带电粒子在矩形边界磁场中的运动

合集下载

一、带电粒子在不同边界磁场中的运动

一、带电粒子在不同边界磁场中的运动

一、带电粒子在不同边界磁场中的运动①直线边界(进出磁场具有对称性,如图)②平行边界存在临界条件,如图③圆形边界(沿径向射入必沿径向射出,如图)二、带电粒子在复合场中的运动复合场这儿指的是电场、磁场和重力场并存,或其中某两场并存,或分区域存在(组合场),带电粒子(带电体)连续运动时,一般需同时考虑静电力、洛伦兹力和重力的作用.对于有轨道约束的运动,还要考虑弹力、摩擦力对运动的影响.常见的类型有以下三种:1.受直棒约束的带电物体在复合场中的运动【例1】如图所示,套在很长的绝缘直棒上的带正电的橡胶环,其质量为m,带电荷量为q,橡胶环可在棒上滑动,现将此棒竖直放在互相垂直.且均沿水平方向的匀强电场和匀强磁场中,电场强度为E,磁感应强度是B,橡胶环与棒的动摩擦因数为 ,求橡胶环由静止沿棒下滑的最大加速度和最大速度(设橡胶环电荷量不变).解析:橡胶环下滑的开始阶段受力情况如图所示.根据牛顿第二定律有 N g -F =m m a μ ① N F +F -qE= 0洛 ②F = qvB 洛 ③当 qvB-qE=0时,N 1F = 0,v =E B,此时a 最大.即max =a g , 当1v > v 时,橡胶环的受力情况如图3—2(乙)所示由牛顿第二定律有:N g-F = m ma μ ④N F -qE-F = 0洛 ⑤F = qvB 洛 ⑥当v 增大到使摩擦力,N F = g m μ时,a=0.此时v 达到最大值,即:g=(qvB-qE)m μ.所以max +=mg qE v qBμμ 总结1 (1)本题目涉及带电粒子在电场、磁场、重力场中的运动,分析时应特别注意弹力、摩擦力、洛伦兹力的变化情况.(2)该题目是一个动态问题=0N f v F F F a a ↑→↑→↓↑→↓↑→↑↓→洛先后先后先后稳定.橡胶环的运动可划分为几个子过程,“max =0v a a v ↑→→→不变.要对各过程进行认真的受力分析,明确各量的动态变化才能找到极值条件,顺利求解.2.受斜面约束的带电物体在复合场中的运动【例2】在相互垂直的匀强电场和匀强磁场中,有一倾角为θ、足够长的光滑绝缘斜面,磁感应强度为B ,方向垂直纸面向外,电场方向竖直向上,有一质量为m 、带电荷量为+q 的小球静止在斜面顶端,这时小球对斜面的正压力恰好为零,如图3—4所示,若迅速把电场方向反转为竖直向下,小球能在斜面上连续滑行多远?所用时间是多少?解析:重力和静电力是恒力,洛伦兹力是变力,随速度的增大而增大,电场反转前:g= m qE ①电场反转后,小球先沿斜面向下做匀加速直线运动,到对斜面压力减为零时开始离开斜面.此时有: q v B =(g +q E )c om θ ② 小球在斜面上滑行距离为:21s =2at ③ =2sin =a g v at θ, ④联立①②③④得 2222cos s =sin m g q B θθ,所用时间为 c o t t =m qB θ总结2 (1)电荷只要处在电场中就一定受到静电力作用,即静电力与电荷的运动状态无关.(2)只有运动的电荷才受洛伦兹力.由F=qvB .当洛伦兹力是变力时,产生的效果比较复杂.解决此类问题要从受力分析入手,查找临界状态,从而得出正确结果.(3)应用洛伦兹力分析问题时,一定不要忘记速度v 的变化,会影响到洛伦兹力F 的大小和方向的变化.3.无约束的带电物体在复合场中的运动【例3】质量为m 、电荷量为+q 的微粒以速度v 与水平方向成45︒角进入匀强电场和匀强磁场中,如图所示,磁场的方向乖直于纸面向里,如微粒在电场、磁场及重力的作用下做匀速直线运动,则电场强度的大小E=_______,磁感应强度的大小为B=__________.思路点拨:带电微粒在复合场中做匀速直线运动,合力为零,只要抓住重力、静电力和洛伦兹力的特点列出平衡方程,即可求解.解析:对带电微粒进行受力分析如图所示,带电微粒受到竖直向下的重力、水平向右的静电力和垂直于速度方向斜向上的洛伦兹力.依据物体平衡条件可得:竖直方向上:,g= cos 45m qvB ︒水平方向上:= sin 45Eq qvB ︒,解得:= /;/E mg q B qv笞案:= /;/E mg q B qv总结3 无约束的带电粒子在复合场中运动的问题通过受力分析确定粒子运动的性质,是直线运动、圆周运动,还是一般的曲线运动,前两者均可运用运动学公式或牛顿第二定律解决,而后者只能运用动能定理或功能关系解决,切记洛伦兹力不做功,一般只考虑静电力和重力的功即可列方程求解.。

带电粒子在磁场中运动放缩圆和旋转圆

带电粒子在磁场中运动放缩圆和旋转圆
M
P
2r
2r
r
O
O
O
Q
rN
Q
Q 答案:MN ( 3 1)r
练、如图,真空室内存在方向垂直纸面向里,大小B=0.6T
的匀强磁场,内有与磁场方向平行的板ab,在距ab距离
为l=16cm处,有一点状的放射源S向各个方向发射α粒子,
α粒子的速度都是v=3.0×106 m/s,已知 α粒子的电荷与质
量之比q/m= 5.0×107 C/kg ,现只考虑在图纸平面中运动
带电粒子在磁场中运动
--------放缩圆和旋转圆
轨迹圆的缩放
• 当粒子的入射速度方向一 定而大小可变时,粒子做 圆周运动的圆心一定在粒 子在入射点所受洛伦兹力 的方向上,半径R不确定, 利用圆规作出一系列大小 不同的内切圆.从圆的动 态中发现临界点。
例1、如图所示,一足够长的矩形区域abcd内充满方 向垂直纸面向里的、磁感应强度为B的匀强磁场,在
PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。 现从点O以同一速率将相同的带负电粒子向纸面内各个不 同的方向射出,它们均做半径为r的匀速圆周运动,求带 电粒子打在边界PQ上的范围(粒子的重力不计)。
分析:从O点向各个方向发射的粒子在磁场中做匀速圆周
运动的半径r相P 同,O为这些轨迹P圆周的公共点。
场B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入 磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使 粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应
如何(以v0与oa的夹角表示)?最大偏转角多大?
解析: R =mv/Bq=5×10-2m > r
说明:半径确定时,通过的弧越
B v0

