热风炉送风温度控制系统的设计说明

合集下载

热风炉温控调节原理

热风炉温控调节原理

热风炉温控调节原理
热风炉的温控调节原理是通过控制燃料的燃烧量和空气的供给
来实现的。

热风炉的温度通常由燃料的燃烧速率和空气的供给量来
控制。

当需要提高炉内温度时,可以增加燃料的供给量或者增加空
气的供给量,从而增加燃烧的热量。

反之,当需要降低炉内温度时,可以减少燃料的供给量或者减少空气的供给量,以减少燃烧的热量。

热风炉通常配有温度传感器和控制器,通过监测炉内温度并与
设定温度进行比较,控制器可以自动调节燃料的供给量和空气的供
给量,以保持炉内温度在设定范围内。

这种反馈控制系统可以实现
热风炉温度的精确调节,提高了燃烧效率和安全性。

此外,一些先进的热风炉还可以采用先进的控制技术,如PID
控制器,通过对燃烧过程进行更精细的调节,使温度控制更加稳定
和精准。

同时,一些热风炉还可以配备燃烧过程的监测装置,如氧
含量传感器,以便及时调整燃料和空气的供给,从而更好地控制燃
烧过程和炉内温度。

总的来说,热风炉的温控调节原理是通过控制燃料的燃烧量和
空气的供给来实现的,配合温度传感器和先进的控制技术,可以实现精确稳定的温度控制,提高燃烧效率和安全性。

昆钢6号高炉热风炉仪表控制系统

昆钢6号高炉热风炉仪表控制系统
维普资讯
第 2 卷 第 2期 7








V0 7 No2 l 2 .
20 02年 4 月
J u n lo n ig Un v riyo ce c n c n lg o r a fKu m n ie st fS in e a d Te h o o y
Ap 2 0 r 02
昆钢 6号高炉热风炉仪表控 制系统
陈海 玮 J
l 串国冶金设备深圳公司. 广东 深圳 5 84 ) 1o 8
摘要 :介绍 了昆铜 6 高炉热风 妒仪表 控制 系统的构 成和特 点 着重 介绍 了热风 炉典型仪 表控 号
制 回路一 一 燃 烧控 制 、送 风 温度 控制 、送 风 湿度控 制的 构成 和特 点 .
由我国技术人员消化引进国外设备 自 行设计 、施工的现代化大型高炉. 该高炉于 19 年 l 98 2月投产 ,投 产后 不 久 ,就 投人 了 高压生 产 .第 二年 全 面达到 了设 计指 标 . 昆钢 6号 高炉 控制 系统采 用美 国 H N Y L 公司的 T S3 0( C ) O E WE L P 0 0D S 和美 国G E公司网络 9.0P C 控制系统. P .00D S 控制 07 ( ) L T S30 (C ) 系统主要用于热风炉 、喷煤控制和高炉仪表控制 .G E网络 9 . (L ) 07 P C控制系统主要用于高炉及辅助设 0 施 逻辑控制 ,它通过 以太 网挂在 TP.0 0DC ) 制系统 L N网 络上. I 30 ( S 控 S C 本文拟 介绍 昆钢 6 高炉热风 炉 号
关键词 :热风 炉:燃烧 控制:送 风温度 :送 风湿度
中图分类 号: F 3 P 1.l T 5 2 r 3 5 i 1 文献标识 码: A 文章编 号 : 0 78 5 2 0 )2 100 l0 .5 X(0 20 .3 .4

热风炉操作说明书

热风炉操作说明书

山东寿光巨能特钢12503M高炉热风炉操作说明书莱芜钢铁集团电子有限公司2011.041、系统概述热风炉控制室设有PLC一套,PLC采用西门子S7-400系列CPU 和ET200M远程站及图尔克现场总线远程站,上位机与PLC间通过以太网进行通讯,CPU与远程站通过PROFIBUS DP进行通讯,完成对三座热风炉的所有参数检测、控制及事故诊断。

2、工艺介绍本控制系统主要完成本系统上各种开关、模拟量的检测与控制;利用热风炉烟气,设置热风炉助燃空气和高炉煤气双预热系统,以节省能源。

并设助燃风机两台,以及各种切断阀和调节阀,以实现热风炉焖炉及燃烧、送风的控制要求。

本控制系统设有微机两台及各阀现场操作箱,正常状况下三座热风炉的操作都通过微机实现,微机操作有单机和联锁两种操作模式,现场操作箱主要用于现场调试。

微机操作和操作箱操作受联锁关系限制。

热风炉的工作状态有燃烧、焖炉、送风三种状态,状态的转换靠控制各阀门的动作,热风炉各阀门按照:燃烧→焖炉→送风→焖炉循环的工作过程,自动或手动进行换炉切换工作。

其受控阀门及三种状态对应的阀门状态如下图所示:受控阀门内容及状态表(K=开,G=关)3、监控功能根据生产实际情况和操作需要,在监控站制作多幅监控画面,全部采用中文界面,具有极强的可操作性。

具体的监控画面包括:热风炉主工艺画面、助燃风机监控画面、煤气空气调节画面、历史趋势画面。

在画面上可显示热风炉各部分的温度、压力、流量分布状况,采集的数据,历史趋势、报警闪烁画面,完成各阀门、设备的开启及操作,完成煤气、助燃空气的调节阀的操作及调节,各系统的自动调节与软手动调节、硬手动调节的无扰自动切换,各调节阀的操作及调节和保持各数据的动态显示。

主要画面及其功能如下:热风炉主工艺画面:可显示热风炉的整个工艺生产流程及相关的主要参数值,报警闪烁,切入其他画面的功能按钮,热风炉的单机/联锁切换,单机模式下实现对每个阀的单独开关控制,联锁模式下实现焖炉、燃烧、送风三个状态的自动转换。

