[考研数学]概率论与数理统计复习题

合集下载

[考研数学]概率论考试复习题

[考研数学]概率论考试复习题

概率论与数理统计练习1一、选择题:1、设随机事件A 与B 满足A B ⊃,则( )成立。

A.()()P A B P A +=B.()()P AB P A =C.()()P B A P B =D.()()()P B A P B P A -=-2、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为( B )。

A.0.5B.0.8C.0.55D.0.63、连续型随机变量X 的密度函数()f x 必满足条件( D )。

A.0()1f x ≤≤B.()f x 为偶函数C.()f x 单调不减D. ()1f x dx +∞-∞=⎰4、设12,,,n X X X 是来自正态总体2(,)N μσ 的样本,则22μσ+的矩估计量是( D )。

A. 211()n i i X X n =-∑ B. 211()1n i i X X n =--∑ C. 221()n i i X n X =-∑ D. 211n i i X n =∑ 5、设总体(,1)X N μ ,123,,X X X 为总体X 的一个样本,若^1231123X X CX μ=++为未知参数μ的无偏估计量,则常数C =( ) A.12 B. 13 C. 15 D. 16二、填空题:1、袋子中装有50个乒乓球,其中20个黄的,30个白的,现有两人依次随机地从袋中各取一球,取后不放回,则第二人取得黄球的概率是 0.42、设A ,B 为两个随机事件,()0.6P A =,()0.2P A B -=,则()P AB = 0.63、已知二维随机向量(,)X Y 的联合分布为则= 0.34、设总体X 服从正态分布2(2,)N σ,1216,,,X X X 是来自总体X 的一个样本,且161116i i X X ==∑,则48X σ-服从 5、若(,)X Y 服从区域22{(,)4}G x y x y =+≤上的均匀分布,则(,)X Y 的联合密度函数为三、计算题:1、设A ,B 为随机事件,且()P A p =,()()P AB P A B =,求()P B 。

概率论与数理统计总复习

概率论与数理统计总复习
XY
pi
1 1 1 5 5
5 1 5 1 5
1
1 65 EXY xi y j Pij COV ( X , Y ) EXY EX EY 8 8 i j
COV ( X , Y ) 3 20 320 DX DY
6. 设随机变量X ~N (1,3 ), Y ~ N (0, 4 ),已知
X z M z Y z
由于 X 和 Y 相互独立,于是得到 M = max(X,Y) 的分布 函数为: FM(z) =P(X≤z)P(Y≤z)
即有 FM(z)= FX(z)FY(z)
2. N = min(X,Y) 的分布函数 FN(z)=P(N≤z) =1-P(N>z)
=1-P(X>z,Y>z)
例1 设 X 具有概率密度f X ( x ), 求 Y=X2 的概率密度.
解 设Y 和 X 的分布函数分别为 FY ( y)和 FX ( x),
2
注意到Y X 0, 故当y 0时有,FY ( y) P(Y y) 0
当 y>0 时,
2 P ( X y) FY ( y ) P(Y y )
P ( y X y ) FX ( y ) FX ( y )
FY y P Y y
求导可得
1 f X ( y ) f X ( y ) , dFY ( y ) fY ( y ) 2 y dy 0,


y0 y0

1 fX ( x) 2
2、解:设 X 表示电子管寿命,
Y 表示5个电子管使用1000小时后损坏的个数。则
Y ~ b(5, p),其中p P( X 1000 ) x 1 e 1000 , x 0 f ( x) 1000 0, 其他

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

《概率论与数理统计》复习题

《概率论与数理统计》复习题

《概率论与数理统计》复习题第一章:随机事件及其概率1.某射手向一目标射击两次,Ai表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1AB.A1A2C.A1A2D.A1A22.设A,B为两个互不相容事件,则下列各式错误的是()..A.P(AB)=0C.P(AB)=P(A)P(B)B.P(A∪B)=P(A)+P(B)D.P(B-A)=P(B)13.设事件A,B相互独立,且P(A)=,P(B)>0,则P(A|B)=()3A.1141B.C.D.1551534.已知P(A)=0.4,P(B)=0.5,且AB,则P(A|B)=()A.0B.0.4C.0.8D.15.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为()A.0.20B.0.30C.0.38D.0.573126.设A,B为两事件,已知P(A)=,P(A|B)=,P(B|A),则P (B)=()335A.1234B.C.D.55557.设随机事件A与B互不相容,且P(A)=0.2,P(A∪B)=0.6,则P(B)=________.8.设A,B为两个随机事件,且A与B相互独立,P(A)=0.3,P(B)=0.4,则P(AB)=__________.9.10件同类产品中有1件次品,现从中不放回地接连取2件产品,则在第一次取得正品的条件下,第二次取得次品的概率是________.10.某工厂一班组共有男工6人、女工4人,从中任选2名代表,则其中恰有1名女工的概率为________11.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为_________.12.一医生对某种疾病能正确确诊的概率为0.3,当诊断正确时,他能治愈的概率为0.8。

