦, 即nnSna 是递减数列,所以当1n =时,得到数列n n S na ⎧⎫⎨⎬⎩⎭的最大项为1111a a =⨯, 故答案为:112.(2022·全国·高三专题练习)已知数列{an }对任意m ,n ∈N *都满足am +n =am +an ,且a 1=1,若命题“∀n ∈N *,λan ≤2n a +12”为真,则实数λ的最大值为____.【答案】7【分析】先求出{}n a 的通项公式,然后参变分离转化为求最值【详解】令m =1,则an +1=an +a 1,an +1-an =a 1=1,所以数列{an }为等差数列,首项为1,公差为1,所以an =n ,所以λan ≤2n a +12⇒λn ≤n 2+12⇒λ≤n +12n, 又函数12y x x=+在(0,上单调递减,在)+∞上单调递增, 当3n =或4n =时,min 12()7n n+= 所以7λ≤ 故答案为:713.(2022·天津市新华中学高三期末)在数列{}n a 中,()71()8nn a n =+,则数列{}n a 中的最大项的n =________ . 【答案】6或7【分析】利用作商法判断数列的单调性即可求出其最大项. 【详解】()71()08nn a n =+>,令()()1172()27817181()8n n n n n a n a n n ++++==⨯≥++,解得6n ≤, 即6n ≤时,1n n a a +≥,当6n >时,1n n a a +<, 所以6a 或7a 最大, 所以6n =或7. 故答案为:6或7.14.(2022·全国·高三专题练习)已知等比数列{an }的前n 项和为Sn ,若a 1=32,an +2an +1=0,则Sn -1n S 的最大值与最小值的积为________. 【答案】-3572【分析】先计算出公比,求出Sn ,分奇偶性讨论得出Sn -1nS 的最大值与最小值,即可求解. 【详解】因为an +2an +1=0,所以112n n a a +=-, 所以等比数列{an }的公比为12-,因为a 1=32,所以Sn =31122111212nn ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-- ⎪⎛⎫⎝⎭-- ⎪⎝⎭.①当n 为奇数时,Sn =112n⎛⎫+ ⎪⎝⎭,Sn 随着n 的增大而减小,则1<Sn ≤S 1=32,又Sn -1n S 随着Sn 的增大而增大,故0<Sn -1n S ≤56; ②当n 为偶数时,Sn =112n⎛⎫- ⎪⎝⎭,Sn 随着n 的增大而增大,则34=S 2≤Sn <1,又Sn -1n S 随着Sn 的增大而增大,故712-≤Sn -1n S <0.综上,Sn -1n S 的最大值与最小值分别为56,712-.故Sn -1n S 的最大值与最小值的积为567351272⎛⎫⨯-=- ⎪⎝⎭. 故答案为:-3572. 15.(2022·河南·模拟预测(文))已知数列{}()*n a n N ∈满足11,2,n n n n a n α-+⎧=⎨⎩为奇数为偶数,则21n n n a a a ++的最大值为________.【答案】43【分析】令21n n n n a b a a ++=,n 分为奇偶性,分别求出21n n n a a a ++,通过判断{}n b 的单调性可求出其最大值【详解】令21n n n n a b a a ++=, 当n 为奇数时,21112222n n n a nn n a n n b a a n n ++++++===⋅⋅, 因为32214(4)(2)2124(2)2n n n n n b n n n n b n n ++++++⋅==<++⋅,所以2n n b b +<, 所以当n 为奇数时,数列{}n b 为递减数列, 所以当n 为奇数时,1b 最大,134b =, 当n 为偶数时,11122112242(1)2(1)1n n a n n n a n n n a b a a n n n +-+++++====⋅+++,当n 增大时,n b 在减小, 所以n 为偶数时,2b 最大,243b =, 因为4334>, 所以数列{}n b 的最大值为43,故答案为:4316.(2022·全国·模拟预测)已知数列{}n a 的前n 项和为n S ,等差数列4021n a ⎧⎫⎨⎬+⎩⎭的首项为1,公差为1,则2n n S S -的最大值为__________. 【答案】656【分析】由题意求出n n a S 和,再求出2n S ,令2n n n M S S =-,求出n M 的单调性即可求出n M 的最大值. 【详解】由题意知4021n n a =+,则2012n a n =-,则111201232n nS n ⎛⎫=++++- ⎪⎝⎭, 2111201232n S n n ⎛⎫=++++- ⎪⎝⎭, 令2111201222n n n nM S S n n n ⎛⎫=-=+++-⎪++⎝⎭,则111111112020232221222n n n n M M n n n n n n +⎡+⎤⎡⎤⎛⎫⎛⎫-=+++--+++- ⎪ ⎪⎢⎥⎢⎥+++++⎝⎭⎝⎭⎣⎦⎣⎦()()111111120120202122122122221222n n n n n n n ⎛⎫⎛⎫=+--=--=- ⎪ ⎪+++++++⎝⎭⎝⎭. 由*n ∈N ,易得当2n ≤时,12010562n n M M +-≥->⨯, 所以321M M M >>;当3n ≥时,12010782n n M M +-≤-<⨯, 所以345M M M >>>…,故n M 的最大值为31113652045626M ⎛⎫=⨯++-= ⎪⎝⎭,即当3n =时,2n n S S -取得最大值,为656. 故答案为 :656. 四、解答题17.(2022·湖北·模拟预测)已知数列{}n a 的前n 项之积..为n b ,且()2*12122n n a a a n n n N b b b +++⋅⋅⋅+=∈. (1)求数列n n a b ⎧⎫⎨⎬⎩⎭和{}n a 的通项公式;(2)求()12212n n n n n f n b b b b b ++-=+++⋅⋅⋅++的最大值. 【答案】(1)()*nn a n n N b =∈,1n n a n =+(2)56 【分析】(1)利用1(2)n n n a S S n -=-≥即项与和的关系方法求得nna b ,再利用1(2)n n n b a b n -=≥求得n a ; (2)再由定义求得n b ,并利用作差法得出()f n 是递减的,从而易得最大值.(1)∵212122n n a a a n n b b b +++⋅⋅⋅+=①,∴()()21121211212n n n n a a an b b b --+-++⋅⋅⋅+=≥-②, 由①②可得()2n n a n n b =≥,由①111ab =也满足上式,∴()*n n a n n N b =∈③, ∴()1112n n a n n b --=-≥④,由③④可得()1121n n n n a b n n b a n --=≥-, 即()1121n nn a n -=≥-,∴()112n n a n n --=≥,∴1n n a n =+. (2)由(1)可知1n na n =+,则121212311n n n b a a a n n =⋅⋅⋅=⋅⋅⋅⋅⋅⋅=++,记()121111221n n n f n b b b n n n +=++⋅⋅⋅+=++⋅⋅⋅++++, ∴()11112323f n n n n +=++⋅⋅⋅++++, ∴()()1111110222312322f n f n n n n n n +-=+-=-<+++++, ∴()()1f n f n +<,即()f n 单调递减, ∴()f n 的最大值为()121151236f b b =+=+=. 18.(2022·天津市宁河区芦台第一中学模拟预测)设数列{}n a 的前n 项和为n S ,且满足()*N n n a S n -=∈321.(1)求数列{}n a 的通项公式;(2)记()()n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩12123,为奇数,为偶数,数列{}n b 的前2n 项和为2n T ,若不等式()n n n n n T n λ⎛⎫-<+⋅-⎪+⎝⎭2241132941对一切*N n ∈恒成立,求λ的取值范围. 【答案】(1)13-=n n a (2)⎛⎫- ⎪⎝⎭3546,.【分析】(1)利用n a 与n S 的关系即可求解;(2)根据裂项相消法和错位相减法求出数列{}n b 的前2n 项和为2n T ,再将不等式的恒成立问题转化为求最值问题即可求解.(1)由题意,当1n = 时,1113211a a a -=⇒=, 当2n ≥ 时, 11321n n a S ---=,所以()n n n n a a S S -----=113320, 即 13n n a a -=,∴ 数列{}n a 是首项为1,公比为3的等比数列,11133n n n a --∴=⨯=故数列{}n a 的通项公式为13-=n n a . (2)()()12123n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩,为奇数,为偶数,由 (1),得当n 为偶数时,13n n n n nb a -==, 当n 为奇数时, 11142123n b n n ⎛⎫=- ⎪-+⎝⎭,设数列{}n b 的前2n 项中奇数项的和为n A ,所以n nA n n n ⎛⎫=-+-+⋯+-=⎪-++⎝⎭11111114559434141, 设数列{}n b 的前2n 项中偶数项的和为n B ,n n B n -⎛⎫⎛⎫⎛⎫∴=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1321111242333①n n B n +⎛⎫⎛⎫⎛⎫=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭352111112429333②,由-①②两,得()n n n n n n B n ++-⎛⨯⎫⎛⎫=⨯+⋯-⎛⎫=-⨯ ⎪++-⎪⎝⎭⨯ ⎪ ⎝⎭⎝⎭-21211321111139281111229332331319,整理得()nn n B +⎛⎫=-⋅ ⎪⎝⎭38927132329,故,()nn n n n n T A B n +⎛⎫=+=+-⋅ ⎪+⎝⎭23892714132329,n nn n n T n ⎛⎫⎛⎫∴+⋅-=-⋅ ⎪ ⎪+⎝⎭⎝⎭2241272713294132329.