热风炉工作原理及使用操作说明

热风炉工作原理及使用操作说明

热风炉工作原理及使用操作说明1热风炉工作原理循环气体从侧面切向进入燃烧室外层夹套,然后从燃烧室顶部边缘均布的孔中旋流喷出和燃料燃烧的高温烟气进行混合。

合成气燃料燃烧的中心温度约为1600℃,惰性循环气体的温度约为80~105℃(最高110℃),当与合成气燃烧烟气量成一定比例的循环气体掺混到燃烧室高温烟气中后,可使燃烧室烟气平均温度降到1000℃以下。

由于这部分低温循环气体的流动路线靠近燃烧室内衬,对炉膛衬里形成屏蔽,起到保护内衬的作用。

燃烧室设置外层夹套,一方面使循环气体流动均匀并预热,达到预热节能效果,另一方面也可起到惰性气体保温作用,达到减薄炉膛内衬,降低炉壳外表面温度的效果。

在夹套壳体内浇注一层轻质保温材料,可保证炉壳外表面温度低于60℃。

混合室的旋流结构可提高混合速度。

大部分循环气体从热风炉夹套旋转进入混合段,其旋转的方向和燃烧室高温烟气的旋转方向相反,这样使得混合速度加快。

旋转气流使得循环气体流动趋于均匀,并能在较短时间里与高温烟气相混合,这样一来,不仅保证了烟气炉出口烟温的均匀性,也使得热风炉的总体尺寸有所减小。

助燃空气通过燃烧空气鼓风机送入炉顶的燃烧器,空气管线上设有调节阀,可根据炉子的热负荷调节空气的供给量:采用液化石油气点燃点火枪,利用点火枪点燃柴油烧嘴,当气化产合成气时切换合成气烧嘴。

燃烧产生的高温烟气与循环惰性气体均匀混合后作为干燥剂通入磨煤机,干燥煤粉中的水分。

2热风炉使用和操作说明2.1、热风炉本体基本参数炉本体结构形式为卧式圆筒炉,燃烧器采用1个中心油气联合主烧嘴+1个环型辅助烧嘴的方案,炉体全部密封设计,正压操作。

热风炉基本参数表(炉膛容积不同热负荷不同)2.2、燃烧器热风炉燃烧器主要部件包括调风器、中心油气联合喷嘴、环管气枪喷嘴和稳焰器。

本燃烧器采用平流调风器、轴流式弯曲叶片稳焰器。

采用轴流式弯曲叶片目的在于增大旋流强度,提高火焰燃烧的稳定性。

采用中心油气联合喷嘴与环管气枪的优越性在于既可以单独使用中心油气联合喷嘴或环管气枪,也可以两者同时使用,这样不但调节方便,而且使燃烧器的负荷调节比增大,保证各种工况下燃烧器能稳定运行,该型燃烧器火焰分布均匀,燃料与风混合好,燃烧完全。

高炉热风温度自动控制系统介绍

高炉热风温度自动控制系统介绍

高炉热风温度自动控制系统介绍摘要:在高炉生产中,稳定热风温度(以下简称风温),能够提升高炉运行的安全性与稳定性,并且提高生产效率,并对高炉操作具有积极的作用。

应用自动控制策略并配合高精度混风调节阀,能够有效地实现风温的自动控制,将风温波动控制在较小范围之内。

本文对风温自动控制系统进行了详细的介绍。

关键词:高炉;热风炉;风温;自动控制目前,国内大部分热风温度控制采用人工操作的方式,一般情况下,风温设定在1150℃。

由于工人的经验、水平差异,风温控制效果也有较大差异,有的风温波动甚至达30℃。

本文介绍的自动控制方式,不仅稳定了风温,也降低了工人的劳动强度。

1高炉风温自动控制系统介绍1.1原理为了保证高炉热风温度稳定,对混风阀进行调节。

由于冷风总量恒定,通过调节混风阀改变混风管道的风量,从而间接改变通过热风炉的风量,达到调节风温的目的。

混风阀调节根据送风过程一般可以分为3个过程,即混风初始时刻、中期和末期。

初始时刻,即换炉开始的初始时刻,此时热风炉蓄热值为最高,混风阀初始值可根据拱顶温度设定,此后进入中期时刻,开度根据自动控制策略计算而得;末期,由于热风炉蓄热降低,所有冷风经热风炉在送至高炉,风温也略低于设定值,此时混风阀处于全关闭状态。

