静定结构位移计算练习题

合集下载

第六章静定结构位移计算习题

第六章静定结构位移计算习题

静定结构位移计算试题一、是非判断:1.变形体虚功原理仅适用于线弹性体系,不适用于非线弹性体系。

( ) 2.虚功中的力状态和位移状态是彼此独立无关的,这两个状态中的任何一个都可看作是虚设的。

( ) 3.功的互等定理仅适用于线弹性体系,不适用于非线弹性体系。

( ) 4.位移反力互等定理对线弹性的静定结构和超静定结构均适用。

( ) 5.图1-5(a)、(b)各杆EA 相同,则两图中C 点的竖向位移相等。

( )题1-5图 题1-6图6.如图题1-6所示斜梁EI =常数,则截面A 的转角EIql A 243=ϕ(顺时针)。

( ) 7.图题1-7(a)、(b) 各杆EA 相同,则两图中C 点的竖向位移相等。

( )题1-7图8.M P 图、M 图1-8(a)、(b)所示,EI=常数。

下列图乘结果是正确的:)85323221(1l al l al EI CH ⨯+⨯=∆。

( )题1-8图 9.图题1-9中,下列图乘结果是正确的:)31(1))(31(132221111y b l EI y b a l y b l EI ⨯+⨯-+⨯。

( )10.图1-10中,下列图乘结果是正确的:)85323221(1d bc d ac EI ⨯+⨯。

( )11.对于静定结构,没有内力就没有变形。

( ) 12.对于静定结构,没有变形就没有位移。

( )13.用单位荷载法计算结构位移时,用于计算外力虚功的广义力是虚设的广义单位力,而相应的广义位移是拟求的实际位移。

( )q(a)(b)l a aqABP (b)M 图题1-9图 题1-10图14.如果结构是由线弹性材料制成的,但在有温度变化的情况下,功的互等定理不成立。

( ) 二、填空1.虚功原理有两种不同的应用形式,即 原理和 原理。

其中 原理等价于变形协调条件。

2.位移计算时,虚拟广义单位力的原则是使外力虚功的值恰好等于 值。

3.用图乘法计算梁和刚架位移的适用条件是 。

4.如图2-4所示结构支座A 下沉a ,支座B 向右移动b ,则结点C 、D 的相对转角为 。

典型例题解析-_静定结构位移计算

典型例题解析-_静定结构位移计算

第5章 静定结构位移计算§5 – 1 基本概念5-1-1 虚拟单位力状态构造方法●虚拟单位力状态构造方法:(1)去掉所有荷载重画一个结构; (2)标出所求位移矢量;(3)该矢量变成单位力,即得虚拟单位力状态。

如图3-1a 刚架求C 点竖向位移CV ∆和C 截面转角C ϕ,图3-1b 和图3-1c 为求相应位移所构造的虚拟单位力状态。

5-1-2 位移计算公式虚拟单位力作用下,引起的内力和支座反力:N Q ,,,Ri F M F F实际荷载作用下,引起的内力:NP P QP ,,F M F●位移计算一般公式N Q Ri i F du Md F ds F c ∆ϕγ=++-∑∑∑∑⎰⎰⎰●荷载作用产生位移的计算公式Q N QP NP Pk F F F F M M ds ds ds EA EI GA∆=++∑∑∑⎰⎰⎰ 1、梁或刚架结构 PM M ds EI∆=∑⎰ 2、桁架结构 N NPF F ds EA∆=∑⎰图3-1虚拟单位力状态)a ()b ()c (2 结构力学典型例题解析3、混合结构N NP PF F MM ds ds EA EI∆=+∑∑⎰⎰ ●支座移动引起位移计算公式Ri i F c ∆=-∑●温度引起位移计算公式()N 0tF t dx Mdx hα∆∆α=+±∑∑⎰⎰()N 0Mtt lF A hα∆∆α=+±∑∑式中:0,,t t α∆为线膨胀系数形心温度温差,h 截面高度M A 虚拟状态弯矩图面积●有弹性支座情况的位移计算公式()P RPR 0RPR M M Fds F EI kAy F F EI k∆=+⨯±=+⨯∑∑⎰∑∑5-1-3 图乘法图乘法公式:0P()Ay MM dx EI EI±∆==∑∑⎰图乘法公式条件:●等截面直杆且EI=常数 ●求 y 0图形必须为一条直线 正负号确定:面积A 与y 0同侧取“+”号注意:求面积的图形要会求面积和形心位置。