若未被确诊,病人能自然痊愈的概率为0.1。

①求病人能够痊愈的概率;②若某病人已经痊愈,问他是被医生确诊的概率是多少?第二章:随机变量及其分布1.下列函数中可作为某随机变量的概率密度的是()100,某100,A.某2某1000,10,某0,B.某0,某0131,某,D.222其他0,1,0某2,C.0,其他2.设随机变量某在[-1,2]上服从均匀分布,则随机变量某的概率密度f(某)为()1,1某2;A.f(某)30,其他.1,1某2;C.f(某)0,其他.3,1某2;B.f(某)0,其他.1,1某2;D.f(某)30,其他.13.设随机变量某~B3,,则P{某1}=()3A.181926B.C.D.272727274.设随机变量某在区间[2,4]上服从均匀分布,则P{2C.P{2.55.设离散型随机变量某的分布律如右,B.P{1.5某-101则常数C=_________.P2C0.4CA某2,0某1;6.设随机变量某的概率密度f(某)则常数A=_________.其他,0,某1;0,0.2,1某0;7.设离散型随机变量某的分布函数为F(某)=0.3,0某1;0.6,1某2;某2,1,8.设连续型随机变量某的分布函数为则P{某>1}=_________.0,某0,ππF(某)in某,0某,其概率密度为f(某),则f()=________.62π1,某,29.设随机变量某~N(2,22),则P{某≤0}=___________。

山西省考研数学复习资料概率论与数理统计必备习题

山西省考研数学复习资料概率论与数理统计必备习题

山西省考研数学复习资料概率论与数理统计必备习题概率论与数理统计是数学中的一门重要分支,被广泛应用于各个领域。

对于考研学生来说,掌握概率论与数理统计的基本理论和方法,解决相关习题是提高数学能力的重要途径。

本篇文章将为山西省考研数学复习提供概率论与数理统计的必备习题,帮助学生更好地备战考试。

一、概论部分1. 概率的定义和性质习题- 题目一:已知事件A的概率为0.3,事件B的概率为0.5,求事件A与事件B的交集的概率。

- 题目二:设A、B为两个独立事件,已知P(A) = 0.4,P(B) = 0.6,求P(A并B)的概率。

2. 随机变量和概率分布习题- 题目一:设随机变量X服从正态分布N(5, 4),求P(X < 3)的概率。

- 题目二:设随机变量X服从泊松分布P(2),求P(X ≥ 3)的概率。

二、概率习题1. 条件概率和独立性习题- 题目一:已知甲、乙两袋各装有12只红球和8只白球,从甲袋中任取一球放入乙袋,然后从乙袋中任取一球,为红球的概率是多少?- 题目二:一批产品共有100个,其中10个次品。

每次从中随机取一件,若不放回,则取到2个次品的概率是多少?2. 事件的独立性和完备性习题- 题目一:记A、B、C三个事件的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5,其中P(A并B)是事件C的充要条件,求P(A并C)。

- 题目二:设A、B为两个独立事件,已知P(A) = 0.5,P(B) = 0.4,求P(A或B)。

三、数理统计习题1. 统计量的分布习题- 题目一:设X1、X2、X3为来自总体N(0, 1)的一组样本,求样本平均值X的分布。

- 题目二:设样本容量为n的样本均值Xn服从正态分布N(μ, σ^2/n),求样本方差S^2的分布。

2. 参数估计习题- 题目一:设X1、X2、...、Xn为来自总体N(μ, σ^2)的样本,求样本均值X的无偏估计。

- 题目二:设X1、X2、...、Xn为来自总体泊松分布P(λ)的样本,求样本方差S^2的极大似然估计。

《概率论与数理统计》综合复习资料全

《概率论与数理统计》综合复习资料全

《概率论与数理统计》综合复习资料一、填空题1、一个盒子中有10 个球,其中有 3 个红球, 2 个黑球, 5 个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为;取到的两只球至少有一个黑球的概率为。

2、 X 的概率密度为 f ( x)1 e x2 2 x 1(x) ,则DX。

3、已知随机变量X ~N(1,1),Y~N(3,1) 且 X 与Y 相互独立,设随机变量Z 2X Y 5,则EX;DX。

4、已知随机变量X 的分布列为X-102P k0.40.2p则: EX=;DX =。

5、设X与Y独立同分布,且X~N(2,22) ,则D( 3X2Y) =。

6、设对于事件A、B、 C有 P(A)P(B)1,P(ABC)1P(C),412P( AB) P( BC )P(AC)1。

,则 A 、 B、 C 都不发生的概率为87、批产品中一、二、三等品各占60% 、30%、 10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为。

8、相互独立,且概率分布分别为1,1 y 3f (x)e ( x 1)x) ;( y)(,其它则:E(X Y)=;E(2X3 2 )=。

Y9 、已知工厂A、 B 生产产品的次品率分别为2%和1%,现从由A、 B 工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是 B 工厂的概率为。