1.2系统构成1.2.1自动控制策略(初始、中期)由于每次烧炉,热风拱顶温度都不相同,因此混风阀初始开度也不相同。

混风阀初始值的设定需要根据工人的操作经验,将各个范围的初始拱顶温度T0和混风阀初始开度统计汇总,形成相应的规则库。

为混风阀初始开度∮0提供依据。

具体如下:将初始拱顶温度分为5个档,HH(高高)、H(高)、N(正常)、L(低)、LL(低低)。

正常温度按照工艺要求确定,高于N温度5℃,定为H;高于10℃,定为HH;低于5℃,定为L;低于10℃,定为LL。

结合现场实际情况,记录各个温度工况下的混风阀初始开度值,找出对应关系。

根据此对应关系,形成一对一的逻辑控制程序。

热风炉系统介绍及节能思路ppt

热风炉系统介绍及节能思路ppt
热风炉为蓄热-送风周期性工作,为保证高炉供风 的连续性,通常设置若干座热风炉协同工作。 通常一座高炉配置三座或四座热风炉。热风炉群 采用两烧一送、一烧一送、交叉并联、半交叉并联 的工作制度,来保证热风供给的连续性。 热风炉工作状态通常按照以下顺序进行:
01:38:10
1-焦炉煤气压力调节阀;2-高炉煤气压力调节阀;3-空气流量调节阀;4-焦炉煤气流量调节阀; 5-高炉煤气流量调节阀;6-空气燃烧阀;7-焦炉煤气阀;8-吹扫阀;9-高炉煤气阀;10-焦 炉煤气放散阀;11-高炉煤气放散阀;12-焦炉煤气燃烧阀;13-高炉煤气燃烧阀;14-热风放散 阀;15-热风阀;16-点火装置;17-燃烧室;18-混合室;19-混风阀;20-混风流量调节阀;
结构复杂;材料用量大;技术 要求较高
顶燃式
耐火材料工作负荷均衡; 结构对称,稳定性好;蓄 热室内气流分布均匀,效 率高。节省钢材和耐火材 料,占地面积较小。
操作不便:热风出口、煤气和 助燃空气的入口、燃烧器集中 于拱顶;高温区开孔多,是薄 弱环节;燃烧器寿命短,不能 满足高炉一代寿命的要求。
01:38:10
01:38:10
5、降低煤气水含量 高炉煤气温度低,含有大量的饱和水和部分机械水。 饱和水含量越大,煤气的发热值越低下,在饱和水不 超过10%(80g/m3)范围内,每增加1%(8g/m3) 煤气发热量降低33.5 kJ/m3,理论燃烧温度降低 8.5℃;机械水被带往热风炉,对煤气的影响除和饱 和水同样外,汽化需要吸收煤气燃烧产生的热量,导 致理论温度降低。 降低含水的方法: (1)在煤气上升或拐弯处设立脱水器,经常放水。 (2)煤气管道要有良好保温。 (3)减少高炉炉顶打水作业。 (4)控制入炉焦碳的水分含量。
热风炉系统介绍及节能思路

热风炉设计说明书

热风炉设计说明书

目录1热风炉本体结构设计 (2)1.1炉基的设计 (3)1.2炉壳的设计 (3)1.3炉墙的设计 (4)1.4拱顶的设计 (5)1.5蓄热室的设计 (6)1.6燃烧室的设计 (7)1.7炉箅子与支柱的设计 (8)2燃烧器选择与设计 (9)2.1金属燃烧器 (9)2.2陶瓷燃烧器 (9)3格子砖的选择 (12)4管道与阀门的选择设计 (17)4.1管道 (17)4.2阀门 (18)5热风炉用耐火材料 (20)5.1硅砖 (20)5.2高铝砖 (20)5.3粘土砖 (20)5.4隔热砖 (20)5.5不定形材料 (20)6热风炉的热工计算 (24)6.1燃烧计算 (24)6.2简易计算 (29)6.3砖量计算 (30)7参考文献 (32)1 热风炉本体结构设计热风炉的原理是借助煤气燃烧将热风炉格子砖烧热,然后再将冷风通入格子砖。

冷风被加热并通过热风管道送往高炉。

目前蓄热式热风炉有三种基本结构形式,即内燃式热风炉、外燃式热风炉、顶燃式热风炉。

传统内燃式热风炉[1](如图1-1所示)包括燃烧室和蓄热室两大部分,并由炉基、炉底、炉衬、炉箅子、支柱等构成。

热风炉主要尺寸(全高和外径)决定于高炉有效容积、冶炼强度要求的风温。

图1-1 内燃式热风炉我国实际的热风炉尺寸见表1-1。

表1-1 我国设计的热风炉尺寸表1.1炉基的设计由于整个热风炉重量很大又经常震动,且荷重将随高炉炉容的扩大和风温的提高而增加,故对炉基要求严格。

地基的耐压力不小于2.0~2.5kg/2cm ,为防止热风炉产生不均匀下沉而是管道变形或撕裂,将三座热风炉基础做成一个整体,高出地面200~400mm ,以防水浸基础由3A F 或16Mn 钢筋和325号水泥浇灌成钢筋混泥土结构。

土壤承载力不足时,需打桩加固。

生产实践表明,不均匀下沉未超过允许值时,可将热风炉基础又做成单体分离形式,如武钢、鞍钢两座大型高炉,克节省大量钢材。

1.2炉壳的设计热风炉的炉壳由8~20mm 厚的钢板焊成。

热风炉

热风炉

热风炉操作规程1、概述1.1热风炉以燃料气(驰放气、天然气)为燃料,加热一定量的工艺循环气至设定温度,为整个循环气系统提供热量,干燥煤粉,保证碾磨后的粉煤水分含量小于2%。

热风炉系统主要包括热风炉本体、燃烧器组件、助燃风机、高能点火及火焰检测等设备,还包括燃料气、助燃风的输送和调节系统、氮气供应系统等工艺管路系统。

1.2热风炉用燃料气成份1)驰放气2)天然气1.3.1 炉本体基本参数炉本体结构形式为立式圆筒炉,燃烧器采用1个中心气主烧嘴+1个环型辅助烧嘴的方案,炉体全部密封设计,微正压操作。

现场控制盘位于燃烧系统旁。

热风炉的基本参数见表1。

表1 热风炉基本参数表(1)炉筒体及耐火材料①燃烧室燃烧室外径为Φ1816mm,燃烧室耐火材料:内层为重质浇注料BPDI-D;贴近壳体的一层为硅酸铝纤维毡,具有良好的隔热性能;中间一层为轻质浇注料ZJQ-1200。

在燃烧室头部,为了避免内层耐火材料受到高温烟气的直接冲刷,增加耐火材料的使用寿命,借鉴了航空发动机燃烧室的设计,在燃烧室内壁贴近耐火材料的位臵加了一圈冷却风管,冷却风管喷出的低温气体能形成一个空气隔离层,有效防止高温烟气直接冲刷炉壁耐火材料;沿着燃烧室轴线方向,由于烟气的卷吸作用,冷却风管喷出的冷却风很快被卷入烟气中,失去保护炉壁的作用。