∴ 不等式()nnn n n T n λ⎛⎫-<+⋅-⎪+⎝⎭2241132941对一切*N n ∈恒成立, 即不等式()nnλ⎛⎫-<-⋅ ⎪⎝⎭27271132329对一切*N n ∈恒成立,()xf x ⎛⎫=-⋅ ⎪⎝⎭2727132329在R 上是单调增所以,易知n⎧⎫⎪⎪⎛⎫-⋅⎨⎬ ⎪⎝⎭⎪⎪⎩⎭2727132329在*N n ∈上为递增数列,∴ 当n 为偶数时,λ⎛⎫<-⋅ ⎪⎝=⎭2272713232956,当n 为奇数时, λ-<-⨯=272713232934, 解得34λ>-,所以λ的取值范围为⎛⎫- ⎪⎝⎭3546,.19.(2022·天津·高三专题练习)设数列{}n a 的前n 项和2n n S a n =-. (1)求数列{}n a 的通项公式; (2)若22log 13nn b a n ⎛⎫=+- ⎪⎝⎭,求n b 的前n 项和n T 取最小值时n 的值; (3)证明:1214.9ni i a =<∑【答案】(1)21nn a =-(2)5或6(3)证明见解析【分析】(1)利用递推关系,当2n ≥时,()1121n n S a n --=--,两式相减得121n n a a -=+,再用构造法得:1121n n a a -+=+,即可求出{}n a 的通项公式; (2)先求出{}n b 的通项公式,由二次函数求最值即可求出答案.(3)对21141i i a =-进行放缩得:()111111111()14144134444i i i i i ----=<=⨯--⎛⎫- ⎪⎝⎭,再求111()34i -⨯的前n 项和即可证明此题.()1因为2n n S a n =-,①1n =时,1121S a =-,11;a =2n ≥时,()1121n n S a n --=--②①-②得121n n a a -=+,所以1121n n a a -+=+,112a +=, 所以数列{}1n a +是2为首项,2为公比的等比数列,故1221;n nn n a a +=∴=-(2)2222226log 13log 2113log 23322n nn n b n n a n ⎛⎫⎛⎫-=+-=-+-=-=-= ⎪ ⎪⎝⎭⎝⎭,所以()62n n n b -=,于是当15n <<时,0n b <;60b =;当6n >时,0n b >.所以当5n =或6时,n T 取最小值. (3)()12111112211111111111111441434()()()1121414413434994914444n nni n i i i i i i i i i i a a ----==-⎛⎫- ⎪⎝⎭===<=⨯<⨯==-<---⎛⎫-- ⎪⎝⎭∑∑,.故1214.9ni i a =<∑20.(2022·重庆巴蜀中学高三阶段练习)已知数列{}n a 的首项10a =,()134N n n a a n n *+=+∈. (1)证明:数列{}21n a n ++是等比数列; (2)求数列{}100n a -的前n 项和n S 的最小值. 【答案】(1)证明见解析(2)304-【分析】(1)由已知等式变形得出()()1211321n n a n a n ++++=++,结合等比数列的定义可证得结论成立; (2)分析数列{}n b 的单调性,确定{}n b 的符号,由此可求得n S 的最小值.(1)解:因为()134N n n a a n n *+=+∈,则()()1211321n n a n a n ++++=++,且133a +=,所以,数列{}21n a n ++是以3为首项,3为公比的等比数列. (2)解:由(1)知,121333n n n a n -++=⋅=,则321n n a n =--.所以,10032101nn n b a n =-=--,所以,113322320n n nn n b b ++-=--=⋅->,故数列{}n b 为递增数列,1100b =-,296b =-,380b =-,428b =-,5132b =,,故当14n ≤≤时,0n b <;当5n ≥时,0n b >. 所以,n S 的最小值为4304S =-.21.(2022·辽宁实验中学模拟预测)已知数列{}n a 的前n 项和为n S ,满足:()*21N n na S n n=+∈ (1)求证:数列{}n a 为等差数列; (2)若25a =,令1n nb a =,数列{}n b 的前n 项和为n T ,若不等式()122455n n T T m m +-≤-对任意*N n ∈恒成立,求实数m 的取值范围.【答案】(1)证明见解析;(2)(,2][7,)m ∈-∞-⋃+∞.【分析】(1)利用,n n a S 关系可得1(2)(1)1n n n a n a --=--,即有1(1)1n n n a na +-=-,将两式相减并整理有112n n n a a a +-+=,即可证结论.(2)由(1)结论及题设可得143n b n =-,令21n n n c T T +=-、1231n n n c T T +++-=,应用作差法比较它们的大小,即可确定21}{n n T T +-的单调性并求其最大值,结合恒成立求m 的取值范围. (1)由题设,(1)2n n n a S +=,则11(1)(1)2n n n a S ---+=(2)n ≥, 所以111(1)(1)(1)(1)1222n n n n n n n n a n a na n a a S S ---+-+--+=-=-=,整理得1(2)(1)1n n n a n a --=--,则1(1)1n n n a na +-=-,所以11(1)(2)1(1)1n n n n n a n a na n a +----=---+,即11(1)()2(1)n n n n a a n a +--+=-,10n -≠, 所以112n n n a a a +-+=,故数列{}n a 为等差数列,得证.(2)由1121S a =+,可得11a =,又25a =,结合(1)结论知:公差214d a a =-=, 所以43n a n =-,故1143n n b a n ==-,则21111 (414581)n n n n n T n c T +-=++++++=, 所以123111111...4549818589n n n n n c T T n n n +++-=+++++++=+++,且*N n ∈, 所以111140310858941(41)(85)(89)n n c c n n n n n n n +++-=-<++++++-=,即1n n c c +<, 所以,在[1,)n ∈+∞且*N n ∈上21n n T T +-递减,则max 32111114)594(5n n T T T T +-=-=+=,要使()122455n n T T m m +-≤-对任意*N n ∈恒成立,即2514(7)(2)0m m m m --=-+≥,所以(,2][7,)m ∈-∞-⋃+∞. 题型二:不等法求数列最值 一、单选题1.(2022·河南·高三阶段练习(理))已知曲线()23e xy x x =+在点()0,0处的切线为l ,数列{}n a 的首项为1,点()()1,n n a a n N *+∈为切线l 上一点,则数列6nna ⎧⎫-⎨⎬⎩⎭中的最小项为( )A .623-B .523-C .613-D .613 【答案】C【分析】首先求出函数的导函数,即可求出切线的斜率,从而求出切线方程,则13n n a a +=,从而求出{}n a 的通项公式,再构造不等式组求出数列6n n a ⎧⎫-⎨⎬⎩⎭中的最小项;【详解】因为()23e x y x x =+,所以()()()22321e 3e 3e 31x x xx x x x y x =+++++'=,所以曲线()23e xy x x =+在点()0,0处的切线的斜率03x k y ='==.所以切线l 的方程为3y x =. 所以13n n a a +=.所以数列{}n a 是首项为1,公比为3的等比数列. 所以1663n n n na ---=. 所以由11265336733n nn n n nn n-----⎧≤⎪⎪⎨--⎪≤⎪⎩,解得131522n ≤≤.因为n *∈N ,所以7n =.所以数列6n n a ⎧⎫-⎨⎬⎩⎭中的最小项为6667133-=-.故选:C.2.(2021·辽宁·建平县实验中学高三阶段练习)已知数列{}n a 满足14a =,*1144(2,N )n n n a a n n a ---=≥∈,若124(6)na n nb na -=⋅-,且存在*N n ∈,使得2460n b m m +-≥成立,则实数m 的取值范围是( ) A.⎣⎦ B.1⎡⎣C .10,6⎡⎤⎢⎥⎣⎦D .11,32⎡⎤-⎢⎥⎣⎦【答案】D【分析】根据题意,令12n n c a =-,进而证明数列{}n c 是以12-为首项,12-为公差的等差数列,故可得22n n a n+=,242n nn b -=,在结合题意将问题转化为()2max 460n b m m +-≥,再求数列{}n b 的最大值代入解一元二次不等式即可得答案. 【详解】()*11442,n n n a a n n a ---=∈N ,()()*11412,n n n a a a n n --∴=-∈N . 令12n nc a =-, 111111122422n n n n n n n n n n a a c c a a a a a a ------∴-=-=----+ ()11142241n n n n n a a a a a ----==--+-()*1112,222n n n n a a n n a a ---=-≥∈-N ,又111122c a ==--, ∴数列{}n c 是以12-为首项,12-为公差的等差数列,11(1)222n n c n ∴=---=-,即122n n a =--, 22n n a n +∴=,()1224462na n n nn b na --∴=⋅-= ∵存在*n ∈N ,使得2460n b m m +-≥成立,()2max 460n b m m ∴+-.令11,,n n n n b b b b -+≥⎧⎨≥⎩得112426,222422,22n n nn n n n n -+--⎧≥⎪⎪⎨--⎪≥⎪⎩则34n ≤≤,*n ∈N ,3n ∴=或4n =.()34max 14n b b b ∴===, 2160m m ∴+-≥,即2610m m --≤,解得1132m -≤≤,∴实数m 的取值范围是11,32⎡⎤-⎢⎥⎣⎦.故选:D .3.(2021·浙江·高三期中)已知数列{}n a 满足11a =,)*1n a n N +=∈,则( ) A .2021512a << B .20211219a << C .20211926a << D .20212633a <<【答案】B【分析】由题意化简可得1n n a a +>,根据3311n n a a +->,利用累加法可得n a 2211n n na a a +-=,利用累加法计算化简可得13132n an +<n a <2021n =计算即可.