10、设X、Y的概率分布分别为, 1 x 54e4 y,y01/ 4( x);( y),,其它0y0则: E(X 2Y) =;(X 2 4 ) =。

E Y二、选择题1、设X 和 Y 相互独立,且分别服从N(1,22) 和N (1,1),则。

A .P{ X Y 1}1/ 2B.P{ X Y0}1/ 2C .P{ X Y0}1/ 2D.P{ X Y 1}1/ 22、已知P( A)0.4,P(B)0.6,P(B | A)0.5 ,则P( A B)。

A .1B.0.7C .0.8D .0.53、设某人进行射击,每次击中的概率为1/3,今独立重复射击10 次,则恰好击中 3 次的概率为。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

概率论与数理统计考试题及答案

概率论与数理统计考试题及答案

概率论与数理统计考试题及答案一、单项选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,P(X≤0)=______。

A. 0.5B. 0.3C. 0.7D. 0.8答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.5,则E(X)=______。

A. 2B. 5C. 10D. 15答案:B3. 设随机变量X服从泊松分布,其概率质量函数为P(X=k)=λ^k/e^λ*k!,其中λ>0,则E(X)=______。

A. λB. e^λC. kD. 1答案:A4. 若随机变量X与Y相互独立,则P(X>a, Y>b)=______。

A. P(X>a) + P(Y>b)B. P(X>a) * P(Y>b)C. P(X>a) - P(Y>b)D. P(X>a) / P(Y>b)答案:B5. 设随机变量X服从正态分布N(μ, σ^2),其中μ=3,σ^2=4,则P(X>3)=______。

A. 0.5B. 0.25C. 0.75D. 0.3答案:A6. 若随机变量X服从均匀分布U(a, b),则E(X)=______。

A. (a+b)/2B. a+bC. a-bD. b-a答案:A7. 设随机变量X服从指数分布,其概率密度函数为f(x)=λe^(-λx),其中x≥0,λ>0,则D(X)=______。

A. 1/λ^2B. 1/λC. λD. λ^2答案:A8. 若随机变量X与Y相互独立,且X~N(μ1, σ1^2),Y~N(μ2, σ2^2),则X+Y~______。

A. N(μ1+μ2, σ1^2+σ2^2)B. N(μ1-μ2, σ1^2-σ2^2)C. N(μ1+μ2, σ1^2-σ2^2)D. N(μ1-μ2, σ1^2+σ2^2)答案:A9. 设随机变量X服从二项分布B(n, p),则D(X)=np(1-p)。

考研-概率数理统计复习题

考研-概率数理统计复习题


6. 在总体 X ~ N (5,16) 中随机地抽取一个容量为 36 的样本,则均值 X 落在 4 与 6 之间的
概率 = 。
7. 设 X 1 , X 2 X 25 是 从 均 匀 分 布 U (0,5) 总 体 中 抽 取 的 样 本 , 则 X 的 渐 进 分 布 为 。
8. 设随机变量 n ( n 1,2, ) 服从参数为 n, p
1 ,则 Y ~ X2

17. 设 X 1 , X 2 , , X 9 是正态总体 X 的样本,记 1 1 Y1 ( X 1 X 2 X 6 ), Y2 ( X 7 X 8 X 9 ) , 6 3 9 1 S 2 ( X i Y2 ) 2 , Z 2(Y1 Y2 ) / S , 2 i 7
0 p 1 的二项分布,则 n
np 时,有 n ~ np ( 1 p )

2 4;令 Yi 3 X i 2 , 9. 设 X 1 , X 2 , X n 是来自总体 X 的一组样本,样本方差 S X 2 (i 1,2, n) ,则其样本方差 S Y
服从 F 分
布。
X
A.
Y
4 , 自由度(4,3) 3 , 自由度(16,9)
B.
9X , 自由度(16,9) 16Y
C.
3 X 4 Y
D.
9X , 自由度(15,8) 16Y

8.设 E ( X ) , D( X ) 2 ,则由契比雪夫不等式可知 P ( X 3 )
且 P{ X 1 1} P{ Y 2 1} ,则必有( )
A 1 2 C 1 2

概率论与数理统计考研复习题1

概率论与数理统计考研复习题1

概率论与数理统计考研复习题(1)古典概率1.某城市发行三种报纸A ,B ,C ,订A 报的有45%,订B 报的有35%,订C 报的有30%,同时订A 及B 报的有10%,同时订A 其C 报的有8%,同时订B 及C 报的有5%,同时订A ,B ,C 的有3%,试求下列事件的概率:(1)只订A 报;(2)只订A 及B 报;(3)只订一种报;(4)正好订两种报;(5)至少订一种报;(6)不定任何报;(7)最多订一种报.2.假设一批产品中一、二、三等品各占60%、30%、10%,从中随意取出一种,结果不是三等品,则取到的是第一等品的概率为多少?3.0<P (A )<1,0<P (B )<1,P (A|B )+P )|(B A =1,讨论A 与B 的相互独立性.4.设一个口袋中有6个球,令321,,A A A 依次表示这6个球分别为4红,2白;3红,3白;2红,4白。