为了能全面保护炉壁,并降低循环冷却风的流动阻力,在燃烧室中部装了一圈径向冷却风管,通过径向风管将一部份冷却风鼓入燃烧室,径向旋流能加强冷却风与烟气的掺混。

在燃烧室末端设臵了轴向旋流叶片,大部分循环风由此进入混合室,轴向旋流叶片的旋向与径向旋流风管的旋向相反,这种设计不但能有效降低循环风的流阻,还有利于循环风在混合室中与烟气能够进行充分的混合,使得热风炉出口的工艺气体温度更加均匀、压降更小。

②混合室混合室筒体外径为Φ2440mm。

混合室耐火材料:内层为重质浇注料BPDI-D和轻质浇注料ZJQ-1200;贴近壳体的一层为硅酸铝纤维毡,具有良好的隔热性能。

热风炉设计说明书(推荐文档)

热风炉设计说明书(推荐文档)

目录第一章热风炉热工计算 (2)1.1热风炉燃烧计算 (2)1.2热风炉热平衡计算 (7)1.3热风炉设计参数确定 (11)第二章热风炉结构设计 (12)2.1设计原则 (12)2.2 工程设计内容及技术特点 (12)2.2.1设计内容 (12)2.2.2 技术特点 (13)2.3结构性能参数确定 (13)2.4蓄热室格子砖选择 (14)2.5热风炉管道系统及烟囱 (16)2.5.1顶燃式热风炉煤气主管包括: (16)2.5.2顶燃式热风炉空气主管包括: (17)2.5.3顶燃式热风炉烟气主管包括: (18)2.5.4顶燃式热风炉冷风主管道包括: (18)2.5.5顶燃式热风炉热风主管道包括: (19)2.6 热风炉附属设备和设施 (19)2.7热风炉基础设计 (22)2.7.1 热风炉炉壳 (22)2.7.2 热风炉区框架及平台(包括吊车梁) (23)第三章热风炉用耐火材料的选择 (23)3.1耐火材料的定义与性能 (23)3.2热风炉耐火材料的选择 (23)参考文献 (26)第一章热风炉热工计算1.1热风炉燃烧计算燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。

已知煤气化验成分见表1.1。

表1.1 煤气成分表热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干法除尘。

发生炉利用系数为 2.3t/m3d,风量为3800m3/min,t热风=1100℃,t冷风=120℃,η热=90%。

热风炉工作制度为两烧一送制,一个工作周期T=2.25h,送风期T f=0.75h,燃烧期Tr=1.4h,换炉时间ΔT=0.1h,出炉烟气温度tg2=350℃,环境温度te=25℃。

煤气低发热量计算查表煤气中可燃成分的热效应已知。

0.01m3气体燃料中可燃成分热效应如下:CO:126.36KJ , H2:107.85KJ, CH4:358.81KJ, C2H4:594.4KJ。

则煤气低发热量:Q DW=126.36×30.3+107.85×12.7+258.81×1.7+594.4×0.4=6046.14 KJ空气需要量和燃烧生成物量计算(1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=1.1。

高炉送风系统设计

高炉送风系统设计

6.3高炉送风系统高炉送风系统是为高炉冶炼供给足够数量和高质量风的鼓风设施,送风系统的设备主要包括高炉鼓风机,热风炉,加湿或脱湿装置,送风管道和阀门等。

6.3.1高炉鼓风机高炉鼓风机是高炉冶炼的重要动力设备。

它不仅直接为高炉冶炼供给所需的氧气,还为炉内煤气流的运动抑制料柱阻力供给必需的动力,使高炉生产中各种气体循环流淌。

高炉鼓风机是高炉的“心脏”。

6.3.1.1高炉鼓风机技术要求(1)有足够的送风系统力气,即不仅能供给高炉冶炼所需要的风量,而且鼓风机的出口压力要能够足以抑制送风系统的阻力损失,高炉料柱阻力损失以保证有足够高的炉顶煤气压力。

(2)风机的风量及风压要有较大宽的调整范围,即风机的风量和风压均应适应与炉况的顺行。

冶炼强度的提高与降低,喷吹燃料与富氧操作以及其他的多种因数变化的影响。

(3)送风均匀而稳定,即风压变动时,风量不得自动的产生大幅度变化。

(4)能够保证长时间连续,安全及高效率运行。

6.3.1.2高炉鼓风机选择(1)鼓风机出口风量的计算鼓风机出口风量包括入炉风量、送风系统漏风量和热风炉换炉时的充风量之和。

计算时用标准状态下的风量表示。

1)高炉入炉风量的计算V Iqq =u jv 140式中: q ——高炉入炉风量,m 3/ min ;vV——高炉有效容积,m 3;uI ——冶炼强度,t/m 3 ⋅ d ,一般取综合冶炼强度,本设计为 1.1;——每吨干焦的耗风量,m 3/ t 。

qj每吨干焦的耗风量与焦炭的灰分含量和风的湿度有关,焦炭灰分为 12%时,每吨干焦的耗风量一般为 2550 m 3/ t 。

V Iq3200 ⨯1.1⨯ 2550q =u j =v 1440 1440= 6233.33m3 / min 2)送风系统漏风量损失计算q =η⋅qo v式中qo——送风系统漏风量损失,m 3/ min ;η——漏风系数,正常状况,大型高炉为10%左右,中小型高炉为15%左右。

q =η⋅q = 10% ⨯ 6233.33 = 623.33m3 / mino v3)热风炉换炉时的充风量计算热风炉换炉充风量,热风炉换炉时,假设风机仍依据原来的风量送风,高炉风口的风压势必会降低,从而导致炉内的煤气流淌性,影响炉况稳定,这种状况虽然对于中小型高炉影响并不重要,但是对于大型高炉来说,影响不行无视,大型高炉热风炉操作时,为了维护高炉风口风压不变,风纪从定风量调整,即增加风纪的供风量,充入送风的热风及充风时间长短等有关,按标准计算充风量比较简洁,生产中是依据阅历公式估算,或按阅历取值确定。