【详解】解:显然,对任意*n N ∈,0n a >.1n a +=化简可得22110n n na a a +-=>,所以1n n a a +>,则()3322111nn n n n a a a a a ++->-=, 累加可得3311n a a n->-,所以n a又2211n n n a a a +-=,所以()1221311122n n n n n na a a a a a n ++-=<<+,则()()()111121n n n n n a a a a a a a a ++--=-+-++-()()2222223333331111131112221311332n n n n ⎡⎤⎡⎤⎢⎥⎢⎥<+++=++++⎢⎥⎢⎥--⨯⎢⎥⎢⎥⎣⎦⎣⎦, 注意到()()()()11332211233333111311k k k k k k kk k --<=--+-+-,所以()1133222333311113311222231331n n n n ⎡⎤⎛⎫⎢⎥+++<+-=- ⎪⎢⎥⎝⎭-⨯⎢⎥⎣⎦,则13132n a n +<, 所以13132n n a a n +<<n a <当2021n =n a <<1219n a <<. 故选:B4.(2020·江西·鹰潭一中高三期中(文))数列{}n a 通项公式为:2202122021n n a n +=--,则{}n a 中的最大项为( )A .第1项B .第1010项C .第1011项D .第1012项【答案】B【分析】数列{}n a 的通项公式为2202122021n n a n +=--,所以0n a >.由1111nn n n a a a a -+⎧⎪⎪⎨⎪⎪⎩得1010n =,从而求得结果.【详解】解:依题意,数列{}n a 的通项公式为2202122021n n a n +=--,所以0n a >.由1111nn n n a a a a -+⎧⎪⎪⎨⎪⎪⎩,即220212202112201922023n n n n +--+--且220232201912202122021n n n n +--+--,n Z ∈,解得1010n =,故最大项为第1010项, 故选:B . 二、多选题5.(2022·全国·高三专题练习)在数列{an }中,an =(n +1)7()8n ,则数列{an }中的最大项可以是( )A .第6项B .第7项C .第8项D .第9项【答案】AB【分析】假设an 最大,则有11,,n n n n a a a a +-≥⎧⎨≥⎩解不等式组,可求出n 的范围,从而可得答案【详解】假设an 最大,则有11,,n n n n a a a a +-≥⎧⎨≥⎩即177(1)()(2)()88n n n n +++≥且177(1)()()88n n n n -+≥,所以7(1)(2)()87(1)()8n n n n⎧+≥+⎪⎪⎨⎪+≥⎪⎩,即6≤n ≤7,所以最大项为第6项和第7项.故选:AB6.(2022·全国·高三专题练习)已知数列{}n a 满足()*,01n n a n k n N k =⋅∈<<,下列命题正确的有( )A .当12k =时,数列{}n a 为递减数列 B .当45k =时,数列{}n a 一定有最大项 C .当102k <<时,数列{}n a 为递减数列 D .当1kk-为正整数时,数列{}n a 必有两项相等的最大项 【答案】BCD 【分析】分别代入12k =和45k =计算判断AB 选项;再利用放缩法计算判断C 选项;按k 的范围分类,可判断D ;【详解】当12k =时,1212a a ==,知A 错误;当45k =时,1415n n a n a n ++=⋅,当4n <,11n n a a +>,4n >,11n n a a +<, 所以可判断{}n a 一定有最大项,B 正确; 当102k <<时,11112n n a n n k a n n +++=<≤,所以数列{}n a 为递减数列,C 正确; 当1k k -为正整数时,112k >≥,当12k =时,1234a a a a =>>>,当112k >>时,令*1k m N k =∈-, 解得1mk m =+,则()()111n n m n a a m m ++=+,当n m =时,1n n a a +=, 结合B ,数列{}n a 必有两项相等的最大项,故D 正确; 故选:BCD.7.(2020·河北·沧州市民族中学高三阶段练习)已知数列{}n a 的前n 项和为n S ,且0n a >,22n n n S a a =+,著不等式()4111n nn S ka +≥-对任意的*n N ∈恒成立,则下列结论正确的为( ) A .n a n = B .()12n n n S +=C .k 的最大值为232D .k 的最小值为15-【答案】ABC【分析】先用两式相减的方法消去n S ,求出n a ,判断A 选项;再代入已知求出n S ,判断B 选项;然后将恒成立问题转化为最值问题,最后利用数列的单调性,求出最值即可判断C ,D 选项.【详解】依题意得当1n =时,21112a a a =+,由于20n a >,解得11a =;当2n ≥时,21112n n n S a a ---=+,因此有:22112n n n n n a a a a a --=-+-;整理得:11n n a a --=,所以数列{}n a 是以11a =为首项,公差1d =的等差数列, 因此n a n =,故A 正确; ()12n n n S +=,故B 正确; 由()4111n nn S ka +≥-得:()11221nn k n++≥-, 令1122n c n n=++,则n 取2时,n c 取最小值,所以 ①当n 为偶数时,1123222n n ++≥,232k ∴≤, ②当n 为奇数时,1135223n n ++≥, 353k ∴-≤,353k ∴≥-,352332k ∴-≤≤故C 正确,D 错误.所以A 、B 、C 正确;D 错误. 故选:ABC【点睛】知识点点睛:(1)已知n S 求n a ,利用前n 项和n S 与通项公式n a 的关系()()1*112,n nn S n a S S n n N -⎧=⎪=⎨-≥∈⎪⎩,此时一定要注意分类讨论.(2)数列与不等式的恒成立问题常用构造函数的方式,通过函数的单调性、最值解决问题,注意n 只能取正整数. 三、填空题8.(2022·安徽亳州·高三期末(理))已知数列{}n a 满足14a =,()1222nn n a a n -=+≥,若不等式()2231n n n a λ--<-对任意*n ∈N 恒成立,则实数λ的取值范围是___________.【答案】5,8⎛⎫-∞ ⎪⎝⎭【分析】分析可知数列2n n a ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得n a ,由参变量分离法可得出2312n n λ-->,利用数列的单调性求得数列232n n -⎧⎫⎨⎬⎩⎭的最大项的值,可得出关于实数λ的不等式,进而可求得实数λ的取值范围.【详解】当2n ≥时,在等式122nn n a a -=+两边同时除以2n 可得11122n n n n a a ---=且122a =, 故数列2n n a ⎧⎫⎨⎬⎩⎭是以2为首项,以1为公差的等差数列,则2112n n a n n =+-=+,()12nna n ∴=+⋅, 因为()()()2123231n a n n n n λ->--=-+对任意*n ∈N 恒成立,即2312nn λ-->, 令232n n n b -=,则()()1111212232123522222n nn n n n n n n n nb b ++++-------=-==. 当12n ≤≤时,1n n b b +>,即123b b b <<; 当3n ≥时, 1n n b b +<,即345>>>b b b .故数列{}n b 中的最大项为333328b ==,318λ∴->,解得58λ<. 故答案为:5,8⎛⎫-∞ ⎪⎝⎭.9.(2021·湖北·高三阶段练习)已知数列{}n a 的首项119a =-,其前n 项和为n S ,且满足()11(1)110n n n n n n a a a a +++-+=,则当n S 取得最小值时,n =___________.【答案】5【分析】首先根据()11(1)110n n n n n n a a a a +++-+=得到11111111n n a n a n ++=++,令111n n b a n=+得到2n b =,从而得到211n na n =-,再求当n S 取得最小值时n 的值即可.【详解】由题意,()11(1)110n n n n n n a a a a +++-+=可得111111111(1)1n n a a n n n n +-==-++,11111111n n a n a n++=++. 令111n n b a n=+,则1n n b b +=,即{}n b 是常数列, 所以111111112n n b b a n a =+==+=,故211n n a n =-. 当05n <≤时,0n a <;当6n ≥时,0n a >. 故当5n =时,n S 取得最小值. 故答案为:5 四、解答题10.(2022·全国·模拟预测(理))已知数列{}n a 满足11a =,且()*123n a a a a n n N ⋅⋅⋅⋅⋅=∈⋅.(1)求数列{}n a 的通项公式;(2)设()()11,221,1n nn a n n n b n n ⎧-⋅+≥⎪=⎨⨯⎪=⎩,且数列{}n b 的前n 项和为n S ,若()32n S n λ≥-+恒成立,求λ的取值范围.【答案】(1)(),211,1n nn a n n ⎧≥⎪=-⎨⎪=⎩(2)23λ≥ 【分析】(1)当2n ≥时,有12211n n a a a a n --⋅⋅⋅⋅⋅⋅⋅=-,两式作商求得,21n na n n =≥-,进而求得数列{}n a 的通项公式;(2)由(1)得到12n nn b +=,结合乘公比错位相减法求得111322nn n n S -+=--,进而求得()322n n n λ+≥+⋅,再根据()()322n n g n n +=+⋅的单调性,即可求解.