2013中考数学压轴题5(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(12分)如图20,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..
分别交于点M 、N ,直线m 运动的时间为t (秒). (1) 点A 的坐标是__________,点C 的坐标是
__________;
(2) 当t= 秒或 秒时,MN=2
1AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;
(4) 探求(3)中得到的函数S 有没有最大值?若有,
求出最大值;若没有,要说明理由.
解:(1)(4,0),(0,3); ························································································· 2分
(2) 2,6; ··················································································································· 4分
(3) 当0<t≤4时,OM =t .
由△OMN ∽△OAC ,得
OC ON OA OM =, ∴ ON =t 43,S=28
3t . ······································· 6分 当4<t <8时,
如图,∵ OD =t ,∴ AD = t-4.
方法一:
由△DAM ∽△AOC ,可得AM =
)4(43-t ,∴ BM =6-t 4
3. ······························· 7分 由△BMN ∽△BAC ,可得BN =BM 34=8-t ,∴ CN =t-4. ······································ 8分 S=矩形OABC 的面积-Rt △OAM 的面积- Rt △MBN 的面积- Rt △NCO 的面积 =12-
)4(23-t -21(8-t )(6-t 4
3)-)4(23-t =t t 3832+-. ··································································································· 10分 方法二:
易知四边形ADNC 是平行四边形,∴ CN =AD =t-4,BN =8-t . ····································· 7分 由△BMN ∽△BAC ,可得BM =
BN 43=6-t 4
3,∴ AM =)4(43-t . ······ 8分 以下同方法一.
图20
(4) 有最大值.
方法一:
当0<t≤4时,
∵ 抛物线S=
28
3t 的开口向上,在对称轴t=0的右边, S 随t 的增大而增大, ∴ 当t=4时,S 可取到最大值2483⨯=6; ··············· 11分 当4<t <8时,
∵ 抛物线S=t t 38
32+-的开口向下,它的顶点是(4,6),∴ S<6. 综上,当t=4时,S 有最大值6. ············································································· 12分 方法二:
∵ S=22304833488
t t t t t ⎧<⎪⎪⎨⎪-+<<⎪⎩,≤, ∴ 当0<t <8时,画出S 与t 的函数关系图像,如图所示. ································ 11分 显然,当t=4时,S 有最大值6. ········································································· 12分 说明:只有当第(3)问解答正确时,第(4)问只回答“有最大值”无其它步骤,可给
1分;否则,不给分.
2、(14分)如图11,在梯形ABCD 中,AD ∥BC ,AB=AD=DC=2cm ,BC=4cm ,在等腰△PQR 中,∠QPR=120°,底边QR=6cm ,点B 、C 、Q 、R 在同一直线l 上,且C 、Q 两点重合,如果等腰△PQR 以1cm/秒的速度沿直线l 箭头所示方向匀速运动,t 秒时梯形ABCD 与等腰△PQR 重合部分的面积记为S 平方厘米
(1)当t=4时,求S 的值
(2)当4t ≤≤10,求S 与t 的函数关系式,并求出S 的最大值
(1)t =4时,Q 与B 重合,P 与D 重合,
图11
重合部分是BDC ∆=323222
1=⋅⋅。