天然气热风炉说明书

天然气热风炉说明书

天然气热风炉说明书-CAL-FENGHAI.-(YICAI)-Company One1热风炉燃烧器控制系统使用说明书济南裕航环保科技有限公司2013年06月电话:3 手机:济南裕航环保科技有限公司主从燃煤热风炉,燃气热风炉、燃油热风炉的开发、设计.技术力量雄厚,完善的售后服务,得到了业界的好评,先特把燃气炉说明书与大家分享一下,不足之处请多多指教,有疑问或有需要请致电我们电话;3 手机:目录一、燃烧系统 (2)二、系统概述 (2)三、燃烧器、流程安装简介 (4)四、安全准备工作 (4)五、点火操作简介 (5)六、停炉及保养 (5)一、燃烧系统1.燃烧参数◆燃料种类:天然气;◆燃气热值:8600KCal/Nm3;◆燃气压力:;◆燃气温度:常温;◆燃气流量:待定◆燃料种类:天然气◆燃料热值:Q DY=8600kcal/Nm3◆额定燃料量:待定◆烧嘴前燃气压力:6kPa◆燃料温度:常温◆系统换热方式:换热式◆热风炉出口空气温度:450℃(可调)◆热风产量:待定二.系统概述本系统由热风供应系统、燃烧系统和控制系统三部分组成。

1.热风供应系统该系统以空气作为热载体,由鼓风机将高温气体输送给用热设备2.燃烧系统本系统采用高效节能进口燃气燃烧器,保证燃料充分燃烧,热效率高,同时由于其先进的比例调节式自控性能,可以对热风温度精确控制,保证用热设备工控的稳定性,其自控先进性也表现在自动吹扫、点火、升温、保温并能自动监察故障的发生,并发出报警信号并自动关机,从而保证了系统运行的安全可靠。

燃烧系统的组成及工作流程2.1.1 燃气系统本系统由燃气阀组、燃气燃烧机、助燃风机,热风炉和换热器组成。

由燃料库送来的燃料气,通过燃气阀组送至燃烧机充分燃烧。

燃烧所需的空气,经助燃风机进入炉膛帮助燃烧,高温烟气及冷空气热风炉内高温换热后,生成高温气体输送给用热设备。

自控特点当燃烧机接收来自控制系统的起动信号时,燃烧器在其自身程序控制器的作用下,开启燃烧机鼓风机吹扫并点火(延时),开启电磁阀至点火位子,点火成功(延时),着火(火焰监测),电磁阀开启至运行位子,风门自动开大,进入全负荷运行(进入温控阶段),燃烧器运行程序结束,如点火不成功,则燃烧器自动停机,切断供气回路,并报警自锁,下一次开机前必须先按燃烧器程控器上或电柜上的复位按钮,才能重复上面动作过程。

加热炉出口温度控制

加热炉出口温度控制

内蒙古科技大学过程控制工程课程设计说明书题目:高炉热风炉出口温度控制系统设计学生姓名:======学号:======专业:测控技术与仪器班级:======指导教师:======目录引言 (2)1 高炉炼铁概述 (3)1.1 高炉炼铁的工艺过程 (3)1.2 高炉炼铁的主要组成部分 (4)1.3热风炉的工作原理 (4)2 热风炉出口温度过程控制设计 (4)2.1 被控参数与控制参数的选择 (4)2.2 出口温度控制方案设计 (5)2.2.1 单回路控制系统结构与原理 (5)2.2.2 出口温度单回路控制方案 (6)2.3 仪器仪表的选用 (7)2.3.1 检测仪表的选型 (7)2.3.2 执行器的选型 (8)2.3.3 调节器的选用 (9)3 课程设计总结与心得 (11)参考文献 (12)引言近年来,随着我国经济的快速发展,在基础实施行业的带动下我国炼铁控制也处于高速发展阶段。

我国高炉现有1300多座,大于1000m3以上容积的高炉有150多座,高炉大型化的进程步伐加快,建设了四座4000 m3级的高炉,五座3200 m3级的高炉。

现在存在的炼铁方法有:高炉炼铁、冲天炉炼铁、电化铁路炼铁、感应炉炼铁等,但现代大型工业中普遍采用高炉炼铁,因为高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,高炉炼铁方法生产的铁占世界铁总产量的95%以上。

在炼铁产量不断增长的同时,我国高炉炼铁技术也取得了很大的进步,入炉焦比和炼铁工序能耗不断下降,喷煤比、热风温度和利用系数不断提高,高炉操作技术也日趋成熟,各项技术经济指标得到进一步改善。

高炉在钢铁厂生产中处于十分重要的位置,高炉冶炼过程是一个连续的、大规模的、高温生产过程,高炉炼铁主要有五大系统组成:送风系统、渣铁处理系统、喷吹系统、煤气系统、上料系统。

送风系统是高炉最重要的部分之一,风是高炉冶炼过程的物质基础之一,同时又是高炉行程的运动因素。

高炉送风系统是由风机、冷风管道、热风炉、热风管道及相关的各种阀门和烟囱、烟道等所组成。

热风炉自动控制系统的分析与实践

热风炉自动控制系统的分析与实践

热风炉自动控制系统的分析与实践作者:郑欣来源:《价值工程》2014年第01期摘要:本文阐述了热风炉自动化控制系统中的设备,工艺和流程相关控制的要求,研究了其自动控制系统的实施步骤,以实际工作经验为例,提出了解决相关问题的措施和办法,为同行在解决此类问题时提供了相关参考。