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。

② 则粒子做匀速直线运动。

(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。

(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。

二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。

速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。

2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。

)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。

或者说两圆心连线OO ′与两个交点的连线AB 垂直。

(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题一、“矩形”有界磁场中的临界问题【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求(1)粒子能从ab 边上射出磁场的v 0大小范围。

(2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。

解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L由牛顿第二定律得1211R v m B qv =; 得m qBLv =1②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。

由几何知识得:R 2=L由牛顿第二定律得2222R v m B qv =;得m qBLv =2粒子能从ab 边上射出磁场的v 0应满足mqBLv m qBL ≤≤3(2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。

粒子在磁场内运行轨迹对应圆心角为πα35=。

而απ2T t m = 由Rv mqvB 2=,得qB mv R =,qBmT π2= qBmt m 35π=【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( )A .小于mqBdB .小于()mqBd22+C .小于mqBd2 D .小于()mqBd22—解析:BD二、“角形磁场区”情景下的临界问题【例2】如图所示,在坐标系xOy 平面内,在x =0和x =L 范围内分布着匀强磁场和匀强电场,磁场的下边界AB 与y 轴成45°,其磁感应强度为B ,电场的上边界为x 轴,其电场强度为E .现有一束包含着各种速率的同种粒子由A 点垂直y 轴射入磁场,带电粒子的比荷为q /m .一部分粒子通过磁场偏转后由边界AB 射出进入电场区域.不计粒子重力,求: (1)能够由AB 边界射出的粒子的最大速率;(2)粒子在电场中运动一段时间后由y 轴射出电场,射出点与原点的最大距离. 解: (1)由于AB 与初速度成45°,所以粒子由AB 线射出磁场时速度方向与初速度成45°角.粒子在磁场中做匀速圆周运动,速率越大,圆周半径越大.速度最大的粒子刚好由B 点射出. 由牛顿第二定律Rv mB qv 2=由几何关系可知 r =L ,得 mqBLv =(2)粒子从B 点垂直电场射入后,在竖直方向做匀速运动,在水平方向做匀加速运动. 在电场中,由牛顿第二定律Eq =ma 此粒子在电场中运动时221at L =d =vt ,得mEqLBL d 2=【例3】如图所示,M 、N 为两块带异种电荷正对的金属板,其中M 板的表面为圆弧面,P 为M 板中点;N 板的表面为平面,Q 为N 板中点的一个小孔.PQ 的连线通过圆弧的圆心且与N 板垂直.PQ 间距为d ,两板间电压数值可由从0到某最大值之间变化,图中只画了三条代表性电场线.带电量为+q ,质量为m 的粒子,从点P 由静止经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直纸面向外,CD 为磁场边界线,它与N 板的夹角为α=45°,孔Q 到板的下端C 的距离为L .当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上. 不计粒子重力,求:(1)两板间电压的最大值Um ;(2)CD 板上可能被粒子打中的区域长度x ; (3)粒子在磁场中运动的最长时间tm .解: (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示. C H =QC =L ,故半径R 1=L又1211R v m B qv = 2121mv qU m =得mL qB U m 222=(2)设轨迹与CD 板相切于K 点,半径为R 2在△AKC 中:2245sin R L R -=︒,得()L R 122-=因KC 长等于()L R 122-=,所以,CD 板上可能被粒子打中的区域长度x 为HK :()L R R x 2221-=-=(3)打在QE 段之间的粒子在磁场中运动时间最长,均为半周期:qBm T t m π==21三、“圆形磁场区”情景下的临界问题 【例4】(2012,揭阳调考)如图,相距为R 的两块平行金属板M 、N 正对放置,s 1、s 2分别为M 、N 板上的小孔,s 1、s 2、O 三点共线且水平,且s 2O =R 。

高中物理之带电粒子在磁场中的运动知识点

高中物理之带电粒子在磁场中的运动知识点

高中物理之带电粒子在磁场中的运动知识点带电粒子在磁场中的运动特点带电粒子在磁场中的运动往往比较复杂,我们只考虑其中几种特殊情况:不考虑粒子本身的重力(一般如:电子、质子、粒子、离子等不考虑它们的重力);磁场为匀强磁场。

①初速度v0与磁场平行:此时洛伦兹力F=0,粒子将沿初速度方向做匀速直线运动。

②初速度与磁场垂直:由于洛伦兹力总与粒子运动方向垂直,粒子在洛伦兹力作用下做匀速圆周运动,其向心力由洛伦兹力提供,所以其轨道半径为,运动周期为。

由此可见:荷质比相同的粒子以相同的速度进入同一磁场,其轨道半径相同;带电量相同的粒子以相同的动量进入同一磁场,其轨道半径相同。

它们运动的周期T与粒子的速度大小无关,与粒子的轨道半径R无关,只要是荷质比相同的粒子,进入同一磁场,其周期相同。

规律方法“一点、两画、三定、四写”求解粒子在磁场中的圆周运动问题(1)一点:在特殊位置或要求粒子到达的位置(如初位置、要求经过的某一位置等);(2)两画:画出速度v和洛伦兹力F两个矢量的方向;(3)三定:定圆心、定半径、定圆心角;(4)四写:写出基本方程带电粒子在匀强磁场中的运算1圆心的确定①因为洛伦兹力指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点,如下图甲的P、M两点)的F洛的方向,其延长线的交点即为圆心.(也可以说是任意两点的切线方向的垂直线交点)②做粒子入射点速度方向的垂直线,做出入射点、出射点连线的中垂线,两线的交点即是圆心O.2半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角)。