结构力学静定结构位移计算习题解答

结构力学静定结构位移计算习题解答

6-1 求图示桁架AB 、AC 的相对转角,各杆EA 为常量。

解:(1)实状态桁架各杆的轴力如图(b )所示。

(b)(a)N(d )(c)题6-1N N(2)建立虚设单位力状态如(c )所示,求AB 杆的转角。

1113(2)82i P iAB i i P a P a P a N N l P a a a E A EA EA EA EAϕ⋅⋅⋅⋅-⋅-⋅⋅⋅==++⨯=∑(↺)(3)建立虚设单位力状态如(d )所示,求AC 杆的转角。

113(2)()(72i P i AC i iP a P a N N lPa a E A EA EA EAϕ⋅⋅⋅-⋅-⋅⋅==+⨯=∑(↺)故,AB 、AC 的相对转角为两杆转角之差:8(7(10.414AB AC P P P PEA EA EA EAϕϕϕ+-=-=-==-(夹角减小)6-2 求半圆曲梁中点K 的竖向位移。

只计弯曲变形。

EI 为常数。

方法一 解:(1)荷载作用下的实状态的约束反力如图(a )所示。

以任意半径与水平坐标轴的顺时针夹角为自变量,其弯矩方程为:sin (0)P M θθπ=-≤≤Pr(2)建立虚设单位力状态如(b )所示,其弯矩方程为:[]1cos )(0)2211cos()cos )()222i M πθθππθθθπ⎧≤≤⎪⎪=⎨⎪-=≤≤⎪⎩(r -r r -r (r +r(a)题6-2(3)积分法求半圆曲梁中点K 的竖向位移。

20233220022311cos )(sin )cos )(sin )2211cos )sin cos )sin sin sin 2)sin sin 2)2222cos 2i V Pk Pr Pr M M ds rd rd EIEI EI Pr Pr d d d d EI EI Pr EI πππππππππθθθθθθθθθθθθθθθθθθθ⋅-⋅-⋅∆==+⎡⎤⎡⎤=-⋅+⋅=-+⋅⎢⎥⎢⎥⎣⎦⎣⎦=-∑⎰⎰⎰⎰⎰⎰⎰(r -r (r +r (-(+(-(+(-11320211cos 2)cos cos 2)442Pr EI πππθθθ⎡⎤⎢⎥+-+=-↑⎢⎥⎣⎦()( 方法二:本题也可以只算纵向对称轴左边,再乘2。

静定结构的位移计算

静定结构的位移计算

第4章
二、单位荷载法
1、定义:应用虚力原理,通过加单位力求实际位移的方法。 2、计算结构位移的一般公式
PK=1 RK
1
RK RK3
2
( a , a , a , Ca )
位移状态
RK
4
(M K ,Q K , N K , RK )
虚力状态
对上述两种状态应用虚功原理:
1 Ka R K 1 C a1 R K 2 C a 2 M K a ds Q K a ds N K a ds
P/2
P/2
c
c
CV
4、结构的动力计算和稳定分析中,都常需计算结 构的位移。
第4章
三、计算位移的有关假定
2、小变形假设。变形前后荷载作用位臵不变。 3、结构各部分之间为理想联结,不计摩擦阻力。 4、当杆件同时承受轴力与横向力作用时, 不考虑由于杆 弯曲所引起的杆端轴力对弯矩及弯曲变形的影响。
ω1
ω2
MP图
1 Δ (ω1 y1 ω2 y2 ) EI
第4章
3、当杆件为变截面时亦应分段计算; y1
EI1
y2
EI 2
MK图
ω1
EI1
ω2
EI 2
MP图
1 1 Δ ω1 y1 ω2 y2 EI1 EI 2
第4章
4、图乘有正负之分:弯矩图在杆轴线同侧时,取正号; 异侧时,取负号。