设验前概率为21)(1=A P ,61)(2=A P ,31)(3=A P ,现从这口袋里任取一球,得到白球,求相应的验后概率.1. 两个盒子,第一个盒子装了2个红球,1个黑球,第二个盒子装有2个红球,2个黑球,先从两个盒子里各取1个球放在一起,再从中取出1球,问:(1)这个球是红球的概率;(2)若发现这个球是红球,问的一盒中取出的球是红球的概率.6.甲、乙两人轮流投篮,游戏规则规定为甲先开始,且甲每轮只投一次,而乙每轮连投两次,已知甲乙每次投篮的命中率分别为p 与 0.5。

求p 为何值时,甲、乙的胜负概率相等.1. k 个坛子各装n 个球,编号为1,2,3 …,n ,从没个坛子中各取一个球,计算所取到的k 个球中最大编号是m ()1n m ≤≤的概率.8.设工厂A 和B 的次品率分别为1%和2%,现从A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属于A 厂生产的概率是多少?9.500页的书,共有100个错字,每个错字等可能的出现在每一页上,试求给定的一页上至少有两个错字的概率.10.编号为I ,II ,III 的三个口袋,其中I 号袋内装有两个1号球,一个2号球与一个3号球;II 号袋内装有两个1号球,一个3号球;III 号袋内装有三个1号球,两个2号球。

概率论与数理统计总习题及答案

概率论与数理统计总习题及答案

试题一、填空1、设P(A)=0.4,P(AUB)=0.7,A与B不相容,则P(B)=0.3 解:由公式,P(AUB)= P(A)+ P(B)所以P(B)= 0.7-0.4=0.32、若X~B(n,p),则X的数学期望E(X)= n*p解:定义:二项分布E(X)= n*p D(X)=n*p(1-p)3、甲盒中有红球4个,黑球2个,白球2个;乙盒中有红球5个,黑球3个;丙盒中有黑球2个,白球2个。

从这3个盒子中任取1个盒子,再从中任取1球,他是红球的概率0.375解:设甲为A1,乙为A2,丙为A3,红球为B则P(B)=P(A1)P(B| A1)+P(A2)P(B| A2)+P(A3)P(B| A3)=1/3*1/2+1/3*5/8+1/3*0=0.3754、若随机变量X的分布函数为f(x)={0,x<0√x,0≤x<1 1, x≥1则P{0.25<X≤1}=0.5解:分布函数求其区间概率即右端点函数值减去左端点函数值F (1)-F (0.25) = 1-0.5=0.55、设(X1,X2,…X n)为取自正态分布,总体X~N(μ,σ2),的样本,则X的分布为N(μ,σ2n )解:定义6、设ABC表示三个随机变量事件,ABC至少有一个发生,可表示为AUBUC解:至少;如果是一切发生为A∩B∩C7、设X为连续随机变量,C是一个常数,则P{X=C}=0 解:取常数,取一个点时,恒定为08、一射手对同一目标独立地进行4次射击,若至少命中1次的概率为80/81,则该射击的命中率为2/3解:射击,即伯努利试验。

求P(X=0)=Cn0p0(1−p)4=1−80/81(1−p)4=181,1−p=13,p=239、设X~N(−1,2),Y~N(1,3)且X与Y相互独立,则X+ 2Y~N(1,14)解:因为X与Y相互独立,再由正态分布得E(X)=-1,D(X)=2;E(Y)=1,D(Y)=3;所以E(X+2Y)=E(X)+2E(Y)=-1+2*1=1D(x+2Y)=D(X)+4D(Y)=2+4*3=14所以X+2Y~N(1,14)10、设随机变量X的方差为2.5,利用切比雪夫不等式估计概率得P{|X−E(X)|≥7.5}≤ 2.57.52解:由切比雪夫不等式P{|X−μ|≥ε}≤σ2ε2≤ 2.57.52二、 计算1、 从0,1,2,…9中任意取出3个不同的数字,求下列的概率。

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题1.未知p(ab)?p(a),则a与b的关系就是单一制。

2.未知a,b互相矛盾,则a与b的关系就是互相矛盾。

3.a,b为随机事件,则p(ab)?0.3。

p(a)?0.4,p(b)?0.3,p(a?b)?0.6,4.已知p(a)?0.4,p(b)?0.4,p(a?b)?0.5,则p(a?b)?0.7。

25.a,b为随机事件,p(a)?0.3,p(b)?0.4,p(ab)?0.5,则p(ba)?____。

36.已知p(ba)?0.3,p(a?b)?0.2,则p(a)?2/7。

7.将一枚硬币重复投掷3次,则正、反面都至少发生一次的概率为0.75。

8.设立某教研室共计教师11人,其中男教师7人,贝内旺拉拜教研室中要自由选择3名叫优秀教师,则3名优秀教师中至少存有1名女教师的概率为___26____。

339.设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。

611110.3人单一制截获一密码,他们能够单独所译的概率为,,,则此密码被所译的5343概率为______。

5后不送回,则第2次取出的就是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235cp(1?p)7次顺利的概率为______。

12.已知3次独立重复试验中事件a至少成功一次的概率为1事件a顺利的概率p?______。

319,则一次试验中27c35813.随机变量x能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量x原产律为p(x?k)?,k?1,2,3,4,5,则p(x?3x?5)?_0.4_。