并注意以下两个重要的几何特点:①粒子速度的偏向角(φ)等于回旋角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍,φ=α=2θ=ω。

②相对的弦切角(θ)相等,与相邻的弦切角(θ')互补,即θ+θ'=180°。

3粒子在磁场中运动时间的确定利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则注意圆周运动中有关对称规律如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。

高考物理带电粒子在磁场中的运动解题技巧及练习题及解析

高考物理带电粒子在磁场中的运动解题技巧及练习题及解析

高考物理带电粒子在磁场中的运动解题技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m=且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=3.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00U t B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=4.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g所以()(00tan 22H x x x y y θ=-=g 由数学知识可知,当(022x y y = 4.5y cm =时H 有最大值,所以max 9H cm =5.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-6.如图所示,虚线OL与y轴的夹角θ=450,在OL上侧有平行于OL向下的匀强电场,在OL下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q(q>0)的粒子以速率v0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。

带电粒子在磁场中运动的临界值与多解专题课件

带电粒子在磁场中运动的临界值与多解专题课件

例 7 如图所示,宽度为 d 的有界匀强磁 场,磁感应强度为 B,MM′和 NN′是它的 两条边界.现有质量为 m,电荷量为 q 的带电 粒子沿图示方向垂直磁场射入.要使粒子不能 从边界 NN′射出,则粒子入射速率 v 的最大 值可能是多少.
【答案】 (2+ 2)Bmqd(q 为正电荷)或(2- 2)Bmqd(q 为负电
(四)三角形边界磁场 例 4 如图,直角三角形 abc 内有方向垂直 纸面向外的匀强磁场,磁感应强度的大小为 B, ∠a=30°,ac=2L,P 为 ac 的中点.在 P 点 有一粒子源可沿平行 cb 方向发出动能不同的 同种正粒子,粒子的电荷量为 q、质量为 m, 且粒子动能最大时,恰好垂直打在 ab 上.不考 虑重力,下列判断正确的是( )
(一)单面边界磁场 例 1 (多选)如图所示,S 处有一电子源, 可向纸面内任意方向发射电子,平板 MN 垂 直于纸面,在纸面内的长度 L=9.1 cm,中 点 O 与 S 间的距离 d=4.55 cm,MN 与 SO 直线的夹角为θ,板所在平面有电子源的一侧 区域有方向垂直于纸面向外的匀强磁场,磁感应强度 B=2.0×10 -4 T,电子质量 m=9.1×10-31 kg,电量 e=-1.6×10-19 C,不 计电子重力,电子源发射速度 v=1.6×106 m/s 的一个电子,该 电子打在板上可能位置的区域的长度为 l,则( )
已知粒子在磁场中做圆周运动的半径介于a2到 a 之间,从发射粒 子到粒子全部离开磁场经历的时间,恰好为粒子在磁场中做圆周 运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时:
(1)速度的大小; (2)速度方向与 y 轴正方向夹角的正弦值.
【答案】
(1)(2- 26)amqB
6- 6 (2) 10

有界磁场(六类)

有界磁场(六类)
圆心在过入射点跟跟速 度方向垂直的直线上 ①速度较小时,作圆弧 运动后从原边界飞出; ②速度增为某临界值时, 粒子作部分圆周运动其 轨迹与另一边界相切 ③速度较大时粒子作部 分圆周运动后从另一边 界飞出
圆心在磁场原边界上 ①速度较小时,作半圆 运动后从原边界飞出 ②速度增为某临界值时, 粒子作半圆周运动,轨 迹与另一边界相切 ③速度较大时,粒子作 部分圆周运动后,从另 一边界飞出
y Rr 3mv 2qB
二、在条形(平行)边界磁场区中的运动
例2质子以某一速度垂直射入宽度为d的匀强磁场中,穿 出磁场时速度方向与入射方向的夹角为θ, 求带电粒子在 磁场中的运动半径R。
θ
解:如图所示作辅助线,由 几何知识可得
d sin R
θ
d

R
d sin
练习1如图, 匀强磁场的磁感应强度为B,宽度为d, 边界为CD和EF.一电子从CD边界外侧以速率v0垂 直匀强磁场射入,入射方向与CD边界间夹角为θ . 已知电子质量为m,电荷量为e。为使电子能从磁场

其中
CD tan30 OD CD cot 30 5 3cm OD
OA 10 3cm
10 3) 即A点坐标为 (0,
拓展:能求出粒子运动的周期吗?
在反向单边有界磁场区中的运动
练习4在xoy平面内有两个方向相反的匀强磁场。在y轴左 边的磁感应强度为B,右边的磁感应强度为2B。一质量为 m、电量为q的电子以速度v与x轴正方向成60°斜向上的 从原点射出。求电子每运动一个周期在y轴上前进的距离。
r2 1 由图中几何关系 r2+sinθ=a 得:r2=3a π r2 最长时间 t= v 由以上各式联立得: πa m t= 3 2qU

有界磁场区域偏转问题汇总

有界磁场区域偏转问题汇总

直线线边界平行边界圆形边界磁场径向射入,径向射出结论:对准圆心射入,速度越大,偏转角和圆心角都越小,运动时间越短磁聚焦和磁发散磁发散磁聚焦当磁场圆半径R 与轨迹圆半径r 相等时,平行于切线,聚焦于切点最小面积当粒子圆半径R>磁场圆半径r时,粒子在磁场中运动最长时间为弦长对应时间当粒子圆半径R<磁场圆半径r时,粒子在磁场中运动时磁场圆与轨迹圆的交线为粒子圆的直径时,粒子离开磁场时位置距出发点最远动态圆的半径不变,绕圆上一点旋转,此时动态圆的原心为一半径为R的圆。