13860 0.0924m( ) EI
第4章
例题 试求左图所示刚架C点的竖向位移AV和转角C。 EI 1.5 105 KN m 2 各杆材料相同,截面抗弯模量为:
MB A
力状态(状态1)

第七章结构的位移计算

第七章结构的位移计算

第七章结构的位移计算一、是非题1. 温度改变,支座移动和制造误差等因素在静定结构中引起内力。

( )2. 虚功中的力状态和位移状态是彼此独立无关的.这两个状态中的任意一个都可看作是虚设的( )3. 在小变形条件下,结构位移计算和变形位能计算均可应用叠加原理。

( )4. 变形体的虚功原理仅适用于线弹性体系,不适用于非线弹性体系。

( )5. 图示结构EI=常数,求K点的竖向位移时,由图乘法得:()6. 图示梁的跨中挠度为零。

( )7. 对于静定结构,没有内力就没有变形()8. 对于静定结构,没有变形就没有位移()9. 用单位载荷法计算结构位移时,勇于计算外力虚功的广立力是虚设的广义单位力,而相应的广义位移是拟求的实际位移()10. 如果结构是由线弹性材料制成的,但在温度变化的情况下,功的互等定理不成立()11. 竖向荷载P分别作用于A点和B点时。

B点产生的竖向位移是不同的。

( )12.变形体体系虚功方程推导过程中,微元体上外力的刚体位移总虚功为零,是基于变形协调条件()13. 图(a)和图(b)两弯矩图图乘结果为()14.功的互等定理、位移互等定理、反力互等定理只适用于线弹性体系。

〔 )15.计算静定结构由于温度改变引起的位移时,不计剪切变形项是由于剪力较小。

( )二、填空题1. 图示桁架各杆EA相同,C点承受水平荷载P后,则CA和CB杆的夹角的改变量为______。

2. 图示刚架中,C、D两点的相对线位移等于______,两点距离______。

3. 虚功原理有两种不同的应用形式,即___________原理和_____________原理,其中_____________原理等价于变形协调条件。

4. 应用图乘法求杆件结构的位移时,各图乘的杆段必须满足如下三个条件:_________;_________;_________5. 结构与荷载如图所示,各杆EI相同,铰C处的竖向位移为________6. 图示刚架C点的竖向位移求得为,如各杆刚度EI减小一倍,C点的竖向位移为_________。

第6章 静定结构位移计算

第6章 静定结构位移计算

二、 单位荷载法 1、定义:在所求点所在位移方向加上单位 力,将实际状态的真实位移视作虚拟平衡状态的 虚位移。应用虚功原理,通过加单位荷载求实际 位移的方法。 2、计算结构位移的一般公式
F K+ FRiCi= M d + FNdu + FQdv
式中, F =1 则
六.线弹性体系的特征 1)结构的变形与其作用力成正比
若单位力P1=1作用下产生
的位移δ ,则力P作用下在 K处产生的位移为Pδ
2)结构的变形或位移服从叠加原理
P1
P2
Pi
K Δ
Pn
δ K i 表示Pi=1时 在K处产生的位移。
Δ= P1 K 1 P2 K 2 Pn Kn
P
i i 1
n
Ki
6.2 变形体系的虚功原理 一、变形体的虚功原理 功:力对物体作用的累计效果的度量。 功=力×力作用点沿力方向上的位移 实功 :力在自身引起的位移上所作的功 静力荷载:荷载由零逐渐以微小的增量缓慢地增加 到最终值。结构在静力加载过程中,荷载及内力始 终保持平衡。
虚功: 力在其他因素引起的位移上作的功 其特点是位移与作功的力无关,在作功的过程 中,力的大小保持不变 梁弯曲后,再在点2处加静力荷载FP2,梁产生新 的弯曲。位移△12为力FP2引起的FP1的作用点沿FP1 方向的位移。力FP1在位移△12 上作了功,为虚功, 大小为 W12=FP1△12,此时力不随位移而变化,是 常力。
单位广义力有截然相反的两种设向,计算出的 广义位移则有正负之分: 正值表示广义位移的方向与广义力所设的指向相同 负值表示广义位移的方向与广义力所设的指向相反
力的虚设方法
Fp=1 C Fp=1 B C