15x??2,?0?x?15.f(x)??0.4?2?x?0,是x的分布函数,则x分布律为__??pi?1x?0?0??__。

0.40.6??2?0,x?0??16.随机变量x的分布函数为f(x)??sinx,0?x??,则2?1,x2?p(x??3)?__3__。

《概率论与数理统计(二)》复习题

《概率论与数理统计(二)》复习题

《概率论与数理统计(二)》复习题一、单项选择题1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.A BD.A B2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x ) B.1-Φ(x ) C.Φx μσ-⎛⎫⎪⎝⎭D.1-Φx μσ-⎛⎫ ⎪⎝⎭3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~A.211(,)N μσB.221()N μσC.212(,)N μσD.222(,)N μσ4.设随机事件A 与B 互不相容,且()0P A >,()0P B >,则A. ()1()P A P B =-B. ()()()P AB P A P B =C. ()1P A B =D. ()1P AB =5.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则A. n =4, p =0.6B. n =6, p =0.4C. n =8, p =0.3D. n =24, p =0.16.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1()E X Y μλ+= B.221()D X Y σλ+=+C.1(),()E X E Y μλ==D.221(),()D X D Y σλ==7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x 为来自X 的样本,则下列随机变量中是统计量的为 A. 11ni i x n =∑B. 11ni i x n θ=-∑C. 11()ni i x E X n =-∑D. 2111()n i x D X n =-∑8.设12,,,n x x x 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为 A. 11()1ni i x n μ=--∑2 B. 11()ni i x n μ=-∑2C. 11()1ni i x x n =--∑ 2 D.11()ni i x x n =-∑ 29.设A,B 为B 为随机事件,且A B ⊂,则AB 等于A.ABB.BC.AD.A10.设A ,B 为随机事件,则()P A B -=A.()()P A P B -B.()()P A P AB -C.()()()P A P B P AB -+D.()()()P A P B P AB +-11.设随机变量X 的概率密度为1,3<x<6,()30,f x ⎧⎪=⎨⎪⎩其他,则{}3<4=P X ≤A.{}1<2P X ≤B.{}4<5P X ≤C.{}3<5P X ≤D.{}2<7P X ≤12.已知随机变量X 服从参数为λ的指数分布,则X 的分布函数为A.e ,0,()0, 0.x x F x x λλ-⎧>=⎨≤⎩B.1e ,0,()0, 0.x x F x x λλ-⎧->=⎨≤⎩C.1e ,0,()0, 0.x x F x x λ-⎧->=⎨≤⎩D.1e ,0,()0, 0.x x F x x λ-⎧+>=⎨≤⎩13.设随机变量X 的分布函数为F(x),则A.()1F -∞=B.(0)0F =C.()0F +∞=D.()1F +∞=14.设随机变量X 与Y 相互独立,它们的概率密度分别为(),()X Y f x f y ,则(X ,Y )的概率密度为 A.[]1()()2X Y f x f y + B.()()X Y f x f y +C.1()()2X Y f x f y D.()()X Y f x f y15.设随机变量~(,)X B n p ,且() 2.4,() 1.44E X D X ==,则参数n,p 的值分别为 A.4和0.6 B.6和0.4 C.8和0.3D.3和0.816.设随机变量X 的方差D(X)存在,且D(X)>0,令Y X =-,则X γρ= A.1- B.0 C.1 D.2二、填空题1. 一口袋中装有3只红球,2只黑球,今从中任意取出2只球,则这2只球恰为一红一黑的概率是____________.2. 设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A )=______________.3. 设A,B,C 为三个随机事件,P(A)=P(B)=P(C)=41,P(AB)=P(AC)=P(BC)=61,P(ABC)=0,则P(A B C)=___________. 4. 设X 为连续随机变量,c 为一个常数,则P {X =c }=_____________.5. 已知连续型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<=.2,1;20),1(31;0,31)(≥≤x x x x e x F x设X 的概率密度为f(x),则当x<0,f(x)= _______________.6. 已知随机变量X 的分布函数为F X (x),则随机变量Y=3X+2的分布函F Y (y)=_________.7. 设随机变量X ~N (2,4),则P {X≤2}=____________.8. 设随机变量X 的概率密度为f(x)=+∞<<-∞-x ex ,2122π,则E(X+1)=___________.9. 设随机变量X 与Y 相互独立,且X ~N (0,5),Y ~X 2(5),则随机变量YX Z =服从自由度为5的_______________分布。

硕士研究生《概率论与数理统计》复习题

硕士研究生《概率论与数理统计》复习题

2021级硕士研究生?概率论与数理统计?复习题一、填空题1、随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P ,条件概率8.0)(=A B P ,求)(B A P 。

2、 设两事件A ,B 满足条件)()(B A P AB P =,且)10()(<<=p p A P ,那么)(B P = 。

3、 设B A ,为两事件,4.0)(,6.0)(,7.0)(===A B P B P A P ,求)(B A P ⋃ 。

4、 在区间)1,0(中随机的取两个数,那么这两个数之差的绝对值小于21的概率为 。

5、 设随机变量⎪⎪⎭⎫ ⎝⎛-p pX 110~,10<<p ,当____=p 时,)(X D 取得最大值. 6、 设Y X ,为随机变量,0)()(==Y E X E ,2)()(22==Y E X E ,X 与Y 的相关系数21=XY ρ ,那么=+2)(Y X E _________。