对应问题类型为:一群粒子以同一速率沿各个方向入射动态圆的半径发生变化,从圆上一点向外扩张。

这类问题抓住两个要点:①刚好穿出磁场边界的条件是带电粒子在磁场中的运动轨迹与边界相切②不管速率变化还是一定,圆周角越大,对应时间越长粒子与边界的范围问题三角形边界多解性问题正方形边界一、带电粒子在圆形磁场中的运动结论1:对准圆心射入,必定沿着圆心射出结论2:对准圆心射入,速度越大,偏转角和圆心角都越小,运动时间越短。

结论3:运动半径相同(v相同)时,弧长越长对应时间越长。

结论4:磁场圆的半径与轨迹圆的半径相同时,“磁会聚”与“磁扩散”题型一、对准圆心射入例1 电视机的显像管中,电子束的偏转是用磁偏转技术实现的。

电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示。

磁场方向垂直于圆面。

磁场区的中心为O,半径为r。

当不加磁场时,电子束将通过O点而打到屏幕的中心M点。

为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多少?要点提示如图所示例2:在圆形区域的匀强磁场的磁感应强度为B,一群速率不同的质子自A点沿半径方向射入磁场区域,如图所示,已知该质子束中在磁场中发生偏转的最大角度为1060,圆形磁场的区域的半径为R,质子的质量为m,电量为e,不计重力,则该质子束的速率范围是多大?要点提示变1.在圆形区域内有垂直纸面向里的匀强磁场.从磁场边缘A点沿半径方向射人一束速率不同的质子,对这些质子在磁场中的运动情况的分析中,正确的是:A.运动时间越长的,在磁场中通过的距离越长B.运动时间越短的,其速率越大C.磁场中偏转角越小的,运动时间越短D.所有质子在磁场中的运动时间都相等参考答案 BC题型二、偏离圆心射入(定圆旋转法)定圆旋转带电粒子从坐标原点以大小不变而方向变化的速度射入匀强磁场中,把其轨迹连续起来观察可认为是一个半径不变的定圆,根据速度方向的变化以入射点为轴在旋转例1 如图所示,磁感应强度为B的匀强磁场垂直于纸面向里,PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。

带电粒子在磁场中运动最小面积问题

带电粒子在磁场中运动最小面积问题

带电粒子在磁场中运动最小面积问题例1.在xOy平面内有许多电子(质量为m,电荷量为e),从坐标原点O不断以相同大小的速度v0沿不同的方向射入第一象限,如图所示.现加上一个垂直于xOy平面的磁感应强度为B的匀强磁场,要求这些电子穿过该磁场后都能沿平行于x轴正方向运动,试求出符合条件的磁场最小面积.例2.一质量为m、带电荷量为q的粒子以速度v0从O点沿y轴正方向射入磁感应强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向夹角30°,如图所示(粒子重力忽略不计).试求:(1)圆形磁场区域的最小面积.(2)粒子从O点进入磁场区域到达b点所经历的时间.(3)b点的坐标.例3.一个质量为m,带+q电量的粒子在BC边上的M点以速度v垂直于BC边飞入正三角形ABC。

为了使该粒子能在AC边上的N点图示 (CM=CN)垂直于AC边飞出三角形ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁场.若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力.试求:(1)粒子在磁场里运动的轨迹半径r及周期T;(2)该粒子在磁场里运动的时间t;(3)该正三角形磁场区域的最小边长;针对训练1.(09年海南高考)如图甲所示,ABCD是边长为a的正方形.质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC边上的任意点入射,都只能从A点射出磁场.不计重力,求:(1)此匀强磁场区域中磁感应强度的大小和方向.(2)此匀强磁场区域的最小面积.2.(09年福建卷)图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X 轴上距坐标原点L=0.50m的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在y 轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)(解析版)

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)(解析版)

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)建议用时:60分钟带电粒子在磁场中的运动A.M带正电,N带负电B.M的速率小于N的速率A.1kBL,0°B3【答案】B【详解】若离子通过下部分磁场直接到达根据几何关系则有:R由:2v qvB mR=可得:qBLv kBLm==根据对称性可知出射速度与当离子在两个磁场均运动一次时,如图乙所示,因为两个磁场的磁感应强度大小均为根据洛伦兹力提供向心力,有:可得:122qBLv kBLm==此时出射方向与入射方向相同,即出射方向与入射方向的夹角为:通过以上分析可知当离子从下部分磁场射出时,需满足:此时出射方向与入射方向的夹角为:A.从ab边射出的粒子的运动时间均相同B.从bc边射出的粒子在磁场中的运动时间最长为C.粒子有可能从c点离开磁场D.若要使粒子离开长方形区域,速率至少为可见从ab射出的粒子做匀速圆周运动的半径不同,对应的圆心角不相同,所以时间也不同,故B.从bc边射出的粒子,其最大圆心角即与A .粒子的速度大小为2qBdmB .从O 点射出的粒子在磁场中的运动时间为C .从x 轴上射出磁场的粒子在磁场中运动的最长时间与最短时间之比为D .沿平行x 轴正方向射入的粒子离开磁场时的位置到得:R d=由洛仑兹力提供向心力可得:Bqv m=得:qBd v m=A 错误;A .如果0v v >,则粒子速度越大,在磁场中运动的时间越长B .如果0v v >,则粒子速度越大,在磁场中运动的时间越短C .如果0v v <,则粒子速度越大,在磁场中运动的时间越长D .如果0v v <,则粒子速度越大,在磁场中运动的时间越短【答案】B该轨迹恰好与y 轴相切,若上移,可知,对应轨迹圆心角可知,粒子在磁场中运动的时间越短,故CD .若0v v <,结合上述可知,飞出的速度方向与x 轴正方向夹角仍然等于A .粒子能通过cd 边的最短时间B .若粒子恰好从c 点射出磁场,粒子速度C .若粒子恰好从d 点射出磁场,粒子速度7.(2024·广西钦州·模拟预测)如图所示,有界匀强磁场的宽度为粒子以速度0v垂直边界射入磁场,离开磁场时的速度偏角为( )A.带电粒子在匀强磁场中做圆周运动的轨道半径为B.带电粒子在匀强磁场中做圆周运动的角速度为C.带电粒子在匀强磁场中运动的时间为D.匀强磁场的磁感应强度大小为【答案】B【详解】A.由几何关系可知,带电粒子在匀强磁场中做圆周运动的轨道半径为:A.该匀强磁场的磁感应强度B.带电粒子在磁场中运动的速率C.带电粒子在磁场中运动的轨道半径D.带电粒子在磁场中运动的时间C.根据几何关系可得:cos30aR = o所以:233R a =故C正确;AB.在磁场中由洛伦兹力提供向心力,即:A.从c点射出的粒子速度偏转角度最大C.粒子在磁场运动的最大位移为10.(2024·四川乐山·三模)如图所示,在一个半径为面向里的匀强磁场,O 为区域磁场圆心。