(1)解:数列{}n a 满足11a =,且()*123n a a a a n n N ⋅⋅⋅⋅⋅=∈⋅,当2n ≥时,有12211n n a a a a n --⋅⋅⋅⋅⋅⋅⋅=-, 两式作商,可得,21n na n n =≥-,又由11a =,得,211,1n nn a n n ⎧≥⎪=-⎨⎪=⎩. (2)解:当2n ≥时,()()111122n n nnn n n n b n -⋅++-==⋅,当1n =时,111212b a ===,所以对任意的*n N ∈,均有12nn n b +=, 则12231222n nn S +=++⋅⋅⋅+, 可得2312312222n n S n ++=++⋅⋅⋅+②, 两式相减可得123111111421111131111122222222212n n n n n n n n n S n -+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+++⎢⎥⎣⎦=+++⋅⋅⋅+-=+-=---,求得111322n n n n S -+=--,由()32nS n λ≥-+,可得()322n n n λ+≥+⋅, 令()()322n n g n n +=+⋅,则()()()()()()()124132********n n n g n n n n n g n n n ++++⋅++==<+++⋅, 因为()0g n >,所以()()1g n g n +<,即随着n 增大,()g n 减小, 所以()()max 213g n g λ≥==. 11.(2022·全国·高三专题练习)数列{}n a 满足()*121224N 2n n n a a na n -+++=-∈, (1)求3a 的值;(2)求数列{}n a 前n 项和n T ; (3)令11b a =,()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭,证明:数列{}n b 的前n 项和n S 满足22ln n S n <+. 【答案】(1)14;(2)1122n -⎛⎫- ⎪⎝⎭;(3)证明见解析.【分析】(1)根据已知条件,分别取n =1,2,3即可依次算出123,,a a a ; (2)用作差法求出{}n a 的通项公式,再求其前n 项和; (3)求123,,S S S ,猜想n S ,用数学归纳法证明n S ;用导数证明()ln 1(0)1x x x x<+>+,令1x n =,得11ln 11n n ⎛⎫+> ⎪+⎝⎭,用这个不等式对n S 放缩即可得证. (1)依题()()312312312132223323244224a a a a a a --++⎛⎫=++-+=---= ⎪⎝⎭,314a ∴=; (2)依题当2n ≥时,()()121211212122144222n n n n n n n n nna a a na a a n a ----++⎛⎫⎡⎤=++-++-=---= ⎪⎣⎦⎝⎭, 112n n a -⎛⎫∴= ⎪⎝⎭,又1012412a +=-=也适合此式, 112n n a -⎛⎫∴= ⎪⎝⎭,∴数列{}n a 是首项为1,公比为12的等比数列,故1111221212nn n T -⎛⎫- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-; (3)111b a ==,1111S b T ∴==⨯,1221122T b a ⎛⎫=++ ⎪⎝⎭, ()1212121221111112222T S S b T a T a T ⎛⎫⎛⎫⎛⎫∴=+=+++=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2323232331111111111123232323T S S b T a T a T ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++++=+++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,猜想:1112n n S T n ⎛⎫=+++ ⎪⎝⎭① 下面用数学归纳法证明: (i)当n =1,2时,已证明①成立;(ii)假设当n k =时,①成立,即1112k k S T k ⎛⎫=+++ ⎪⎝⎭.从而1111111112121k k k k k k T S S b T a k k k +++⎛⎫⎛⎫=+=++++++++ ⎪ ⎪++⎝⎭⎝⎭ ()111121kk T a k +⎛⎫=++++ ⎪+⎝⎭111121k T k +⎛⎫=+++⎪+⎝⎭. 故①成立. 先证不等式()ln 1(0)1xx x x<+>+ ② 令()()ln 11xg x x x=+-+, 则()22110(0)1(1)(1)x g x x x x x '=-=>>+++.。
数列中的最值问题【解析版】
![数列中的最值问题【解析版】](https://img.taocdn.com/s3/m/acf5d206af1ffc4fff47ac3e.png)
第二章数列与不等式专题08 数列中的最值问题【压轴综述】纵观近几年的高考命题,考查常以数列的相关项以及关系式,或数列的前n项和与第n项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n项和,有时与参数的求解、数列不等式的证明等加以综合.探求数列中的最值问题,是数列不等式的综合应用问题的命题形式之一.本专题通过例题说明此类问题解答规律与方法.1.常见思路一:构建函数模型,利用函数的图象和性质解决最值问题;2.常见思路二:构建函数模型,应用导数研究函数的最值;3.常见思路三:构建不等式求解,确定范围,实现求最值;4.常见思路四:应用基本不等式,确定最值.【压轴典例】例1.(河南省开封市2019届高三第三次模拟(理))已知等比数列满足:,,则取最小值时,数列的通项公式为()A.B.C.D.【答案】A【解析】设等比数列的公比为当时,,则当时,,两式相减得:即解得又当且仅当时,等号成立.取最小值1时,故选A.例2.(安徽省黄山市2019届高三第二次检测)已知数列和的前项和分别为和,且,,,若对任意的 ,恒成立,则的最小值为( ) A . B .C .D .【答案】B 【解析】 因为,所以,相减得,因为,所以,又,所以, 因为,所以,因此,,从而,即的最小值为,选B.例3.(2016高考上海文)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.【答案】max 4k =【解析】当1n =时,12a =或13a =;当2n …时,若2n S =,则12n S -=,于是0n a =,若3n S =,则13n S -=,于是0n a =.从而存在N k *∈,当n k …时,0k a =.其中数列{}n a :2,1,1,0,0,0,-⋅⋅⋅满足条件,所以max 4k =. 例4.(广西柳州市2019届高三1月模拟)已知点在函数的图象上().数列的前项和为,设,数列的前项和为.则的最小值为____【答案】【解析】点在函数图象上,,是首项为,公比的等比数列,,则,是首项为,公差为2的等差数列,当,即时,最小,即最小值为.例5.(广东省华南师范大学附属中学、广东实验中学、广雅中学、深圳中学2019届高三上期末)等差数列的前n 项和为,,,对一切恒成立,则的取值范围为__ __.【答案】【解析】,,所以,,,,由得,由函数的单调性及知,当或时,最小值为30,故.例6.(2018·江苏高考真题)已知集合*{|21,}A x x n n N ==-∈,*{|2,}nB x x n N ==∈.将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________. 【答案】27【解析】设=2kn a ,则12[(211)+(221)+(221)][222]k k n S -=⨯-⨯-+⋅-++++()11221212212(12)222212k k kk k ---++⨯--=+=+--由112n n S a +>得2211211522212(21),(2)20(2)140,22,6k k k k k k k -+---+->+-->≥≥所以只需研究5622n a <<是否有满足条件的解,此时25[(211)+(221)+(21)][222]n S m =⨯-⨯-+-++++25122m +=+-,+121n a m =+,m 为等差数列项数,且16m >. 由25122212(21),2450022,527m m m m m n m ++->+-+>∴≥=+≥,得满足条件的n 最小值为27.例7.(2019·天津高考模拟(文))已知数列{}n a 是正项等比数列,1342310,2a a a a a +=-=,数列{}n b 满足条件123(2)n b n a a a a =.(Ⅰ) 求数列{}n a 、{}n b 的通项公式; (Ⅱ) 设11n n nc a b =-,记数列{}n c 的前n 项和n S . ①求n S ;②求正整数k ,使得对任意n *∈N ,均有k n S S ≥.【答案】(1)2nn a =,()1;n b n n =+(2)①11;12nn S n ⎛⎫=- ⎪+⎝⎭②4k =.【解析】(1)设数列{}n a 是正项等比数列的公比为0q >,因为1310a a +=,4232a a a -=所以有1113211110222a a q a a q a q a qq +==⎧⎧⇒⎨⎨-==⎩⎩,所以2;nn a = (1232nb n a aa a =2312322222n n b b n n +++⋅⋅⋅+⇒⨯⨯⨯⋅⋅⋅⨯=⇒=(1)2222(1);n b n n n b n n +⇒=⇒=+(2)①因为 11n n nc a b =-, 所以,123n n S c c c c =+++⋅⋅⋅+,123123()()n n n S a a a a b b b b ⇒=+++⋅⋅⋅+-+++⋅⋅⋅+,11[1()]111122[],1122334(1)12n n S n n -⇒=-+++⋅⋅⋅+⨯⨯⨯⨯+-111111111()(1),2223341n n S n n ⇒=---+-+-+⋅⋅⋅+-+11111()1().2112n n n S n n ⇒=--+=-++②令11111111(1)(2)2()()22122(1)(2)n n n n n n n n S S n n n n ++++++--=--+=++⋅++, 由于12n +比(1)(2)n n ++变化的快,所以10n n S S +->,得4n <, 即1234,,,S S S S ,递增而456,,,,n S S S S ⋅⋅⋅递减,4S ∴是最大, 即当4k =时,对任意*n N ∈,均有k n S S ≥.例8.(2019·江苏高考真题)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M-数列”{c n }θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e .列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【压轴训练】1.(2019·安徽高考模拟(文))已知等差数列{}n a 的前n 项和为n S ,且8109S S S <<,则满足0n S >的正整数n 的最大值为( ) A .16 B .17C .18D .19【答案】C 【解析】由8109S S S <<得,90a >,100a <,9100a a +>,所以公差大于零.