7、 设随机变量X 和Y 的相关系数为0.9,假设12-=X Z ,那么Y 与Z 的相关系数为_________。

8、 设随机变量Y X ,相互独立,其中X 在[-2,4]上服从均匀分布,Y 服从参数为3的泊松分布,那么)2(Y X D -= 。

9、 621,,,X X X 为来自正态总体)1,0(N 的简单随机样本,设26542321)()(X X X X X X Y +++++=假设使随机变量CY 服从2χ分布,那么常数=C 。

10、 设总体)9.0,(~2μN X ,样本容量为9,样本均值5=x ,那么未知参数μ的95%的置信区间是_________。

11、设总体),(~2σμN X ,2σ,要使μ的置信度为α-1)10(<<α且置信区间的长度不大于l ,那么样本容量≥n 。

12、设总体),(~2σμN X ,2σ未知,2,S X 分别为样本均值和样本方差,样本容量为n ,检验00:μμ=H ,01:μμ≠H (0μ)的双侧拒绝域=W ___________。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

《概率论与数理统计》复习题(附答案)

《概率论与数理统计》复习题(附答案)

概率练习题附答案06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________. 2. 设事件A 、B 、C 构成一完备事件组,且()0.5,()0.7,P A P B ==则()P C =3. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.4. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___5. 设),3(~),,2(~p B Y p B X ,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】 (A) 2; (B)12; (C) 3; (D) 13. 3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ; ()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】 ()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ; ()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx e e Ax f -+=)(,求:(1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y 的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P >.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x 求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。

概率论与数理统计历年考研试题-知识归纳整理

概率论与数理统计历年考研试题-知识归纳整理

第3章 数字特征1. (1987年、数学一、填空)设随机变量X 的概率密度函数,1)(122-+-=x x e x f π则E(X)=( ),)(X D =( ).[答案 填:1;21.]由X 的概率密度函数可见X~N(1,21),则E(X)=1,)(X D =21.2. (1990年、数学一、填空)设随机变量X 服从参数为2的泊松分布,且Z=3X-2, 则E(X)=( ). [答案 填:4]3. (1990年、数学一、计算)设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求:(1)对于X 的边缘密度函数;(2)随机变量Z=2X+1的方差。

解:(1)由于D 的面积为1,则(X,Y)的联合密度为⎩⎨⎧<<<=0,x |y |1,x 1 ,1),(其他y x f当0<x<1时,x dy dy y x f x f xxX21),()(===⎰⎰-+∞∞-,其他事情下0)(=x f X.(2)322)( )(1=⋅==⎰⎰∞+∞-xdx x dx x f x X E X 212)( )(1222=⋅==⎰⎰∞+∞-xdx x dx x f x X E X 181))(()(22=-=X E EX X D4. (1991年、数学一、填空)设X~N(2,2σ)且P{2<X<4}=0.3,则P{X<0}=( )。

[答案 填:知识归纳整理0.2]3.0212)0(2220}42{=-⎪⎭⎫ ⎝⎛Φ=Φ-⎪⎭⎫ ⎝⎛Φ=⎭⎬⎫⎩⎨⎧<-<=<<σσσσX P X P即8.02=⎪⎭⎫⎝⎛Φσ,则2.021222}0{=⎪⎭⎫⎝⎛Φ-=⎪⎭⎫⎝⎛-Φ=⎭⎬⎫⎩⎨⎧-<-=<σσσσX P X P 5. (1992年、数学一、填空)设随机变量X 服从参数为1的指数分布,则=+-)(2X e X E ( ).[答案 填:34]6. (1995年、数学一、填空)设X 表示10次独立重复射击命中目标的次数且每次命中率为0.4,则2EX =( )。

概率与数理统计历年考研试题及解答(数一、数三、数四).

概率与数理统计历年考研试题及解答(数一、数三、数四).

概率与数理统计历届真题第一章 随机事件和概率数学一:1(87,2分) 设在一次试验中A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为 ;而事件A 至多发生一次的概率为 。

2(87,2) 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球。

现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。

已知取出的球是白球,此球属于第二个箱子的概率为 。

3(88,2分)设三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率为。

4(88,2分)在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为。

5(89,2分) 已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B | A )=0.8,则和事件A B 的概率P (A B )= 。

6(89,2分) 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为。

7(90,2分)设随机事件A ,B 及其和事件A B 的概率分别是0.4, 0.3和0.6,若B 表示B 的对立事件,那么积事件A B 的概率P (A B )=。

8(91,3分)随机地向半圆0<y <22x ax -(a 为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比。

则原点与该点的连线与x 轴的夹角小于4π的概率为 。

9(92,3分)已知P (A )=P (B )=P (C )=161)()(,0)(,41===BC P AC P AB P ,则事件A 、B 、C 全不发生的概率为 。