高考物理电磁大题(含答案)

高考物理电磁大题(含答案)

高考电磁大题(含答案)1. (09年全国卷I)26 (21分)如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于xy平面向外。

P是y轴上距原点为h的一点,N。

为x轴上距原点为a的一点。

Ah a是一块平行于x轴的挡板,与x轴的距离为2, A的中点在y轴上,长度略小于2。

带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大y小不变。

质量为m,电荷量为q (q>0)的粒子从P点瞄准No点入射,A—最后又通过P点。

不计重力。

求粒子入射速度的所有可能值。

• •・°・•粒子射出磁场与下一次进入磁场位置间的距离x2始终不变,与No N\相等.由图可以看出心=a•• (3)设粒子最终离开磁场时,与档板相碰n次(心0、1、2、3…)-若粒子能回到P点,由对称性,出射点的x坐标应为- a,即(” +1* - nx2 = la……⑷由(3X4)两式得xl = —€7……⑸H + 1若粒子与挡板发生碰撞:有册-七>7……(⑤4联立(3X4X6)得n<3...•• (7)联立(1X2X5)得qB n + 2 z xv = -------------------- a (8)2msinO n +1把sin & = . h代入⑻中得(g)nui2. (09年全国卷II ) 25. (18分)如图,在宽度分别为厶和厶的两个毗邻的条形区域分别有 匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。

—带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场, 然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上 的Q 点射岀。

已知PQ 垂直于电场方向,粒子轨迹与电、磁场分界 线的交点到PQ 的距离为d o 不计重力,求电场强度与磁感应强度大 小之比及粒子在磁场与电场中运动时间之比。

答案: 解析:本题考查带电粒子在有界磁场中的运动。

粒子在磁场中做匀速圆周运动,如图所示.由于粒子在分界线处的速度与分界线垂直、圆心0应在分界线上,0P 长度即为粒子运动的圆弧的半径R.由几 X xZ :\XX何关系得/ : V “ j xf *乂X心=年+(—小2………①卜E P 0设粒子的质量和所带正电荷分别为m 和q,由洛仑兹力公式和牛顿第二定律得qvB = m —R...... ②设P 为虚线与分界线的交鼠ZPOP' = a 厕粒子在磁场中的运动时间为人=——……③式中有sina =丄………④粒子进入电场后做类平抛运动:其初速度为v,方向垂直于电场.设粒 R 子的加速度大小为a 由牛顿第二定律得 ............... ®由运动学公式有d = -at 2……⑥/2 = vt 2………⑦片=3阿血 +「归 (1)4mhv, = ~qBc '^r -h -ji = 2 ......................... (03mhqvB = — ④由陋飽式得严曇az 舟)3. (09年天津卷)11.(18分)如图所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下 方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy 平面向里,电场线平行于y 轴。

带电粒子在磁场中的运动

带电粒子在磁场中的运动

θ O
B
R
比较学习: 这点与带电粒子在匀强电场中的偏转情况一 样吗?
◆带电粒子在矩形磁场区域中的运动
B v
d o
圆心在磁场原边界上 B
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。 量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
Bx
z
Vz
由于磁场的不均匀, 洛仑兹力的大小要变 化,所以不是匀速圆 周运动。且半径逐渐 变小。
极光
带电粒子(如宇宙射线的 带电粒子)被地磁场捕获, 绕地磁感应线作螺旋线运 动,当太阳黑子活动引起空间 磁场的变化,使粒子在两 极处的磁力线引导下,在 两极附近进入大气层,能 引起美妙的极光。
地轴
带电粒子在匀强磁场中的匀速圆周运动解决思路
带电粒子在磁场中的螺旋线运动
2m 螺距 h V//T V sin qB V和 V//分别是速度在平行于磁场方向
的分量和垂直于磁场的分量。 匀速圆周运动的半径仅与速度的垂直分量有关。
* 磁聚焦magnetic focusing
一束发散角不大的带电粒子 束,若这些粒子沿磁场方向 的分速度大小又一样,它们 有相同的螺距,经过一个周 期它们将重新会聚在另一点 这种发散粒子束会聚到一点 的现象叫磁聚焦。
①速度较小时,作圆周运动通过射入点; ②速度增加为某临界值时,粒子作圆周 运动其轨迹与另一边界相切;③速度较 大时粒子作部分圆周运动后从另一边界 飞出
量变积累到一定程度发生质变,出现临界状态.
(1)偏向角(回旋角)θ
v
B
d sin r
(2)侧移距离y
r

2022届高考物理二轮专题讲义:带电粒子在磁场中运动

2022届高考物理二轮专题讲义:带电粒子在磁场中运动

带电粒子在磁场中运动1方法梳理(1)力与运动观(牛顿第二定律) qvB=m v 2r(2)运动时间T=2πmqB t=θ2πT2考点解读 (1)两类边界 ①直线边界角度关系:θ=β=2α(圆形角等于速度偏转角等于弦切角2倍)弦长关系:优弧(弦长越短,圆心角越大),劣弧(弦长越长,圆心角越大)例1:如图,圆心在O 点的半圆形区域ACD (CO⊥AD )内存在着方向垂直于区域平面向外、磁感应强度为B 的匀强磁场,一带电粒子(不计重力)从圆弧上与AD 相距为d 的P 点,以速度v 沿平行直径AD 的方向射入磁场,速度方向偏转60°角后从圆弧上C 点离开。