关键词:热风炉;自动控制;分析;实践中图分类号:TF325.4 文献标识码:A 文章编号:1006-4311(2014)01-0057-021 研究背景热风炉系统主要是给高炉燃烧输送热风。

当前我国钢铁厂的热风炉控制系统主要采用编程控制器(PLC)和过程控制器(或集散系统)分别完成对电气与仪表的控制。

当前热风炉系统主要存在如下主要问题:1.1 自动化控制系统在设计上的不合理由于大多数系统采取可编程控制器和过程控制器(或集散系统)分工协作共同完成。

就造成了如下缺点:为了将各部分整合成相对统一的系统,就要投入大量的时间与财力来对各种类型的软件和用户接口进行相应的编程,配制,测试与调试。

这样的控制系统变得复杂并增加了后期维护的难度。

1.2 热风炉燃烧控制方面的问题传统的高炉热风炉燃烧系统计算燃烧所需的煤气流量和助燃空气流量主要依据流量设定数学模型,并算出空燃比。

热风炉流量数学模型是使燃烧时热风炉格子砖的蓄热量能够满足热风温度和流量的要求,从而获得更好的经济效益。

热风炉是一个持续燃烧的动态变化过程,很难及时获取其控制作用的相关信息,通过输出测量得到其效果时,有明显的控制滞后性。

故此,想要实现对燃烧过程的及时控制,该数学模型就会相当复杂。

另外,燃烧高炉煤气或焦炉煤气的三眼燃烧器的热风炉来讲,因为高炉煤气与焦炉煤气是分别送入,这就需要分别对高炉煤气和焦炉煤气的流量进行单独控制,还要对高炉煤气与焦炉煤气流量进行相应的比例控制,这使得系统纷繁复杂,还要配备煤气成分分析仪,这种仪器价格不菲,维护与保养也需要非常到位。

此方面问题亟待解决。

2 热风炉的自动化控制的要求与方法2.1 热风炉工艺流程及工艺控制的要求将由冷风总管送来的冷风,经热风炉送风系统阀门后,送至热风炉加热后,再送到高炉,是热风炉的主要共走任务。

4000级高炉热风炉自动控制系统的设计与实现

4000级高炉热风炉自动控制系统的设计与实现

( 2 ) 集 中手 动 控 制 ( 远程 控 制 方 式 )在 主 控 室 H MI 操 作 台上 对 热 风 炉 各 阀 门进 行 远 程 操 作 , 保 存 连锁 关 系 。
( 3 ) 半 自动 控 制 此 控 制 方 式 要 求 在 热 风 炉 系 统 状 态 转 换 时 , 必须在 H MI 操作 台 上 按 下 “ 送风” 、 “ 燃烧” 、 “ 闷炉” 按键, 程 序 按 照 选 择 的方 式 通 过 P L C 自动 控 制 单 座 热 风 炉 所 有 阀 门按 照 顺 序 开 启 或关 闭 , 实 现 半 自动 换 炉 。 ( 4 ) 自动控 制 此 控 制 方 式 各 热 风 炉 自动 进 行 “ 燃 烧一 闷炉一 送风” 或者“ 送风. 闷炉一燃烧 ” 换 炉 控 制 。 自动 换 炉 可 以 按 照 时 间换 炉 、 也可根据温度换炉 。
4 0 0 0级高炉热风炉 自动控制 系统的设 计与实现
王永康 牛 继 凯
4 5 5 0 0 4 ) ( 安 阳钢 铁 公 司计 控 处
【 摘 要】 安钢 4 0 0 0级 高 炉 热 风 炉 共 四 座 , 在 2 0 1 3年 建 成 并 投 入 使 用 ,
自动 控 制 系统 采 用 施 耐 德 昆 腾 P L C 控 制 系 统 。 本 文 主 要 介 绍 四 座 热
3控 制 方 式
3 . 1单 座 热 风 炉 的 控 制 方 式
单 座 热 风 炉 的控 制 方 式 有 四种 , 可在高炉 主控室的 H MI 操 作 台上 Fra bibliotek 行 选 择 。
( 1 ) 机旁手动 此控 制方 式用于 热风 炉休风 时, 此 时 除 调 节 阀
外 的所 有 阀 门均 由就 地 控 制 箱 控 制 , 并无安全连锁 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学号:课程设计题目热风炉送风温度控制系统设计学院自动化学院专业自动化卓越工程师班级自动化zy1201班姓名指导教师傅剑2015 年12 月8 日课程设计任务书学生:专业班级:自动化zy1201 指导教师:傅剑工作单位:理工大学题目: 热风炉送风温度控制系统的设计初始条件:炼钢高炉采用燃式热风炉,燃烧所采用的燃料为高炉煤气和转炉煤气。

两种燃料混合后进入热风炉燃烧室,再与助燃空气一起燃烧,要求向高炉送风温度达到1350 ℃,则炉顶温度必须达到1400 ℃±10℃。

要求完成的主要任务:1、了解燃式热风炉工艺设备2、绘制燃式热风炉温度控制系统方案图3、确定系统所需检测元件、执行元件、调节仪表技术参数4、撰写系统调节原理及调节过程说明书时间安排11月3日选题、理解课题任务、要求11月4日方案设计11月5日-11月8日参数计算撰写说明书11月9日答辩指导教师签名:年月日系主任(或责任教师)签名:年月日目录前言 (1)1.热风炉工艺 (2)1.1主要结构............................................................................. .. (2)1.2工作方式 (2)1.2.1 直接式高净化热风炉 (3)1.2.2 间接式热风炉 (3)1.3工作原理 (3)1.4高炉炼铁、转炉炼钢工艺流程 (4)2.热风炉温度控制方案设计 (7)2.1熟悉工艺过程,确定控制目标 (7)2.2选择被控变量 (7)2.3选择操纵变量 (7)2.4确定控制方案 (7)2.5温度传感器的选择 (8)2.6执行器的选择......................................... 错误!未定义书签。