10(93,3分) 一批产品有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 。

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案
这篇文档将提供一系列概率论与数理统计的复题和答案。

以下是一些例题,供您练和巩固知识。

1. 一个骰子投掷三次,计算以下事件的概率:
- A:至少有一次出现6点
- B:三次投掷的和为18点
答案:
- A的概率 = 1 - (5/6) * (5/6) * (5/6) = 91/216
- B的概率 = 1/6 * 1/6 * 1/6 = 1/216
2. 一批商品的质量服从正态分布,均值为80,标准差为5。

从中随机取一件,计算以下事件的概率:
- A:质量在75到85之间
- B:质量小于70
答案:
- A的概率 = P(75 < X < 85),其中X服从均值为80,标准差为5的正态分布,可通过查表或计算得到概率值。

- B的概率 = P(X < 70),同样需要查表或计算。

3. 在某次调查中,有50%的受访者表示会购买某个产品。

从100位受访者中随机选择10人,计算以下事件的概率:- A:恰好有5人表示会购买该产品
- B:至少有8人表示会购买该产品
答案:
- A的概率 = C(10, 5) * (0.5)^5 * (0.5)^5 = 0.2461,其中C为组合数。

- B的概率 = P(X >= 8),其中X服从二项分布,可通过计算得到概率值。

这些复习题可以帮助您巩固概率论与数理统计的知识。

建议您自行尝试计算答案,并对比参考答案进行学习。

祝您学习顺利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计复习题一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。

现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。

解:设A 1,A 2,A 3分别表示产品由甲、乙、丙车间生产,B 表示产品不合格,则A 1,A 2,A 3为一个完备事件组。

P(A 1)=1/2, P(A 2)=1/3, P(A 3)=1/6, P(B | A 1)=0.08,P(B | A 2)=0.09,P(B | A 3)=0.12。

由全概率公式P(B) = P(A 1)P(B | A 1)+ P(A 2)P(B | A 2)+ P(A 3)P(B | A 3) = 0.09 由贝叶斯公式:P(A 1| B)=P(A 1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4% 。

若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少? 【 0.4 】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求: (1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率。

解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品} (1)P(1B )=P(1A )P(1B |1A )+P(2A )P(1B |2A )=52301821501021=+ (2)P(1B 2B )=194.02121230218250210=+C C C C ,则P(2B |1B )=)()(121B P B B P = 0.485 二、连续型随机变量的综合题例:设随机变量X 的概率密度函数为⎩⎨⎧<<=others x x x f 020)(λ求:(1)常数λ;(2)EX ;(3)P{1<X<3};(4)X 的分布函数F(x) 解:(1)由⎰⎰==∞+∞-21)(xdx dx x f λ得到λ=1/2(2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P(4)当x<0时,⎰∞-==xdt x F 00)(当0≤x<2时,⎰⎰⎰∞-∞-=+==xx x tdt dx dt t f x F 0241210)()( 当x ≥2时,F (x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)(且E(X)=7/12。

求:(1)a , b ;(2)X 的分布函数F(x)练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤=othersx x x f 0102)(求:(1)X 的分布函数F(x) ;(2)P{0.3<X<2}三、离散型随机变量和分布函数 例:设X 的分布函数F (x)为:⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=31318.0114.010)(x x x x x F , 则X 的概率分布为( )。

分析:其分布函数的图形是阶梯形,故x 是离散型的随机变量[答案: P(X=-1)=0.4,P(X=1)=0.4,P(X=3)=0.2.]练习:设随机变量X 的概率分布为P(X=1)=0.2,P(X=2)=0.3,P(X=3)=0.5,写出其分布函数F(x)。

[答案:当x <1时,F(x)=0; 当1≤x <2时,F(x )=0.2; 当2≤x <3时,F(x)=0.5;当3≤x 时,F(x )=1 四、二维连续型随机向量例:设X 与Y 相互独立,且X 服从3=λ的指数分布,Y 服从4=λ的指数分布,试求: (1)),(Y X 联合概率密度与联合分布函数;(2))1,1(<<Y X P ; (3)),(Y X 在{}343,0,0),(<+>>=y x y x y x D 取值的概率。

解:(1)依题知⎩⎨⎧>=-其他,00,3)(3x e x f x X ⎩⎨⎧>=-其他,00,4)(4y e y f y Y 所以),(Y X 联合概率密度为⎩⎨⎧>>=--其他,00,0,12),(43y x e y x f y x 当0,0>>y x 时,有)1)(1(12),(43043y x x ys t e e ds e dt y x F ------==⎰⎰所以),(Y X 联合分布函数⎩⎨⎧>>--=--其他,0;0,0),1)(1(),(43y x e e y x F y x (2))1)(1()1,1()1,1(43----==<<e e F Y X P ;(3)()314330434112),(-----==∈⎰⎰e dy e dx D Y X P x y x练习:设二元随机变量(X ,Y )的联合密度是⎪⎩⎪⎨⎧>>=+-others y x e y x f y x 00,025001),()(501求:(1)关于X 的边缘密度函数f X (x);(2)P{X ≥50,Y ≥50}五、二维离散型随机向量设随机变量X 与Y 相互独立,下表列出了二维随机向量(X,Y)的联合分布律及关于X 和关于Y 的边缘分布律中的部分数值,试将其他数值填入表中的空白处。