则可知(B)A .粒子带正电B .直径AD 的长度为4dC .粒子在磁场中运动时间为πd 3vD .粒子的比荷为vBd ②圆形边界a 沿半径射入,沿半径射出。

∠AOˊB + ∠AOB=1800例2:如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。

现将带电粒子的速度变为13v ,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间②圆形边界a轨迹半径r等于磁场圆半径R,粒子平行射入磁场,汇聚一点,反之亦然。

例3:如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板。

从圆形磁场最高点Р垂直磁场正对着圆心O射入带正电的粒子,且粒子所带电荷量为q、质量为m,不考虑粒子重力,关于粒子的运动,以下说法正确的是(BD) A.粒子有可能始终在磁场中运动而不再射出磁场B.出磁场的粒子,其出射方向的反向延长线也一定过圆心OC.粒子在磁场中通过的弧长越长,运动时间也越长D.出射后垂直打在MN上的粒子,入射速度一定为v=qB Rm2放缩圆例4:如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场,在ad边中点O,方向垂直磁场向里射入一速度方向跟ad边夹角θ=30°、大小为v0的带正电粒子,已知粒子质量为m,电量为q,ad边长为L,ab边足够长,粒子重力不计,求:粒子能从ab边上射出磁场的v0大小范围.qBL 3m ≤v0≤qBLm2旋转圆例5:如图,磁感应强度为B的匀强磁场垂直于纸面向里,PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。

带电粒子在磁场中运动的极值问题

带电粒子在磁场中运动的极值问题

解析 (1)由粒子的运行轨迹,利用左手定则可
知,该粒子带负电荷.
粒子由A点射入,由C点飞出,其速度方向改变了90°,
则粒子轨迹半径R =r
又qvB=m v 2
R 则粒子的比荷
q
v
m Br
(2)粒子从D点飞出磁场速度
方向改变了60°角,故AD弧所
对圆心角为60°,如右图所示.
粒子做圆周运动的半径
R′=rcot 30°= r 3 又R′= mv
(3)带电粒子在磁场中的运动周期
T= 2 π m
qB
粒子在两个磁场中偏转的角度均为
π 4
,在磁场中的运动
总时间
t= 1 T π m 4 2qB
=
3.14 6.641027 2 3.21019 5102
s
=6.5×10-7 s
反思总结
返回
小 结 1.带电粒子进入有界磁场,运动 轨迹为一段弧线. 2.当同源粒子垂直进入磁场的运动轨迹
又由几何关系知磁场区域的半 径为 R 3 L 3
y
30°
P
LO’ A
x O vQ
12月23日作业
1.如图14所示,边长为L的等边三角形ABC为两个
有界匀强磁场的理想边界,三角形内的磁场方向
垂直纸面向外,磁感应强度大小为B,三角形外
的磁场(足够大)方向垂直纸面向里,磁感应强度
大小也为B.把粒子源放在顶点A处,它将沿∠A
(1)荧光屏上光斑的长度.
(2)所加磁场范围的最小面积.
解析 (1)如右图所示,
求光斑的长度,关键是找
到两个边界点沿弧OB运
动到P,初速度方向沿y轴
正方向的电子,初速度方向沿x轴正方向的电子,沿

带电粒子在电磁场中的运动

带电粒子在电磁场中的运动

带电粒子在电磁场中的运动[知识精讲]带电粒子在电磁场中运动的问题包括两种基本情形:一种是先后分别在电场、磁场中运动,另一种是在电场和磁场的复合场中运动.对于第一种情形要注意电场力和洛伦兹力的特性所决泄的粒子运动性质的差别,带电粒子在匀强电场中受电场力的作用做匀变速运动,而在匀强磁场中受洛伦兹力的作用做匀速圆周运动,这种情形通常是利用电场来对带电粒子加速后获得一眾的速度,然后在磁场中做匀速圆周运动,因此对于这种情况主要是处理好带电粒子从一场过渡到另一场的速度关系.对于第二种情形,要注意洛伦兹力与运动速度有关,所以粒子的运动和受力相互制约,当粒子的运动速度发生变化时,粒子的受力情况必然发生变化,因此带电粒子要么做匀速直线运动,要么就做变加速曲线运动,当粒子做变加速曲线运动时,要利用洛伦兹力不做功的特点,用功能关系解决问题.[问题稱析][问题1]如图所示,金属圆筒的横截面半径为斤,简内分布有匀强磁场,磁场方向垂直纸面,磁感应强度为万,磁场下面有一加速电场,一个质量为m(重力不计),电量为q的带电粒子,在电场作用下,沿图示轨迹由静止开始从"点运动经过金属圆筒的小孔尸到" 点,在磁场中,带电粒子的速度方向偏转了〃二60°,求加速电场两极板间的电压.解析:带电粒子经过电场加速后获得一左的速度,进入磁场后做匀速圆周运动,根据带电粒子的偏转角度,可以求出带电粒子做圆周运动的半径大小,然后求出它的运动速度, 从而求出加速电压.根据带电粒子进入磁场和到达艸点的速度方向,作岀与速度方向垂直的半径,确泄轨迹圆的圆心,由几何知识可得带电粒子做圆周运动的半径为2^/?tan60°二爲 R带电粒子在做圆周运动过程中,由洛伦兹力提供向心力,所以m\fl…--- 二 qvB2・带电粒子经电场加速后,电势能转化为带电粒子的动能,所以2由①②③式可得* 3届22m[问题2]如图所示,x轴上方有一磁感应强度为5方向垂直于纸而向里的匀强磁场, x轴下方有电场强度为正方向竖直向下的匀强电场.现有一质量为m,电量为q的粒子从y 轴上某一点由静止开始释放,若重力忽略不讣,为使它能到达x轴上位置为的点Q求:y■ X XSx X XX X X KQKrrm(1)粒子应带何种电荷?(2)释放点的位置坐标.(3)从释放到抵达J点经历的时间.解析:从静止开始释放的带电粒子要起动,应放在电场中,所以该带电粒子应放在一y 轴上,因为x轴下方的电场方向是竖直向下的,而带电粒子在x轴方向有位移,带电粒子要运动到磁场中,所以该带电粒子应带负电荷.该粒子释放后,在电场力的作用下,沿卩轴正方向匀加速运动到0点,继而进入X轴上方的匀强磁场中做匀速圆周运动,若苴轨道半径恰好等于彳,则恰好能到达0点,从岀发点到0点的轨迹是一条直线加上半个圆周,假如释放点离0点的距离近一些,粒子进入磁场的速度就小一点,粒子运动半周后到不了0点而要再次进入电场,做减速运动,速度减为零后反向加速再次以原速率进入磁场,开始做第二个半圆周运动,如果粒子在磁场中的轨道半径为士,则第二个半圆运动结束时,刚好到达0点,以此类推,粒子岀发点向0逐4渐靠近,又要能到达。