又()117179171702a a S a +==>,()1191910191902a a S a +==<,()()1181891018902a a S a a +==+>,故选C.2.(2019·北京师大附中高考模拟(文))已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12,则1m +9n的最小值为( ) A .32B .83C .114D .不存在【答案】C 【解析】设正项等比数列{a n }的公比为q ,且q >0,由a 7=a 6+2a 5得:a 6q=a 6+62a q, 化简得,q 2-q-2=0,解得q=2或q=-1(舍去),因为a m a n =16a 12,所以()()1111m n a qa q --=16a 12,则qm+n-2=16,解得m+n=6,所以191191918(m n)10106663n m m n m n m n ⎛⎛⎫⎛⎫+=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝… . 当且仅当9n m m n =时取等号,此时96n m m n m n ⎧=⎪⎨⎪+=⎩,解得3292m n ⎧=⎪⎪⎨⎪=⎪⎩, 因为mn 取整数,所以均值不等式等号条件取不到,则1983m n +>, 验证可得,当m=2、n=4时,19m n+取最小值为114,故选:C .3.(2019·北京高三期末(理))已知为等差数列,为其前项和.若,,则公差___;的最大值等于___. 【答案】 12【解析】由a 2=4,a 3+a 5=0得得,则S n =6n(﹣2)=﹣n 2+7n =﹣(n )2,则当n =3或4时,S n 取得最大值,最大值为S 3=﹣9+21=12, 故答案为:﹣2,124.(2019·山东枣庄八中高三月考(理))已知数列{}n a 的前n 项和为n S ,且12n n S a +=,则使不等式2221286n a a a +++<成立的n 的最大值为( )A .3B .4C .5D .6【答案】B 【解析】根据题意,数列{}n a 满足12n n S a +=, 当1n =时,1121a a =+,得11a =,当2n ≥时,()112n n n n n a a S S a ---=-=,即12n n a a -=,所以12nn a a -= 又∵11a =满足上式,即{}n a 是以2为公比,1为首项的等比数列则12n n a -=, 则214n n a -=,则数列{}2na 是以1为首项,4为公比的等比数列,则()()22212114141143n nn S a a a -=+++==--,若2221286n a a a +++<,则有()141863n-<, 变形可得:4259n <,又由*n N ∈,则4n ≤,即n 的最大值为4; 故选:B .5.(2019·江苏高考模拟)已知正项等比数列{}n a 的前n 项和为n S .若9362S S S =+,则631S S +取得最小值时,9S 的值为_______.【解析】由9362S S S =+,得:q≠1,所以936111(1)(1)(1)2111a q a q a q q q q---=+---,化简得:936112(1)q q q -=-+-,即963220q q q --+=,即63(1)(2)0q q --=,得32q =,化简得631S S +=6131(1)11(1)a q qq a q --+--=11311a q q a -+≥-, 当11311a q q a -=-,即1a =时,631S S +取得最小值,所以919(1)1a q S q -==-9(1)1q q --=3故答案为:6.(2019·广东高考模拟)已知等差数列{a n }的前n 项和为S n ,若S 4=10,S 8=36,当n∈N *时,nn 3a S +的最大值为______. 【答案】71 【解析】由题意,等差数列{}n a 的前n 项和为n S ,若4810,36S S ==,设首项为1a ,公差为d ,则11434102878362a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,解得11a d ==,所以,所以(1)2n n n S +=, 则2322(3)(4)1271272nn a n n n n S n n n n+===++++++,当12n n +取最小值时,3n n a S +取最大值,结合函数()12(0)f x x x x =+>的单调性,可得当3n =或4n =时,317n n max a S +⎛⎫= ⎪⎝⎭. 故答案为:71. 7.(2019·天津高考模拟(文))已知首项与公比相等的等比数列{}n a 中,若m ,n *∈N ,满足224m n a a a =,则21m n+的最小值为__________. 【答案】1 【解析】设等比数列{}n a 公比为q ,则首项1a q =由224m n a a a =得:()()22113111m n a q a q a q --⋅=则:28m nqq += 28m n ∴+=()2112114142224888n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⋅++=⋅+++=⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴*,m n N ∈ 40,0n mm n∴>>则44n m m n +≥=(当且仅当4n m m n =,即2n m =时取等号) ()min 2114418m n ⎛⎫∴+=⨯+= ⎪⎝⎭ 本题正确结果:18.(2019·江苏金陵中学高考模拟)设数列{}n a 为等差数列,其前n 项和为n S ,已知14760a a a ++=,25851a a a ++=,若对任意n N *∈,都有n S ≤k S 成立,则正整数k 的值为_______.【答案】10 【解析】因为数列{}n a 为等差数列,设公差为d ,14760a a a ++=,25851a a a ++=,两式相减, 得:3d =-9,所以,d =-3, 由等差中项得14743=60a a a a ++=,即14=320a a d +=,解得:1a =29,所以,(1)29(3)2n n n S n -=+⨯-=236122n n -+ ,当n =616时,n S 取得最大值,但n 是正整数,所以,当n =10时,n S 取得最大值, 对任意n N *∈,都有n S ≤k S 成立,显然k =10. 故答案为:109.(2019·江苏扬州中学高考模拟)数列{}n a 是等差数列,11a =,公差[]1,2d ∈,且4101615a a a λ++=,则实数λ的最大值为______. 【答案】12- 【解析】41016111153(9)1515a a a a d a d a d λλ++=∴+++++=,15()219f d dλ==-+,因为[]1,2d ∈,所以令19,[10,19]t d t =+∈,因此15()2f t t λ==-,当[10,19]t ∈,函数()f t λ=是减函数,故当10t =时,实数λ有最大值,最大值为1(10)2f =-.10.(2019·福建高考模拟(理))在数列{}n a 中,1253a a +=,()()11280n n n a na n N *+--+=∈,若()12n n n n b a a a n N *++=⋅⋅∈,则{}n b 的前n 项和取得最大值时n 的值为__________.【答案】10 【解析】解法一:因为()11280n n n a na +--+=① 所以()211280n n na n a ++-++=②,①-②,得122n n n na na na ++=+即122n n n a a a ++=+,所以数列{}n a 为等差数列. 在①中,取1n =,得1280a -+=即128a =,又1253a a +=,则225a =, 所以313n a n =-.因此12100a a a >>>>,1112130a a a >>>>所以1280b b b >>>>,99101180b a a a =⋅⋅=-<,10101112100b a a a =⋅⋅=>,1112130b b b >>>>所以12389T T T T T <<, 9101112T T T T >>又1089108T T b b T =++>,所以10n =时,n T 取得最大值. 解法二:由()11280n n n a na +--+=,得()12811n n a a n n n n +-=---, 令1n n a c n +=,则11111282811n n c c n n n n -⎛⎫⎛⎫-=--=- ⎪ ⎪--⎝⎭⎝⎭,则11281n c c n ⎛⎫-=- ⎪⎝⎭, 即1211281281n c c a n n ⎛⎫⎛⎫=+-=+-⎪ ⎪⎝⎭⎝⎭, 代入得()()1222812828n n a nc na n n a +==+-=+-,取1n =,得1280a -+=,解得128a =,又1253a a +=,则225a =,故1283n a n +=-所以313n a n =-,于是()()()12313283253n n n n b a a a n n n ++=⋅⋅=---. 由0n b ≥,得()()()3132832530n n n ---≥,解得8n ≤或10n =, 又因为98b =-,1010b =, 所以10n =时,n T 取得最大值.11.(2019·全国高考真题(文))记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n N *≤≤∈. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩, 解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n N *≤≤∈12.(2017·上海高考真题)根据预测,某地第个月共享单车的投放量和损失量分别为和(单位:辆),其中,,第个月底的共享单车的保有量是前个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量; (2)已知该地共享单车停放点第个月底的单车容纳量(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】试题分析:(1)计算和的前项和的差即可得出答案; (2)令得出,再计算第个月底的保有量和容纳量即可得出结论.试题分析: (1)(2),即第42个月底,保有量达到最大,∴此时保有量超过了容纳量.13.