161818121321ji p x x p y y y XY ⋅⋅[ 答案:131216143418381411218124121321ji p x x p y y y X Y ⋅⋅]六、协差矩阵例:已知随机向量(X,Y )的协差矩阵V 为⎪⎪⎭⎫⎝⎛=9664V计算随机向量(X +Y , X -Y )的协差矩阵解:DX=4, DY=9, COV(X,Y)=6D(X +Y)= DX + DY +2 COV(X,Y)=25D(X-Y) = DX + DY -2 COV(X,Y)=1 COV (X +Y, X -Y )=DX-DY=-5 故(X +Y, X -Y )的协差矩阵⎪⎪⎭⎫⎝⎛--15525练习:随机向量(X,Y )服从二维正态分布,均值向量及协差矩阵分别为⎪⎪⎭⎫⎝⎛=21μμμ⎪⎪⎭⎫⎝⎛=22212121σσσρσσρσV 计算随机向量(9X +Y , X -Y )的协差矩阵 解:E(9X+Y)= 9EX+ E Y =9μ1+μ2 E(X -Y)= EX -E Y =μ1-μ2D(9X +Y)=81DX + DY +18 COV(X,Y)=81σ12+18ρσ1σ2+σ22 D(X -Y)= DX + DY -2 COV(X,Y)=σ12-2ρσ1σ2+σ22COV (9X +Y, X -Y )=9DX-DY -8 COV(X,Y)= 9σ12-8ρσ1σ2-σ22 然后写出它们的矩阵形式(略)七、随机变量函数的密度函数例:设X ~U (0,2),则Y =2X 在(0,4)内的概率密度=)(y f Y ( )。

[答案 填:y41]解:X ~U (0,2) 1,02()20,x f x others ⎧≤≤⎪∴=⎨⎪⎩,2(){}{}{()Y F y P Y y P X y P X f x dx =≤=≤=≤≤=,求导出=)(y fY (X X f f -=y41 (04y <<)练习:设随机变量X 在区间[1,2]上服从均匀分布,求Y=Xe 2的概率密度f(y)。

[答案:当42e y e ≤≤时,f(y)=y21,当y 在其他范围内取值时,f(y)=0.] 八、中心极限定理例:设对目标独立地发射400发炮弹,已知每一发炮弹地命中率等于0.2。

请用中心极限定理计算命中60发到100发的概率。

解:设X 表示400发炮弹的命中颗数,则X 服从B(400,0.2),EX=80,DX=64,由中心极限定理:X 服从正态分布N(80,64)P{60<X<100}=P{-2.5<(X-80)/8<2.5}=2φ(2.5)-1=0.9876练习:袋装食盐,每袋净重为随机变量,规定每袋标准重量为500克,标准差为10克,一箱内装100袋,求一箱食盐净重超过50250克的概率。

九、最大似然估计例:设总体X 的概率密度为⎩⎨⎧<<+=其他,010,)1()(x x x f θθ其中未知参数θ1->,n X X X ,,21是取自总体的简单随机样本,用极大似然估计法求θ的估计量。

解:设似然函数),,2,1;10()1()(1n i x x L i ni i=<<+=∏=θθθ对此式取对数,即:∑=++=ni i x n L 1ln )1ln()(ln θθθ且∑=++=ni i x nd L d 1ln 1ln θθ令,0ln =θd L d 可得∑=--=ni ixn1ln 1ˆθ,此即θ的极大似然估计量。

例:设总体X 的概率密度为)0,0(,0,00,)(1>>⎪⎩⎪⎨⎧≤>=--a x x e ax x f ax a λλλ据来自总体X 的简单随机样本),,,(21n X X X ,求未知参数λ的最大似然估计量。

解:由⎪⎩⎪⎨⎧≤>=--0,00,)(~1x x e ax x f X ax a λλ得总体X 的样本),,,(21n X X X 的似然函数 ∑∑∑=-=-=--==ni a i n i ai nx ni a in x x a eaxx x x L ai 1111121]ex p[)(),,,,(λλλλλ再取对数得:∑∑==-+-=ni i ni a ix a xa n L 11)ln()1()ln(ln λλ再求L ln 对λ的导数:∑=-=n i ai x a an d L d 1ln λλ 令0ln 1=-=∑=n i ai x a an d L d λλ,得∑==ni a ixn1λ所以未知参数λ的最大似然估计量为∑=ni a ixn1。

练习:设总体X 的密度函数为)0(010),(1⎩⎨⎧><<=-ααααothersx x x fX 1,X 2,…,X n 是取自总体X 的一组样本,求参数α的最大似然估计十、区间估计总体X 服从正态分布N (μ,σ2), X 1,X 2,…,X n 为X 的一个样本 1:σ2已知,求μ的置信度为1-α置信区间2:σ2未知,求μ的置信度为1-α置信区间3:求σ2置信度为1-α的置信区间例:设某校学生的身高服从正态分布,今从该校某班中随机抽查10名女生,测得数据经计算如下:43.18,67.1622==s x 。

相关文档
最新文档