带电粒子在磁场中的运动解析

带电粒子在磁场中的运动解析

半径不等
例2、质子和α粒子以相同的动能垂直进入同 一磁场,它们能分开吗?
轨道是相同的,即分不开
3.带电粒子在匀强磁场中的运动周期 由圆周运动的周期与周长和速率的关系可得
2r T= v
mv 因r= Bq
可推出带电粒子在磁场中的周期
T=
2m Bq
讨论:
1)带电粒子在磁场中做圆周运动的周期大小 与哪些因素有关?关系如何?
P
第二部分:一些仪器的应用
速度选择器、质谱仪、磁流体发电机 电磁流量计、回旋加速器、霍尔效应
一、速度选择器
分析:电荷进入电场,受垂直向下的电场力作用而偏转 若使它不发生偏转,电荷受所加磁场的洛仑兹力方向一 定与电场力方向相反,根据左手定则和洛仑兹力方向确 定磁场方向:垂直纸面、背向读者,如图3所示。 因为 f洛=F安
∴ v0 < q B l / 4 m 或 v0 > 5 q B l / 4 m
R- l/2 a
R
b v l
c
l
返回
d
练习1.一质子及一α粒子,同时垂直射入同一匀强磁场 中.
(1)若两者由静止经同一电势差加速的,则旋转半径之 比为 1 : 2 ;(2)若两者以相同的动量进入磁场 中,则旋转半径之比为 2:1 ;(3)若两者以相同 的动能进入磁场中,则旋转半径之比为 1:1 ;(4) 若两者以相同速度进入磁场,则旋转半径之比 为 1: 2 。
φ1
θ
φ2
返回
4. 如图所示,M、 N为一块薄金属板,截面厚度为 d , 水平放置在磁感应强度为B的匀强磁场中,一个α粒子( 电量为q,质量为m),由A点垂直于板面飞入磁场中其 运动轨迹如图所示,R 和r 分别表示两圆的半径, (1) 匀强磁场的方向如何? (2)α粒子每次穿过金属板所受的平均阻力为多少? (3)若图中 r=0.9R ,则α粒子可穿过板几次? (4)设α粒子从A点运动开始计时,至少要多少时间才能停 下?(穿透时间不计.)

专题8 带电粒子在边界为规则图形的匀强磁场中的运动(解析版)

专题8 带电粒子在边界为规则图形的匀强磁场中的运动(解析版)

专题八 带电粒子在边界为规则图形的匀强磁场中的运动基本知识点1.在圆形匀强磁场区域内,沿径向对准磁场圆心射入的粒子一定沿径向射出。

如图所示,磁场圆半径为R ,粒子轨迹圆半径为r ,带电粒子从P 点对准磁场圆心O 射入,由几何知识容易证明粒子从Q 点飞出的速度方向的反向延长线必过磁场圆心O 点。

2.带电粒子入射方向偏离圆形匀强磁场圆心射入的问题处理这类问题时一定要分清磁场圆和轨迹圆,并要注意区分轨迹圆的圆心和圆形边界匀强磁场的圆心。

甲 乙(1)当粒子沿图甲所示轨迹运动时,粒子在磁场中运动时间最长、速度偏转角最大。

(2)由图甲看出,在轨迹圆半径和速度偏转角一定的情况下,可实现此偏转的最小磁场圆是以PQ 为直径的圆。

(3)如图乙所示,由几何知识很容易证明:当r =m v qB=R 时,相同带电粒子从P 点沿纸面内不同方向射入磁场,它们离开磁场时的方向却是平行的。

例题分析一、带电粒子在磁场中运动时间的确定方法例1 如图所示,半径为r 的圆形空间内,存在着垂直于纸面向外的匀强磁场,一个带电粒子(不计重力),从A 点沿半径方向以速度v 0垂直于磁场方向射入磁场中,并由B 点射出,且∠AOB =120°,则该粒子在磁场中运动的时间为( )A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0(对应训练)如图所示,在圆形区域内,存在垂直纸面向外的匀强磁场,ab 是圆的一条直径。

一带正电的粒子从a 点射入磁场,速度大小为2v ,方向与ab 成30°角时恰好从b 点飞出磁场,粒子在磁场中运动的时间为t 。

若仅将速度大小改为v ,则粒子在磁场中运动的时间为(不计带电粒子所受重力)( )A .3tB .32tC .12t D .2t 二、带电粒子在圆形边界匀强磁场中的运动例2 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。