第四、五、六章练习题答案

第四、五、六章练习题答案
13.图3-18所示结构Qc影响线的CD段为斜直线。(×)
图3-18
14.利用影响线,求得结构在图3-20所示荷载作用下,C截面的剪力等于-20kN。(×)
15.结构的附属部分某截面某量值的影响线在基本部分的影响线竖标为零。(√)
第六章力法
1.超静定结构中有几个多余约束就有几个建立力法方程的变形条件。(√)
7.图3-14a所示梁的剪力图,竖标 是截面C左的剪力值,图3-14b是截面C的剪力影响线,竖标- 也是表示在移动荷载作用下截面C左的剪力值。(×)
图3-14
8.图3-15b可以代表图3-15a所示梁EF段任意截面的剪力影响线。(√)
图3-15
9.任何静定结构的支座反力、内力影响线,军事有一段或是数段直线组成。(√)
2.力法方程中的主系数的符号在任何情况下都取正值。(√)
3.把超静定结构的基本未知力求出来后,画最后内力图时,实际上是在画静定结构的内力图。(√)
4.图5-14所示超静定结构当支座A发生位移时,构建CD不会产生内力。(√)
图5-14
5.对图5-15(a)所示超静定刚架,若进行内力分析时采用5-15b所示的基本结构,并画出了最后的内力图,当计算C点的竖向位移时可选用图5-15 C所示的基本结构。(√)
2.剪力的结构包络图表示梁在已知荷载作用下各截面剪力可能变化的极限范围。(√)
3.静定桁架的影响线在结点之间必是一条直线。(√)
4.下图3-10所示两根梁的MC影响线不相同。(×)
图3-10图3-11
5.同4题图所示两根梁的QC影响线不相同。(√)
6.图3-11所示单位荷载在AB区间移动,绘制界面C的某内力影响线时,也应限制在AB区间内。(√)
10.静定梁某截面弯矩的临界荷载位置一般就是最不利荷载位置。(×)

结构力学5-6静定结构在非荷载因素作用下的位移计算

结构力学5-6静定结构在非荷载因素作用下的位移计算
F
N

⑵作单位荷载作用下的轴力图和弯矩图。 ⑶求D点竖向位移。

yD
10
2
2
20
2a 10
1 2 a a 2
1 2
a
20 0 .1 5 a

0 .1 5 a



1 2
a
2
M 图
2 5 a ( )
Kt

t0 A
F

N

பைடு நூலகம்
t
§5-6 静定结构在非荷载因素作用下的位移计算
5-6-1 由于温度变化、制造误差等引起的位移
中 性 轴 处 温 度 变 化 : t0 h1 t 2 h 2 t 1 h
截 面 对 称 于 中 性 轴 时 : t0
t1 t 2 2
杆 件 上 下 侧 温 度 变 化 之 差 : t t 2 t1
F P i ii
§5-7 线性弹性体的互等定理 5-7-1 功的互等定理 5-7-2 位移互等定理
F Pi
ij
F Pj
ji
ji
ij
1
ij
1
ji
5-7-3 反力互等定理
r ji r ij
rii 0 r ji 1 rij 1 r jj 0
§5-7 线性弹性体的互等定理 5-7-1 功的互等定理 5-7-2 位移互等定理
F Pi
ij
F Pj
ji
ji
ij
5-7-3 反力互等定理 5-7-4 反力与位移互等定理
r ji r ij r ji ij
r ji 1 1 ij 0