2.7调节器的选择 (10)3. 小结 (12)4. 参考文献 (13)前言热风炉是现代大型高炉主体的一个重要组成部分,其作用是把从鼓风机来的冷风加热到工艺要求的温度形成热风,然后从高炉风口鼓入,帮助焦炭燃烧。

所以热风炉的热风温度大小或稳定与否都对于整个高炉炼铁有着很大的影响。

所以我们要做一套设计,控制热风炉的温度,保证生产的正常进行。

本次课程设计正是针对于转炉炼钢生产中热风炉的单炉送风系统,利用单闭环系统进行负反馈控制,使得热风炉的热风温度能够达到转炉炼钢生产的工艺要求。

国大部分高炉均采用每座高炉带3至4台热风炉并联轮流送风方式,保证任何瞬时都有一座热风炉给高炉送风,而每座热风炉都按:燃烧-休止-送风-休止-燃烧的顺序循环生产。

当一座或多座热风炉送风时,另外的热风炉处于燃烧或休止状态。

送风中的热风炉温度降低后,处于休止状态的热风炉投入送风,原送风热风炉即停止送风并开始燃烧、蓄热直至温度达到要求后,转入休止状态等待下一次送风。

1.热风炉工艺1.1主要结构热风炉是将鼓风机送出的冷风加热成热风的设备。

通过提高高炉鼓风温度,可以增加喷煤量,降低燃料比。

热风炉的原理是借助煤气燃烧将热风炉格子砖烧热,然后再将冷风通入格子砖。

冷风被加热并通过热风管道送往高炉。

目前蓄热式热风炉有三种基本结构形式,即燃式热风炉、外燃式热风炉、顶燃式热风炉。

如下使用的是双球形燃式热风炉。

传统燃式热风炉及主要组织部分(如图1-1所示[4])包括燃烧室和蓄热室两大部分,并由炉基、炉底、炉衬、炉箅子、支柱等构成。

热风炉主要尺寸决定于高炉有效容积、冶炼强度要求的风温。

拱顶构造主体结构燃烧室构造图图11.2工作方式1.1.1 直接式高净化热风炉就是采用燃料直接燃烧,经高净化处理形成热风,而和物料直接接触加热干燥或烘烤。

该种方法燃料的消耗量约比用蒸汽式或其他间接加热器减少一半左右。

因此,在不影响烘干产品品质的情况下,完全可以使用直接式高净化热风。

1.1.2 间接式热风炉主要适用于被干燥物料不允许被污染,或应用于温度较低的热敏性物料干燥。

如:奶粉、制药、合成树脂、精细化工等。

此种加热装置,即是将蒸气、导热油、烟道气等做载体,通过多种形式的热交换器来加热空气。

1.3工作原理高炉热风炉按工作原理可分为蓄热式和换热式两种。

蓄热式热风炉,按热风炉部的蓄热体分球式热风炉(简称球炉)和采用格子砖的热风炉,按燃烧方式可以分为顶燃式,燃式,外燃式等几种,提高热风炉热风温度是高炉强化冶炼的关键技术。

如何提高风温,是业人士长期研究的方向。

常用的办法是混烧高热值煤气,或增加热风炉格子砖的换热面积,或改变格子砖的材质、密度,或改变蓄热体的形状(如蓄热球),以及通过种种方法将煤气和助燃空气预热。

热风炉主要有三种工作状态:即燃烧状态、送风状态和闷炉工作状态。

(1) 热风炉燃烧状态热风炉处于燃烧状态时,通过热风炉煤气管道和助燃空气管道向热风炉送入高炉煤气和助燃空气,高炉煤气和助燃空气燃烧产生热烟气使热风炉蓄热;热风炉处于燃烧状态时,其废气阀、烟道阀、助燃空气燃烧阀、高炉煤气燃烧阀、高炉煤气切断阀等阀均处于开启状态,其它各阀(切断阀)均处于关闭状态。

(2) 热风炉送风状态热风炉处于送风状态时,向燃烧结束蓄有一定热量的热风炉送入冷风,冷风经热风炉加热后再送入高炉。

热风炉处于送风状态时,其冷风阀、热风阀、冷风充压阀等处于开启状态,其它各阀(切断阀)均处于关闭状态。

(3) 热风炉闷炉状态热风炉处于闷炉状态时,为保持温度,热风炉所有的阀门均处于关闭状态。

热风炉处于上述三种状态之间的转换过程定义为换炉过程。

在热风炉的操作过程中最基本的工作过程是换炉。

换炉时,应保证整个热风炉系统不间断的向高炉送风,并应尽量使进入高炉的风量、风压波动很小,还要注意煤气安全。

1.4高炉炼铁、转炉炼钢工艺流程在现代工业生产过程中,高炉炼铁的实质在于用焦炭做燃料和还原剂,在高温下,将铁矿石或含铁原料中的铁,从氧化物或矿物状态还原为液态生铁。