专题:带电粒子在有界磁场中的运动

专题:带电粒子在有界磁场中的运动

mm
qU 1 mv2 2
U 2qB2R2 m
600
r
O2
磁场,入射方向与CD夹角θ,为了使电子能从磁场
的另一侧边界EF射出,v应满足的条件是:
A.v>eBd/m(1+sinθ) B.v>eBd/m(1+cosθ) C.v> eBd/msinθ D.v< eBd/mcosθ
d r(1 cos )
C
EB
. v θO
B
D
F
qvB m v2 r
思考:求电子在磁场中运动的 最长时间是多长?
专题:带电粒子在有界 磁场的运动
双边界磁场(一定宽度的无限长磁场)
例、一正离子,电量为q ,质量为m, 垂直射入磁感应强度为B、宽度为d
的匀强磁场中,穿出磁场时速度方向 与其原来入射方向的夹角是30°,
d
v
30°
v
(1)离子的运动半径是多少?
θ
(2)离子射入磁场时速度是多少? O
(3)穿越磁场的时间又是多少?
2
O’
PB
qB
Bq
⑵ 2 vt vt Bq t
r mv m
S
qB
或 t 2 2m 2m 2 qB qB
qB t
2m
3.如图直线MN上方有磁感应强度为B的匀强磁场。正、 负电子同时从同一点O以与MN成30°角的同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射 出时相距多远?射出的时间差是多少?
①速度较小时粒子作部分圆周运动
后从原边界飞出;②速度在某一范
围内从侧面边界飞;③速度较大时
粒子作部分圆周运动从另一侧面边
界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

孔垂直于ad边射入盒内。粒子经磁场偏转后恰好从e孔
射出。若已知fd=cd=L,不计粒子的重力和粒子之间
的相互作用力。请你根据上述条件求出带电粒子的比
荷q / m。
a
b
fv
d e Mc
解:带电粒子经电场加速
qU 1 mv2 v 2
2qU m
f
v
R
粒子进入磁场后做匀速圆周运动,轨迹如图。 O R
设圆周半径为R ,在三角形ode中 ,有
边极板间中点处垂直磁感线以速度v水平射入磁场,欲
使粒子不打在极板上,可采用的办法是: A.使粒子的速度v<BqL/4m;
AB
B.使粒子的速度v>5BqL/4m;
O2
C.使粒子的速度v>BqL/m; D.使粒子速度BqL/4m<v<5BqL/4m。
r2
r2
v
O1
+q v
粒子擦着上板从左边穿出时,圆
O2
围内从侧面边界飞;③速度较大时
粒子作部分圆周运动从另一侧面边
界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
1.如图所示,正方形区域abcd中充满匀强磁场,磁
场方向垂直纸面向里。一个氢核从ad边的中点m沿着
既垂直于ad边又垂直于磁场的方向,以一定速度射入
磁场,正好从ab边中点n射出磁场。若将磁场的磁感
三.带电粒子在矩形边界磁场中的运动 圆心
在过
入射
B
v
d
点跟 跟速
c 度方
向垂
o
圆心在磁场原边界上
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。
θv
a
B
直的 直线

b
①速度较小时粒子作部分圆周运动
后从原边界飞出;②速度在某一范
拓展:一大群这种带电粒子沿平行于板的方向从各个 位置以速度v从金属板的左端射入板间,为了使这些正
电荷都不从板间穿出,这些带电粒子的速度需满足什
么条件?
5d
+v
+v
+v
+v
B
M
d
N
带电粒子沿逆时针方向做半径相同的匀速圆周运动,如 果从下板进入场区的带电粒子不从板间穿出,则这些正 电荷就都不从板间穿出.
a
b
O
V0
d
c
L 2
r1 (1
sin
300 )
r1
L 3
v1
qBr1 m
qBL 3m
a
600
O 300
b r2 L
v2
qBr2 m
qBL m
θ V0 d
qBL v qBL
c 3m
m
t
300 0 360 0
T
5 6
2m
qB
5m
3qB
2θ 2θ
θ
V0
验装置如图所示。abcd是一个长方形盒子,在ad边和
cd边上各开有小孔f和e,e是cd边上的中点,荧光屏M
贴着cd放置,能显示从e孔射出的粒子落点位置。盒子
内有一方向垂直于abcd平面的匀强磁场,磁感应强度
大小为B。粒子源不断地发射相同的带电粒子,粒子的
初速度可忽略。粒子经过电压为U的电场加速后,从f
d
e
(L R)2 ( L)2 R2 R 5 L
2
v2
8
又 qvB m
R
联立求解,得
q 128U m 25B2L2
3.如图所示,一足够长的矩形区域abcd内充满方向 垂直纸面向里的、磁感应强度为B的匀强磁场,在 ad边中点O方向垂直磁场射入一速度方向跟ad边夹 角θ=300 、大小为v0的带电粒子,已知粒子质量为 m、电量为q,ab边足够长,ad边长为L,粒子的重 力不计。求:⑴.粒子能从ab边上射出磁场的v0大小 范围。⑵.如果带电粒子不受上述v0大小范围的限制, 求粒子在磁场中运动的最长时间。
ac:ad= 2:1
rqDcv.从:BrT两d 孔m射22qa出vBr:m2的a电t子v2在:12容qmB器cTr中:运dr动的a2半:径q之mvB1比:为2rvadc:·rdv=2:B1
b c
思考:要想使电子从射到ad边上,电子的速度应满 足什么条件?射到cd边上呢?
4. 某同学设计了一个测定带电粒子比荷的实验,实
心在O1点,有
r1
L 4
v2
r2
v
r2
qvB m r
O1 +q
v1
qBr1 m
qBL 4m
v qBL 4m
v
粒子擦着上板从右边穿出时,圆心在O2点,有
r22
L2
(r
L)2 2
r2
5L 4
v2
qBr2 m
5qBL 4m
5qBL v 4m
粒子不打在极板上可能从左端穿出,也可能从右端穿出,必须全面分析问题.
应强度变为原来的2倍.其他条件不变,则这C
B.在n、a之间某点 C.a点
a nb
D.在a、m之间某点
mv B
d
c
2.如图所示.长为L的水平极板间,有垂直纸面向内的
匀强磁场,磁感强度为B,板间距离也为L,板不带电,
现有质量为m,电量为q的带正电粒子(不计重力),从左
eBd v 3eBd
2m
m
3.如图,正方形容器处在匀强磁场中,一束电子从a孔垂直于
磁场射入容器中,其中一部分从c孔射出,则: A.从两孔射出的电子速率之比为vc:vd=2:1
ABD
B.从两孔射出的电子在容器中运动所用的时间之比为tc:td=1:2
C.从两孔射出的电子在容器中运动时的加速度大小之比为
相关文档
最新文档