结构力学-静定结构位移计算

结构力学-静定结构位移计算
↓↓↓↓↓↓↓↓↓↓↓↓↓
80
32
3m
求图示刚架C铰左右两截面的 相对转动。EI=5×104kN.m
1
m=1
5/8
5m
MP
16
16
M
4m
4m
H
=
M0 C
= 1682
=16kN
f 88
1/8
1/8
H
=
M0 C
=
1m
f8
D
C
=
2 5104
580 2
2 3
5 8
+
580 2
2 3
5 8
+
1 3
-
2532 3
(1)同一结构可用不同的方式撤除多余约束但其超静定次数相同。
X1
X1
X3
X1
X2
X3
X3
X2
X1
X2
X3
(2)撤除一个支座约束用一个多余未知力代替, 撤除一个内部约束用一对作用力和反作用力代替。
(3)内外多余约束都要撤除。 (4)不要把原结构撤成几何
可变或几何瞬变体系
4
3
5 1
外部一次,内部六次 共七次超静定
1
2
不撤能除作支为杆1多后余体系约成束为的瞬变是杆1、2、 5
§9.2 力法的基本概念
1、超静定结构计算的总原则: 欲求超静定结构先取一个基本体系,然后让基本体系在受力方
面和变形方面与原结构完全一样。 力法的特点: 基本未知量——多余未知力; 基本体系——静定结构; 基本方程——位移条件——变形协调条件。
ql 2 8
5 8
l 4
2
+
l-x

结构力学 静定结构的位移计算1

结构力学 静定结构的位移计算1
结构发生虚位移的状态和结构承受外力的状态是两个独立 的状态。分别称为结构的位移状态和力状态
P
A
3.位移计算的一般公式
设:结构受荷载的作用, 及支座移动,求A点的竖 向位移。
W外=W变
外力所作的虚功总和W外,等于 各微段截面上的内力在其虚变 形上所作的虚功的总和W变 。
1)位移状态的设定 q
P A
dx
a) 若求结构上C点的竖向位移,
2) 若求结构上截面A的角位移,可在截面处加一单位力矩。
若求桁架中AB杆的角位移,应 加一单位力偶,构成这一力 偶的两个集中力的值取 1/d。 作用于杆端且垂直于杆(d等 于杆长)。
3) 若要求结构上两点(A、B)沿其连线 的相对位移,可在该两点沿其连线 加上两个方向相反的单位力。
A
2)作 M 图 P=1
A C
1.5 M1 图
B 2m
6
B
B
D
66
A
BB
D
9
1
CV
1 1 61.5 3
EI 2

2 2 3 9 5 1.5
EI 3
8
189
=
(向下)
4EI
2)作 M 图
A
BD
6 6
M2 图
A
BB
D
9
1
D

1 EI

一、概述
1.位移的种类
1) 角位移:杆件横截面产生的转角 2) 线位移:结构上各点产生的移动 3) 相对位移(相对角位移,相对线位移)

Δ A
θ
(A截面的转角θ )
(A结点的水平线 位移Δ,转角θ)

ΔA A

静定结构的位移计算

静定结构的位移计算
1)欲求一点的线位移,加一个单位集中力
2)欲求一处的角位移,加一个单位集中力偶
3)欲求两点的相对线位移,在两点的连线上加 一对指向相反的单位集中力
4)欲求两处的相对角位移,加一对指向相反 的单位集中力偶
5)欲求桁架某杆的角位移在杆的两端加一对 平行、反向的集中力,两力形成单位力偶。力 偶臂为d ,每一力的大小为1/d
在小变形条件下, 12由图示的原始形状、尺
寸计算,并称此状态为虚功计算的位移状态。与 之相应, FP1单独作用的状态 为虚功计算的力状 态。
当力状态的外力在位移状态的位移上作外力虚功 时,力状态的内力也在位移状态各微段的变形上 作内力虚功。
根据功和能的原理可得变形体的虚功原理: 任何一个处于平衡状态的变形体,当发生任 意一个虚位移时,变形体所受外力在虚位移 上所作虚功的总和,等于变形体的内力在虚 位移的相应变形上所作虚功的总和。
定的施工措施,因而也需要进行位移计算。
1.2 结构位移计算的一般公式
一、变形体的虚功原理 功:力对物体在一段路程上累积效应的量度,
也是传递和转换能量的量度 实功 :力在自身引起的位移上所作的功
当静力加载时,即: FP1由0增加至FP1
11 由0增加至 11
力Fp1在位移
11
上作的实功
W11=
1 2
虚功原理也可以简述为: “外力的虚功等于内力的虚变形功”。
二、 单位荷载法
1、定义:应用虚功原理,通过加单位荷 载求实际位移的方法。
2、计算结构位移的一般公式
F
K+
FRiCi= M
d +
F
N
du
+
F
Q
dv
式中, F =1 则