(2018·河南高三期中(文))已知非零数列{}n a 满足*13()n n a a n +=∈N ,且1a ,2a 的等差中项为6.(1)求数列{}n a 的通项公式;(2)若32log n n b a =,求12233411111n n b b b b b b b b +++++…取值范围. 【答案】(1) 3nn a = (2) 11,84⎡⎫⎪⎢⎣⎭【解析】(1)由()*13n n a a n N +=∈,得{}na 为等比数列且公比3q =.设首项为1a ,12,a a 的等差中项为6,即1212a a q +=,解得13a =,故3nn a =.(2)由32log 2na nb n ==得到:()11111122141n n b b n n n n +⎛⎫==- ⎪⋅++⎝⎭, ∴1223341111111111111114223141n n b b b b b b b b n n n +⎡⎤⎛⎫⎛⎫++++=-+-++-=- ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦, 因为11141n ⎛⎫- ⎪+⎝⎭可以看成关于n 的单调递增函数,所以n=1时,最小为18,且1111414n ⎛⎫-< ⎪+⎝⎭, ∴1223341111111,84n n b b b b b b b b +⎡⎫++++∈⎪⎢⎣⎭. 14.(2019·湖南高考模拟(文))已知数列{}n a 的首项13a =,37a =,且对任意的n *∈N ,都有1220n n n a a a ++-+=,数列{}n b 满足12n nb a -=,n *∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)求使122018n b b b +++>成立的最小正整数n 的值.【答案】(Ⅰ)21n a n =+,21nn b =+;(Ⅱ)10【解析】(Ⅰ)令1n =得,12320a a a -+=,解得25a =. 又由1220n n n a a a ++-+=知211n n n n a a a a +++-=- 212a a ==-=,故数列{}n a 是首项13a =,公差2d =的等差数列,于是21n a n =+,1221n nn b a -==+. (Ⅱ)由(Ⅰ)知,21nn b =+.于是11n n T b b b =+++ ()122222n =++++ ()12122212n n n n +-=+=+--.令()122n f n n +=+-,易知()f n 是关于n 的单调递增函数,又()1092921031f =+-=,()111021022056f =+-=,故使112018n b b b +++>成立的最小正整数n 的值是10.15.(2019·山东日照一中高三期中(理))已知数列{a n }中,1123123n a a a a na =+++⋯+=,(n∈N *)(Ⅰ)证明当n≥2时,数列{na n }是等比数列,并求数列{a n }的通项a n ; (Ⅱ)求数列{n 2a n }的前n 项和T n ; (Ⅲ)对任意n∈N *,使得恒成立,求实数λ的最小值.【答案】(Ⅰ)(Ⅱ) (Ⅲ)【解析】(Ⅰ)[证明]:由a 1+2a 2+3a 3+…+na n =,得a 1+2a 2+3a 3+…+(n ﹣1)a n ﹣1=(n≥2),①﹣②:,即(n≥2),∴当n≥2时,数列{na n }是等比数列,又a 1=1,a 1+2a 2+3a 3+…+na n =,得a 2=1,则2a 2=2,∴,∴(n≥2),∴;(Ⅱ)解:由(Ⅰ)可知,∴T n =1+2×2×30+2×3×31+2×4×32+…+2n×3n ﹣2,则,两式作差得:,得:;(Ⅲ)解:由≤(n+6)λ,得≤(n+6)λ,即对任意n∈N *恒成立.当n=2或n=3时n+有最小值为5,有最大值为,故有λ≥,∴实数λ的最小值为.16.(2019·山东高考模拟(文))已知数列的各项均为正数,,且对任意,为和1的等比中项,数列满足.(1)求证:数列为等比数列,并求通项公式;(2)若,的前项和为,求使不小于360的的最小值. 【答案】(1)证明见解析,;(2)18.【解析】(1)由题意得:,即数列成等比数列,首项为,公比为,又为正项数列(2)由(1)得:,即或(舍去)所以不小于的的最小值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战2020年高考数学大题精做之解答题题型全覆盖高端精品第二篇数列与不等式专题06 数列中的最值问题【典例1】【2019年10月广东省广州市天河区一模】在等比数列{}n a 中,公比(0,1)q ∈,且满足42a =,232637225a a a a a ++=. (1)求数列{}n a 的通项公式;(2)设2log n n b a =,数列{}n b 的前n 项和为n S ,当312123n S S S S n+++⋯+取最大值时,求n 的值. 【思路引导】(1)根据等比数列的性质化简2635a a a a =,2375a a a =,联立42a =即可解出答案(2)根据52nn a -=写出5n b n =-,求出292n n n S -=,写出92n S n n -=,再求出其前n 项的和,判断即可。
解:(1)232637225a a a a a ++=,可得2223355352()25a a a a a a ++=+=, 由42a =,即312a q =,①,由01q <<,可得10a >,0n a >,可得355a a +=,即24115a q a q +=,②由①②解得1(22q =舍去),116a =,则15116()22n n n a --==g ; (2)22log log 2n n b a ==55nn -=-,可得219(45)22n n n S n n -=+-=,92n S n n -=, 则127941222n S S S n n -++⋯+=++⋯+221917117289(4)()2244216n n n n n --=+==--+,可得8n =或9时,1212n S S S n++⋯+取最大值18.则n 的值为8或9. 【典例2】【贵州省凯里市第一中学2019届高三下学期模拟考试】 在等差数列{}n a 中,已知345884,36a a a a +=-=. (I )求数列{}n a 的通项公式n a ; (II )记n S 为数列{}n a 的前n 项和,求20n S n+的最小值. 【思路引导】(1)根据等差数列的基本量运算,得到首项1a 和公差d ,得到通项n a (2)根据(1)求出的等差数列,得到其前n 项和n S ,表示出20n S n+,然后找到其最小值,注意*n N ∈. 解:(Ⅰ)由34584a a a +=-得428a =,∴由11328736a d a d +=⎧⎨+=⎩,得1222a d =⎧⎨=⎩,即数列{}n a 的通项公式为()2212220n a n n =+-⨯=+. (Ⅱ)由(Ⅰ)得,()21222212n n n S n n n -=+⨯=+,∴202021n S n n n+=++, 令()*2021,f x x n N x =++∈, ()2201f x x=-',当((),0x f x ∈'<;当()(),0x f x ∈+∞>'则()f x在(0,上单调递减,在()+∞上单调递增, 又*n N ∈Q ,()()4530f f ==∴当4n =或5时,,()f n 取到最小值30,即20n S n+的最小值为30. 【典例3】【2019届高三第一次全国大联考】已知数列{}n a 对任意n *∈N 满足112335(21)(1)32n n a a a n a n +++++-=-+L .(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求使得2019n S >成立的正整数n 的最小值. 【思路引导】(1)由()()()11231352321132n n n a a a n a n a n +-++++-+-=-+L ,可得()()12313523232n n a a a n a n -++++-=-+L ()2n ≥,两式相减可得()32nn a n =≥,然后再验证1a 是否满足上式即可得到结论.(2)根据(1)中的通项公式求出n S ,然后根据题意得到不等式,最后根据函数的单调性求出不等式的解集后可得所求.解:(1)因为()()()11231352321132n n n a a a n a n a n +-++++-+-=-+L ①,所以()()12313523232nn a a a n a n -++++-=-+L ()2n ≥②,①②两式相减,得()()()()213323213nnn n a n n n ⎡⎤-=---=-⎣⎦()2n ≥,所以()32nn a n =≥③.又当1n =时,得12a =,不满足上式.所以数列{}n a 的通项公式为()()2,13,2n n n a n ⎧=⎪=⎨≥⎪⎩.(2)由(1)知,12S =,所以12019S >不成立, 当2n ≥时,123n n S a a a a L =++++232333n =++++L2313333n=-+++++L ()313113n⨯-=-+-=1352n +-, 由13520192n n S +-=>,得134043n +>.令()13n f n +=,则()f n 为增函数,又()()782187364043736561f f ==<<==.因此要使134043n +>成立,只需7n ≥,故使2019n S >成立的正整数n 的最小值为7.【典例4】【河北省衡水市衡水中学2019届高三下学期六调】已知{}n a 为公差不等于零的等差数列,S n 为n a 的前n 项和,且()1n n a S n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭为常数列.(1)求1a ; (2)d ∈*N .设4035nn n a b a =-,仅当n 2019=时,n b 最大,求n a .【思路引导】(1)将等差数列{}n a 的通项和求和全部用基本量表示,然后对n 整理,令n 的系数和常数项为0,得到答案.(2)表示出n b 通项,然后化成反比例函数平移的形式,根据对称中心,得到公差d 的范围,然后根据*d ∈N ,得到d 的值,再求出n a 的通项.解:(1)设{}n a 首项为1a ,公差为d ,则()()()()[)11111122111]11n n n n n na d a ds c n a a in d n a n d --++===++-+⎡⎤+-+⎣⎦ 整理得:11022dd n dc a a c dc c ⎛⎫⎛⎫-+----=⎪ ⎪⎝⎭⎝⎭对任意的n 恒成立, 只须1110202d c d a a c dc c ⎧⎛⎫-= ⎪⎪⎪⎝⎭⎨⎪--+-=⎪⎩解得:1121c a ⎧=⎪⎨⎪=⎩.