因此,高炉炼铁的本质是铁的还原过程。

高炉生产的产品是生铁,副产品是炉渣、高炉煤气和炉尘灰。

高炉冶炼过程是一个连续的、大规模的、高温生产过程。

炉料(矿石、熔剂、焦炭)按照确定的比例通过装料设备分批地从炉顶装入炉。

从下部风口鼓入高温热风使焦炭燃烧。

燃烧生成的高温还原性煤气,在上升过程中与下降的炉料相遇,使其加热、还原、熔化、造渣,产生一系列的物理化学变化,最后生成液态渣、铁,聚集于炉缸,周期的从高炉排出。

上升的煤气流由于将能量传给炉料,温度不断降低,成分逐渐变化,最后变成高炉煤气从炉顶排出。

高炉实质是一个炉料下降、煤气上升两个逆向流运动的反应器。

高炉一经开炉就必须连续地进行生产。

但高炉炼铁环节中,热风炉的温度稳定控制成了高炉炼铁成功与否的关键因素。

如图1-1,图1-2。

图1-1 高炉工艺流程热风炉是现代大型高炉炼铁主体的一个重要组成部分,其作用是把从鼓风机来的冷风加热到工艺要求的温度形成热风,然后从高炉风口鼓入,帮助焦碳燃烧。

热风炉是按“蓄热”原理工作的热交换器,在燃烧室里燃烧煤气,高温废气通过格子砖并使之蓄热,当格子砖充分加热后,热风炉就可以改为送风,此时有关燃烧各阀关闭,送风各阀打开,冷风经格子砖而被加热并送出。

高炉一般装有3-4座热风炉,在单炉送风时,两座或三座在加热,一座在送风,轮流更换,在并联送风时,两座在加热,两座在送风。

这里以一座热风炉设计组态为例,其它热风炉与其类似。

后面的控制系统设计就是在热风炉单炉送风条件下做的。

如图1-3。

图1-3 热风炉工艺氧气顶吹转炉炼钢设备工艺,按照配料要求,先把废钢等装入炉,然后倒入铁水,并加入适量的造渣材料(如生石灰等)。

加料后,把氧气喷枪从炉顶插入炉,吹入氧气(纯度大于99%的高压氧气流),使它直接跟高温的铁水发生氧化反应,除去杂质。

用纯氧代替空气可以克服由于空气里的氮气的影响而使钢质变脆,以及氮气排出时带走热量的缺点。

在除去大部分硫、磷后,当钢水的成分和温度都达到要求时,即停止吹炼,提升喷枪,准备出钢。

出钢时使炉体倾斜,钢水从出钢口注入钢水包里,同时加入脱氧剂进行脱氧和调节成分。

钢水合格后,可以浇成钢的铸件或钢锭,钢锭可以再轧制成各种钢材。

氧气顶吹转炉在炼钢过程中会产生大量棕色烟气,它的主要成分是氧化铁尘粒和高浓度的一氧化碳气体等。

因此,必须加以净化回收,综合利用,以防止污染环境。

从回收设备得到的氧化铁尘粒可以用来炼钢;一氧化碳可以作化工原料或燃料;烟气带出的热量可以副产水蒸气。

此外,炼钢时,生成的炉渣也可以用来做钢渣水泥,含磷量较高的炉渣,可加工成磷肥,等等。

氧气顶吹转炉炼钢法具有冶炼速度快、炼出的钢种较多、质量较好,以及建厂速度快、投资少等许多优点。

但在冶炼过程中都是氧化性气氛,去硫效率差,昂贵的合金元素也易被氧化而损耗,因而所炼钢种和质量就受到一定的限制。

2.热风炉温度控制方案设计2.1熟悉工艺过程,确定控制目标高炉炼铁对于热风炉送进高炉的热风温度有着严格的要求,从鼓风机来的风温约150-200℃,经过热风炉的风温可高于1300℃,而本次课设高炉所需的热风温度为1350℃,炉顶温度必须达到1400 ℃±10℃,且须温度稳定。

所以在确保系统安全运行情况下,炉顶温度保持在1400℃,不能出现大的波动。

2.2选择被控变量被控变量又称为被控参数或被控量。

在过称控制系统中,被控变量的选择应体现控制目标。

且必须根据工艺要求,深入分析工艺过程,找出对产品的质量和产量、安全运行、经济运行、环境环保等具有决定性作用并且可直接测量的工艺参数作为被控参数,构成过程控制系统。

在热风机控制系统中温度的测量比较方便,信号的转换也比较简单,并且对于温度有着较为严格精确的要求。

所以,选择炉顶温度为被控参数。

2.3选择操纵变量操纵变量又称控制量。

一般情况下,对于被控过程的某个被控变量,通常有多个可供选择的操纵变量,要从工艺要求入手,具体选择操纵变量。

影响送入高炉的热风温度的主要因素有冷风温度、热风炉热风温度和煤气的流量。

选择其中任何一变量作为控制参数,都可以实现对送入高炉热风温度的控制。

但是对工艺分析可知,从鼓风机冷风温度约150-200℃,并没有采取相应的方法来改变其温度。

而在热风炉对高炉进行单炉送风时,热风炉处于送风状态,并不能对热风炉进行加热来改变热风炉的热风温度,并且通过改变冷风温度或者高炉的热风温度来控制送入高炉热风温度时,控制通道长,滞后时间长,对被控参数的校正作用不灵敏。

而煤气流量对最终热风温度影响较大,并且较为容易控制,所以选择煤气流量作为控制参数,被控参数的信号送往控制器控制煤气切断阀的开度。

2.4确定控制方案控制方案主要取决于控制目标。

由前面介绍,热风炉控制系统比较简单,被控过程纯延时和惯性小,负荷和扰动变化比较平缓,对于控制方案的要求不高,所以可以采用单闭环负反馈控制系统进行控制,易于设计和实施。

如图2-1.图2-1 热风炉控制系统方框图图2-2 热风炉温度控制流程图2.5温度传感器的选择由工艺可知,热风温度一般在0-1400℃之间。

相关文档
最新文档