第4章 静定结构的位移计算

第4章 静定结构的位移计算
在荷载作用下,应变 κ、γ 0、ε 与内力 MP、F 、 QP FNP 的关系式如下:(式中k为剪应力不均匀系数)
MP κ= EI
γ0 =
kF QP GA
FNP ε= EA
上式适用的条件是:小变形,材料服从虎克定 律,即体系是线性弹性体。
kF FNP MP QP 1⋅∆ = ∑∫ M ds + ∑∫ F ds + ∑∫ FN ds Q EI GA EA
条件:1)存在两种状态: 第一状态为作用有平衡力系; 第二状态为给定位移及变形。 以上两种状态彼此无关。 2)力系是平衡的,给定的变形是符合 约束条件的微小连续变形。 3)上述虚功原理适用于弹性和非弹性 结构。 下面讨论W及V的具体表达式。
q(s) q(s)ds
FP 2
ds
FP 3
ds
C1
FR1
M
FN
A
FR2
FN
A
FR1
F ds F Q Q
给定位移、变形
虚设平衡力系
2. 位移计算一般公式 外力虚功 W = 1 ⋅ ∆ CV + ∑ FRK C K
K
内虚功
V = ∑ ∫ (Mκ + FQγ 0 + FN ε )ds
K
所求位移 1⋅∆CV = ∑∫(Mκ + FQγ 0 + FNε )ds − ∑FRKCK 3. 小结 1) 、Q、N、 RK ——单位载荷 FP1 =1在结构中产 MF F F 生的内力和支座反力, ds、γ 0ds、εds、C1、C2及 κ ∆CV ——给定的位移和变形。力和位移无关。
i K
微段ds的内虚功dV: dV = Mdθ + FQdη + FN dλ = Mκ ds + FQγ 0ds + FNε ds

静定结构位移计算典型例题(附详细解题过程)

静定结构位移计算典型例题(附详细解题过程)

静定结构的位移计算——典型例题【例1】计算如图1(a)所示梁结构中跨中C 点的竖向位移,已知EI 为常数。

【解】方法一:(积分法)(1)荷载作用的实际状态以及坐标设置如图6-8(a),其弯矩方程为:(2)虚设单位力状态,以及坐标设置如图6-8(b),其弯矩方程为:(3)积分法求跨中的竖向位移图1方法二:图乘法(1)荷载作用的实际状态,其弯矩图如图1(c)所示; (2)虚设单位力状态,其弯矩图如图1(d)所示; (3)图乘计算跨中竖向位移【例2】计算如图2(a)所示半圆曲梁中点C 的竖向位移,只考虑弯曲变形。

已知圆弧半径为R ,EI 为常数。

CV ∆21102211112222P qlx x l M qlx q x l l x l ⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎛⎫⎪--<≤ ⎪ ⎪⎪⎝⎭⎝⎭⎩1021122x x l M l l x l ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪<≤ ⎪⎪⎝⎭⎩24/20/211111113()22222232l l P CVl MM ql ds x qlxdx l qlx q x l dx EI EI EI EI ⎡⎤⎛⎫∆==⨯⨯+⨯⨯--=↓⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎰⎰⎰4222211112111311121113()222432284223232232cPCV A y MM ds EI EI ql l ql l ql ql l l l ql l EI EI EI ω∆==⎡⎤⎛⎫⎛⎫=⨯⨯⨯⨯+⨯+⨯⨯+⨯⨯⨯=↓ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑⎰CV ∆图2【解】(1)实际荷载作用下,以任意半径与x 轴的顺时针夹角θ为自变量(图2a ),弯矩方程为(截面内侧受拉为正):(2)虚设单位荷载状态如图2(b)所示,其弯矩方程为:(3)积分法求跨中的竖向位移【例3】如图3(a)所示梁的EI 为常数,在荷载F 作用下测得结点E 的竖向位移为9mm (向下),求截面B 处的角位移。