(2)由题意可知()11n a n d =+-,()()403511114034140344034n n d nd d d b d n d nd d n d+-+-===++-----{}n b 数列的对称中心为4034,1d d +⎛⎫⎪⎝⎭因为仅当2019n =时,n b 最大,所以403420182019d d +≤<,解得201721009d <≤, 又因*d ∈N ,所以2d =,()11221n a n n =+-⨯=- 【典例5】【宁夏银川一中2019届高三第四次月考】 已知数列{}n a ,12a =,26a =,且满足1121n n n a a a +-+=+(2n ≥且*n N ∈)(1)求证:{}1n n a a +-为等差数列; (2)令()10112n n n b a +=-,设数列{}n b 的前n 项和为n S ,求{}2n n S S -的最大值. 【思路引导】(1)将式子变形得到()()112n n n n a a a a +----=,故得到数列{}1n n a a +-是公差为2的等差数列;(2)通过第一问的结论,以及累加法的应用得到()1n a n n =+,代入表达式得到n b ,设2n n n M S S =-,()()110121222n n M M n n +-=-++,将此式和0比即可得到最大项.解:(1)1122n n n a a a +-+=+,则()()112n n n n a a a a +----=. 所以{}1n n a a +-是公差为2的等差数列.(2)()()()()121112242212n n n n n n a a a a a a n n n L L ,-+≥=-++-+=+++=⋅=+.当11,2n a ==满足.则()1n a n n =+.()()1011101!22n n b n n n +=-=-+∴1110122n n S n ⎛⎫=+++- ⎪⎝⎭L ,∴211111*********n nS n n n n ⎛⎫=+++++++- ⎪++⎝⎭L L , 设2111101222n n n n M S S n n n ⎛⎫=-=+++-⎪++⎝⎭L ,∴121111111023221222n n n n M S S n n n n n ++⎛⎫=-=+++++-⎪++++⎝⎭L , ∴()()1111111110110102122122122221222n n M M n n n n n n n +⎛⎫⎛⎫-=+--=--=-⎪ ⎪+++++++⎝⎭⎝⎭∴当1n =时,11010342n n M M +-=->⨯, 即12M M <,当2n ≥时,10n n M M +-<, 即234M M M >>>L ,∴()2max 1129101346n M M ⎛⎫==⨯+-= ⎪⎝⎭, 则{}2n n S S -的最大值为42296S S --【典例6】已知等差数列{}n a 中,公差0d >,其前n 项和为n S ,且满足:231445,14a a a a =+=g. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)通过公式nn S b n c=+构造一个新的数列{}n b .若{}n b 也是等差数列,求非零常数c ;(Ⅲ)求()()()*125nn b f n n N n b +=∈+g 的最大值. 解:(1)∵数列{a n }是等差数列.∴a 2+a 3=a 1+a 4=14, 由23231445a a a a =+=⎧⎨⎩,解得2359a a =⎧⎨=⎩或2395a a =⎧⎨=⎩.∵公差d >0,∴a 2=5,a 3=9. ∴d =a 3-a 2=4,a 1=a 2-d =1. ∴14(1)43n a n n =+-=-.(2)∵S n =na 1+n (n -1)d =n +2n (n -1)=2n 2-n ,∴22nn S n n b n c n c-==++. ∵数列{b n }是等差数列,∴2b 2=b 1+b 3,∴2·=+,解得12c =- (c =0舍去).∴22212n n nb nn -==-. 显然{b n }成等差数列,符合题意,∴12c =-. (3)由(2)可得()221252(25)(1)262526n n f n n n n n n n===++++++136≤=,当且仅当25n n=,即5n =时等号成立. ∴f (n )的最大值为136. 【典例7】【天津市南开区2019届高三第二学期模拟考试(二】已知数列{}n a 的前n 项和()1*12N 2n n n S a n -⎛⎫=--+∈ ⎪⎝⎭,数列{}n b 满足2nn n b a =.(Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)设()()()1121n n n n n n c n a n a ++=-+-,数列{}n c 的前n 项和为n T ,求满足()*124N 63n T n <∈的n 的最大值.【思路引导】(Ⅰ)利用11112n n n n n n a S S a a ---⎛⎫=-=-++ ⎪⎝⎭,整理可得数列{}n b 是首项和公差均为1的等差数列,求出{}n b 的通项公式可得数列{}n a 的通项公式;(Ⅱ) 由(Ⅰ)可得()1112122n n n n n n c n n n n ++=+⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭11122121n n +⎛⎫=- ⎪--⎝⎭,利用裂项相消法求得11124212163n n T +⎛⎫=-< ⎪-⎝⎭,解不等式可得结果.解:(Ⅰ) ()1122n n n S a n N -+⎛⎫=--+∈ ⎪⎝⎭Q ,当2n ≥时,211122n n n S a ---⎛⎫=--+ ⎪⎝⎭,11112n n n n n n a S S a a ---⎛⎫∴=-=-++ ⎪⎝⎭,化为11221n n n n a a --=+,12,1nn n n n b a b b -=∴=+Q ,即当2n ≥时,11n n b b --=,令1n =,可得11112S a a =--+=,即112a =.又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列. 于是()1112nn n b n n a =+-⋅==,2n n n a ∴=.(Ⅱ)由(Ⅰ)可得()1112122n n n n n n c n n n n ++=+⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭()()111211*********n n n n n +++⎛⎫==- ⎪----⎝⎭, 22311111121...2121212121n n n T +⎡⎤∴=-+-++-⎢⎥-----⎣⎦11124212163n +⎛⎫=-< ⎪-⎝⎭,可得162642n +<=,5n <, 因为n 是自然数,所以n 的最大值为4.1.【晋冀鲁豫中原名校2019届高三第三次联考】已知正项等比数列{}n a 的前n 项和为n S ,且218S =,490S =. (1)求数列{}n a 的通项公式;(2)令2115log 3n n b a ⎛⎫=- ⎪⎝⎭,记数列{}n b 的前n 项和为n T ,求n T 及n T 的最大值. 【思路引导】(1)利用基本元的思想将已知转化为1,a q 的形式,由此求得1,a q ,进而求得数列的通项公式.(2)先求得n b 的表达式,根据等差数列前n 项和公式求得n T ,再利用二次函数的性质求得n T 的最大值.解:(1)设数列{}n a 的公比为(0)q q >,若1q =,有414S a =,212S a =,而4490236S S =≠=,故1q ≠,则()()()()21242211411811119011a q S q a q a q q S q q ⎧-⎪==-⎪⎨-+-⎪===⎪--⎩,解得162a q =⎧⎨=⎩. 故数列{}n a 的通项公式为16232n nn a -=⨯=⨯. (2)由215log 215nn b n =-=-,则2(1415)29222n n n n nT +-==-+. 由二次函数22922x x y =-+的对称轴为292921222x =-=⎛⎫⨯- ⎪⎝⎭, 故当14n =或15时n T 有最大值,其最大值为14151052⨯=. 2.【辽宁省大连市瓦房店市高级中学2019-2020学年高三上学期10月月考】 已知数列{}n a 中,11128a =-,0n a ≠,且111364n n n S S a +++=+, (1)求n a ;(2)若4log n n b a =,12...n n T b b b =+++,当n 为何值时,n T 取最小值?并求出最小值.【思路引导】(1)由111364n n n S S a +++=+,得()113264n n n S S a n -+=+≥,两式作差得()122n n a a n +=≥,由11128a =-,计算得2164a =-,满足212a a =,得{}n a 等比数列,即可求出n a ;(2)由(1)得142n b n =-,满足112n n b b +-=,得{}n b 是等差数列,计算出n T 即可.解:(1)在数列{}n a 中,111364n n n S S a +++=+Q ①,()113264n n n S S a n -∴+=+≥②①-②得:1133n n n n a a a a +++=-()2n ≥,()122n n a a n +∴=≥. 且11128a =-,在①式中,令1n =,得2164a =-,212a a ∴=, 即()121n n a n a +=≥,{}n a ∴是以11128a =-为首项,以2为公比的等比数列,18122128n n n a --∴=-⨯=-. (2)由(1)知,82n n a -=-,且4841log l 42og 2n n n b a n -===-, 且()1111144222n n b b n n +⎡⎤⎛⎫-=+---= ⎪⎢⎥⎣⎦⎝⎭,所以{}n b 是以172b =-为首项,以12为公差的等差数列, 2271152254152224244n n n n n n T ⎛⎫⎛⎫-+--- ⎪ ⎪-⎝⎭⎝⎭∴===. 78n ∴=或时,n T 最小,最小值为14-.3.已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列(){}n f a 是首项为4,公差为2的等差数列. (1)求证:数列{}n a 是等比数列; (2)若()n n n b a f a =+,当k ={}n b 的前n 项和n S 的最小值. 