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M k M p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

ql15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/219、求图示结构A、B两截面的相对转角,EI=常数。

l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。

ll21、求图示结构B点的竖向位移,EI = 常数。

静定结构的位移计算—静定结构在支座移动时的位移计算(建筑力学)

静定结构的位移计算—静定结构在支座移动时的位移计算(建筑力学)

F RBx
2h
1
1

A F R c 0.06 0.04 rad 0.0075 rad
2h
l

()
静定结构的位移计算
例16-11 图示桁架各杆EA相同,支座B发生竖向位移
c=0.5cm,求c点的水平位移△CH。
解:建立虚拟状态,并计算由于水平单位力作用.5cm 0.5cm
由于实际状态中取出的微段ds的变形du=0、d=0、
dv=0 ,于是上式可简化为:
K F R c
式中F R — —虚拟状态的支座反力;
c ——实际状态的支座位移。
静定结构的位移计算
K F R c
注意:当虚设状态的反力和支座位移c方向一致时,其
乘积取正,相反时为负。另外,上式右边前面还有一负号
静定结构的位移计算
第六节 静定结构在支座移动时的位移计算
对于静定结构,支座移动并不产生内力和变形,结构的
位移纯属刚体位移
对于简单的结构,这种位移可由几何关系直接求得,但
一般的结构仍用虚功原理来计算这种位移。
静定结构的位移计算
由虚功原理推导出的位移计算的一般公式为
K F Ndu M d F Qdv F R c
,系原来移项时所得,不可漏掉。
静定结构的位移计算
例16-10 三铰刚架的跨度 l=12m,高h=8m。已知右支座B
的竖向位移为1 =0.06m(向下),水平位移为2 =0.04m(向
右),如图示,试求由此引起的A端转角 。
解 由∑MA=0得
F RBy
1

l
再考虑右半刚
架的平衡
1
由∑Mc=0得

静定结构位移计算

静定结构位移计算

自测题(三)(一) 填空题1. 虚功是指____________________________________________。

2.虚功原理的内容为__________________________________________________,其三要素是__________,__________,和___________,其中__________和_________是同一变形体系的两个相互独立的状态。

3. 虚功原理有两种不同的应用途径,虚载荷法是________________________________________,虚位移法是____________________________________________________。

4.图乘法的应用条件是_____________________________________________________,图乘公式01y EIds EI M M P ⋅=⎰ω中y 0必须取自______图中,ωy 0正负号判别方法____________________。

5. 弹性体系的四个互等定理是_________________________,________________________,_____________________,_______________________,它们仅适用于_________________体系。

6.图示两组图P M M ,相乘得结果分别为_____________________________, ________。

7.用虚功原理求结构位移时,因结构和引起位移原因不同,虚功方程具体形式也有所不同,在载荷作用时,对梁和刚架为_____________,对桁架为__________;温变作用时,对梁和刚架为_______________,对桁架为_______;支座变动时,对梁和刚架为_______,对桁架为______;制造误差、初应变作用时,对梁和刚架为____________________________,对桁架为__________;8.已知图(a)所示刚架B 的角位移EIPl B 162=θ(),若在图(b)所示的刚架B 点施加力矩Pl m 20=,根据互等定理可求出该状态BC 杆中k 点处挠度=k f ____,方向_____。