【思路引导】(1)由题意得出()22n f a n =+,利用对数运算得出22n n a k +=,然后计算出1n na a +为非零常数,利用等比数列的定义可证明出数列{}n a 是等比数列;(2)求出n a 和()n f a ,利用分组求和法得出n S ,然后分析数列{}n S 为单调递增数列,可得出该数列的最小值为1S ,由此可得出结果; 解:(1)证明:由题意()()41222n f a n n =+-⨯=+, 即log 22k n a n =+,得22n n a k+=,且410a k =≠,()2122122n n n n a k k a k++++∴==.Q 常数0k >且1k ≠,2k ∴为非零常数,∴数列{}n a 是以4k 为首项,2k 为公比的等比数列;(2)当k =时,112n n a +=,()22n f a n =+,()11222n n n n b a f a n +∴=+=++. ()2111142211423122212n n n n nS n n +⎛⎫- ⎪++⎝⎭∴=+=++--.1n ≥Q ,数列2111322n n S n n +=++-是递增数列,因而最小值为1111713244S =++-=;4.【安徽省黄山市2019-2020学年上学期高中毕业班第一次质量检测】 已知等比数列{}n a 中,0n a >,12a =,且12112n n n a a a ++-=,*n N ∈. (1)求{}n a 的通项公式;(2)设4log n n n b a a =,若{}n b 前的前n 项和2020n S ≤,求n 的最大值.【思路引导】(1)由{}n a 是等比数列,令1n =可列出方程求出2q =,代入等比数列通项公式即可;(2)表示出{}n b 的通项公式,由错位相减法可求得n S ,代入已知不等式即可得解. 解:(1)由{}n a 是等比数列,令1n =可得2123112112222a a a q q-=⇒-= 2202q q q ⇒--=⇒=或1q =-(舍去),故2nn a =. (2)由题14log 2n n n n b a a n -==⋅,所以01211222322n n S n -=⨯+⨯+⨯+⋅⋅⋅+⨯又12321222322nn S n =⨯+⨯+⨯+⋅⋅⋅+⨯ 两式相减得1(1)2nn S n =+-⨯易知n S 单调递增,且891793,=40972020S S =>,故n 的最大值为8.5.【2020届广东省深圳市高三上学期第二次教学质量检测数学】记数列{}n a 的前n 项和为n S ,且223n S n n =-.递增的等比数列{}n b 满足,23a b =,3123a b b b =++,记数列{}n b 的前n 项和为n T .(1)求数列{}n a 与{}n b 的通项公式;(2)求满足7n T S ≤的最大正整数n 的值.【思路引导】(1)当1n =时,解得11a =;2n ≥时,利用1n n n a S S -=-得到32n a n =-;再计算n b 得到答案.(2)计算770S =,21n n T =-,故2170n -≤,则271n ≤,计算得到答案.解:(1)当1n =时,122a =,解得11a =;当2n ≥时,223-n S n n =,2123(1)(1)n S n n -=---,两式相减,可得264n a n =-,故32n a n =-,故*n ∀∈N ,32n a n =-. 则34b =,1237b b b ++=,记数列{}n b 的公比为q ,则24447q q ++=,则23q =-或2q =, 而数列{}n b 递增,故23q =-舍去,故12n n b -=. (2)依题意,()1777702a a S +⋅==,而21n n T =-,故2170n -≤,则271n ≤,因为*n ∈N ,且6264=,72128=, 故满足7n T S ≤的最大正整数n 的值为6.6.【浙江省温州九校2019届高三第一次联考数学试题】已知数列{}n a 中,()110,2*n n a a a n n N +==+∈,(1)令+11n n n b a a =-+,求证:数列{}n b 是等比数列;(2)令3n n n a c =,当n c 取得最大值时,求n 的值. 【思路引导】(1)由题可得121221n n n n a a n a a n +++=+=++,两式相减, 得()211121n n n n a a a a +++-+=-+,即12n n b b +=,求出120b =≠,即可得证;(2)由(1)可知,2n n b =即121n n n a a +-=-,通过累加可得21n n a n =-- 则213n n n n c --=,而112123n n n n n c c +++--=,令()212n f n n =+-,讨论()()122n f n f n +-=-的符号可得n c 的最大值,进而得到n .解:(1)121221n n n n a a n a a n +++=+=++Q ,两式相减,得211221n n n n a a a a +++-=-+∴()211121n n n n a a a a +++-+=-+即:12n n b b +=21120a b ==≠Q 又,∴数列{}n b 是以2为首项,2为公比的等比数列(2)由(1)可知,2n n b =即121n n n a a +-=-2121a a -=-23221a a -=-⋅⋅⋅⋅⋅⋅()11212n n n a a n ---=-≥()211222121n n n a a n n -∴-=++⋅⋅⋅+--=--2,21n n n a n ∴≥=--11,0n a ∴==也满足上式21n n a n ∴=--111212233n n n n n n n n c c +++----=∴= 11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=令()212n f n n =+-,则()11232n f n n ++=+-,()()122n f n f n ∴+-=-()()()()()()12,234f f f f f f n ∴=>>>⋅⋅⋅>()()()()1210,310,3,0f f f n f n ==>=-<∴≥<Q123345...c c c c c c ∴>,∴3,n n c =最大,即3k =7.【2020届湖南省长沙市雅礼中学高三第5次月考】 已知首项为32的等比数列{}n a 的前n 项和为()*n S n N ∈,且22S -,3S ,44S 成等差数列. (1)求数列{}n a 的通项公式;(2)对于数列{}n A ,若存在一个区间M ,均有()1,2,3i A M i ∈=⋅⋅⋅,则称M 为数列{}n A 的“容值区间”.设1n n nb S S =+,试求数列{}n b 的“容值区间”长度的最小值. 【思路引导】(1)根据324224S S S =-+,求出公比,即可得解;(2)对项数分奇偶讨论112nn S ⎛⎫=-- ⎪⎝⎭的取值范围,即可得到区间长度的最小值.解:(1)由题意可知:324224S S S =-+,即()()1231212342a a a a a a a a a ++=-+++++, ∴4312a a =-,即公比12q =-又132a =,∴13122n n a -⎛⎫=⋅- ⎪⎝⎭. (2)由(1)可知112nn S ⎛⎫=-- ⎪⎝⎭. 当n 为偶数时112n n S ⎛⎫=- ⎪⎝⎭,易知n S 随n 增大而增大,∴3,14n S ⎡⎫∈⎪⎢⎣⎭,根据勾型函数性质,此时1252,12n n n b S S ⎛⎤=+∈ ⎥⎝⎦. 当n 为奇数时112n n S ⎛⎫=+ ⎪⎝⎭,易知n S 随n 增大而减小, ∴31,2n S ⎛⎤∈ ⎥⎝⎦,根据勾型函数性质,此时1132,6n n nb S S ⎛⎤=+∈ ⎥⎝⎦. 又1325612>,∴132,6n b ⎛⎤∈ ⎥⎝⎦. 故数列{}n b 的“容值区间”长度的最小值为16. 8.【江苏省盐城市盐城中学2019-2020学年高三11月月考】已知正项数列{}n a 的前n 项和为n S ,且()2*241n n n a a S n N +=-∈. (1)求数列{}n a 的通项公式;(2)若21211n n n n a b S S -++=⋅,数列{}n b 的前n 项和为n T ,求n T 的取值范围. 【思路引导】(1)利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求得数列{}n a 的通项公式. (2)由(1)求得n S 的表达式,然后利用裂项求和法求得{}n b 的前n 项和n T .利用差比较法证得数列{}n T 递增,进而求得n T 的取值范围.解:(1)当1n =时,由2241n n n a a S +=-,得2111241a a a +=-,得11a =,由2241n n n a a S +=-,得2111241n n n a a S ++++=-,两式相减,得22111224n n n n n a a a a a +++-+-=,即()221120n n n n a a a a ++--+=,即()()1120n n n n a a a a ++--+=因为数列{}n a 各项均为正数,所以10n n a a ++>,所以12n n a a +-= 所以数列{}n a 是以1为首项,2为公差的等差数列.因此,12(1)21n a n n =+-=-,即数列{}n a 的通项公式为21n a n =-.(2)由(1)知21n a n =-,所以2(121)2n n n S n +-== 所以22212112(21)(21)n n n n a n b S S n n -++==⋅-+221114(21)(21)n n ⎡⎛⎤=-⎢ ⎥-+⎝⎦⎣ 所以222222246133557n T =++⨯⨯⨯222(21)(21)n n n ++-+L 2222222111111111433557(21)(21)n n ⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-++-⎨⎬ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦⎩⎭L 21114(21)n ⎡⎤=-⎢⎥+⎣⎦令21()1(21)f n n =-+,则(1)()f n f n +-=2222118(1)0(21)(23)(23)(21)n n n n n +-=>++++ 所以()f n 是单调递增数列,数列{}n T 递增, 所以129n T T ≥=,又14n T <,所以n T 的取值范围为21,94⎡⎫⎪⎢⎣⎭.。