习题课5静定结构的位移计算

习题课5静定结构的位移计算
习题课 5
静定结构的位移计算
1
一、根据欲求广义位移,试虚拟广义单位力系。 (1) 求 Δ CV + Δ DV , Δ CV − Δ DV
FP C m B D A C D 1 1 B
A
求 Δ CV + Δ DV
1 A C D
2
1 B
求 Δ CV − Δ DV
(2) 求C、D截面相对转角、相对线位移、相对水平 线位移。
ql/2
8
A
q C ql 2/8
l/2 l/2
1 B A
l/2
C l/4
ql 4 解: CK = 96 EI ΔCV
M图
MMP = ΔCV 1 + Δ CV 2 = ∫ dx − ∑ F RK CK A EI 2 2 l 1 2 5 l 1 ql 4 = ( ⋅ ⋅ ql ⋅ ⋅ ) − (− ⋅ ) EI 3 2 8 8 4 2 96 EI ql 4 5ql 4 7ql 4 = + = (↓) 384 EI 192 EI 384 EI
16
(2) 求 Δ CV 及截面B、C相对转角 Δϕ BC。
2kN/m
A
2m
C
6m
EI
B
A
ω1 C
解:
ω1 = ⋅ 2 ⋅12 = 12 y1 = ⋅1.5 = 1
1 2 1 2 3 y1 C EI B 1 A ω 2 = ⋅ 6 ⋅12 = 36 y2 = 1 y3 2 y2 y4 2 4 1 3 2m 1.5 6m ω 3 = ⋅ 2 ⋅1 = y3 = ⋅1.5 = 3 3 2 4 M 1图 2 1 3 ω 4 = ⋅ 6 ⋅ 9 = 36 y4 = ⋅1.5 = 3 2 4 1 1 4 3 3 76 Δ CV = (ω1 y1 + ω 2 y2 + ω3 y3 + ω 4 y4 ) = (12 ⋅1 + 36 ⋅1 + ⋅ + 36 ⋅ ) = (↓) EI EI EI 3 4 4 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静定结构的位移计算
一、判断题:
1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:
A.
;
;
B.
D.
C.
M =1
5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M k
M p
2
1
y 1
y 2
*
*
ωω
( a )
M 1
7、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

二、计算题:
10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q
l
l
l /2
11、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a
10kN/m
12、求图示结构E 点的竖向位移。

EI = 常数 。

l
l l l /3
2 /3
/3
q
14、求图示刚架B 端的竖向位移。

q
15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q
17、求图示刚架横梁中D点的竖向位移。

EI = 常数 。

18、求图示刚架中D 点的竖向位移。

E I = 常数 。

q
l
l/2
19、求图示结构A、B两截面的相对转角,EI=常数。

23
l/
l/3
20、求图示结构A、B两点的相对水平位移,E I = 常数。

l
l
26、求图示刚架中铰C两侧截面的相对转角。

27、求图示桁架中D点的水平位移,各杆EA 相同。

D
30、求图示结构D点的竖向位移,杆AD的截面抗弯刚度为EI,杆BC的截面抗拉(压)刚度为EA。

a
3
31、求图示结构D点的竖向位移,杆ACD的截面抗弯刚度为EI,杆BC抗拉刚度为EA 。

35、图示结构B支座沉陷∆ = 0.01m ,求C点的水平位移。

36、结构的支座A发生了转角θ和竖向位移∆如图所示,计算D点的竖向位移。

θA
D
l/
l l2
37、图示刚架A支座下沉l,又顺时针转动 rad ,求D截面的角位移。

D
0.015rad
A
h 0.01
l l l
39、图示刚架杆件截面为矩形,截面厚度为h , h/l = 1/ 20 ,材料线膨胀系数为 α,求C 点的竖向位移。

C
A
-3-3+t
+t t t
l
40、求图示结构B 点的水平位移。

已知温变化t 110=℃,t 220=℃ ,矩形截面高h=0.5m ,线膨胀系数a = 1 / 105。

t 1
t 2
t 4m
B
1
静定结构位移计算(参考答案)
1、( X )
2、( O )
3、( X )
4、( C )
5、( O )
6、( X )
7、( O ) 10、EI
ql
A
2473

11、∆DV EI =↓140/()() 12、()
∆EV ql EI =-↑74324
/()
14、()()∆BV ql EI =
↓5164
15、ϕC ql EI =3
24
17、()DV
qa EI
∆=
↓65244
18、∆DV ql EI =2533844
/ ()↓
19、AB Pl EI ϕ=492
/
20、()33
Pl EI /←→
26、∆C ql EI
=3
2
27、()
()∆DH Pa EA =+→212
30、∆DV Pa EI Pa EA =+↓812543
//()
31、∆DV qa EI qa EA =+↓112415842
//()
35、∆∆CH R =-
⋅=∑--⋅=()1∆∆ (→)
36、
DV
l ∆
∆=+↑θ//()22
37、
D
r a d ϕ
=0025.
39、()
c v t l t l t l ∆=-=-↑ααα120119
40、∆C D H
cm =0795.。

相关文档
最新文档