因式分解提公因式法

合集下载

北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)

北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)

= −(4 ∙ 6 2 − 4 ∙ 3 + 4 ∙ 7)
= −4(6 2 − 3 + 7).
易错注意:1.公因式要提尽;
2.公因式是某项时剩余的系数1别忘;
错误
提公因式后括号里少了一项.
正确解:原式=3x·
x-6y·
x+1·x
=x(3x-6y+1)
请你判断小明的解法有误吗?
因式分解: - x2+xy-xz.
解:原式= - x(x+y-z).
错误
提出负号时括号里的项
没变号
正确解:原式= - (x2-xy+xz)
=- x(x-y+z)
探索新知
巩固练习 将下列各式分解因式
项式的各项变号;
2.公因式的系数是多项式各项__________________;
系数的最大公约数
相同的字母
3.字母取多项式各项中都含有的____________;
4.相同字母的指数取各项中最小的一个,即 最低次幂
_________.
合作探究
因式分解:a(x-3)+2b(x-3)
(1)多项式的公因式是什么?
B.6(p+q)2-2(p+q)=2(p+q)(3p+q-1)
C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)
D.3x(x+y)-(x+y)2=(x+y)(2x+y)
4.用提公因式法因式分解:
(1)6p(p+q)-4q(p+q);
解:6p(p+q)-4q(p+q)
=2(p+q)(3p-2q).
A.x4
B.x3+1
C.x4+1
D.x3-1

《因式分解提公因式法》教案

《因式分解提公因式法》教案

《因式分解-提公因式法》教案第一章:教学目标1.1 知识与技能理解因式分解的概念和意义掌握提公因式法的基本步骤和应用1.2 过程与方法能够运用提公因式法对简单多项式进行因式分解能够运用提公因式法解决实际问题1.3 情感态度与价值观培养学生的逻辑思维能力和解决问题的能力激发学生对数学的兴趣和学习的积极性第二章:教学内容2.1 课题引入引入因式分解的概念,通过具体例子让学生感受因式分解的意义2.2 教学方法通过小组讨论、师生互动的方式,引导学生主动探究提公因式法2.3 教学内容讲解提公因式法的基本步骤:找出公因式、提出公因式、分解剩余部分举例讲解提公因式法的应用,让学生通过实际例题理解并掌握提公因式法第三章:教学重点与难点3.1 教学重点掌握提公因式法的基本步骤和应用3.2 教学难点如何准确找出公因式和分解剩余部分第四章:教学过程4.1 课堂导入引入因式分解的概念,通过具体例子让学生感受因式分解的意义4.2 课堂讲解讲解提公因式法的基本步骤:找出公因式、提出公因式、分解剩余部分举例讲解提公因式法的应用,让学生通过实际例题理解并掌握提公因式法4.3 课堂练习让学生独立完成一些简单的因式分解题目,巩固所学知识4.4 课堂小结对本节课的内容进行总结,强调提公因式法的基本步骤和应用第五章:课后作业5.1 作业布置布置一些因式分解的题目,让学生进一步巩固提公因式法的应用5.2 作业反馈对学生的作业进行及时的反馈,指出错误并给予指导,帮助学生巩固所学知识。

第六章:教学案例分析6.1 案例选取选取几个典型的因式分解题目,进行分析讲解6.2 案例分析通过分析案例,让学生理解并掌握提公因式法在实际题目中的应用第七章:课堂互动与讨论7.1 互动与讨论主题让学生分组讨论,分享各自在练习中遇到的困难和解决方法7.2 互动与讨论组织组织学生进行小组讨论,鼓励学生发表自己的观点和想法第八章:拓展与提高8.1 拓展内容讲解一些提公因式法的拓展知识,如交叉相乘法等8.2 提高练习给学生布置一些有一定难度的因式分解题目,提高学生的解题能力第九章:教学评价9.1 评价方式采用课堂练习、课后作业和小组讨论等方式对学生的学习情况进行评价9.2 评价内容对学生的知识掌握、解题能力和团队合作能力进行评价第十章:教学总结10.1 总结本节课的重点内容总结提公因式法的基本步骤和应用,强调其在因式分解中的重要性10.2 对学生的学习情况进行评价和反馈对学生的学习情况进行总结,提出优点和不足之处,鼓励学生继续努力。

因式分解和提公因式法

因式分解和提公因式法

因式分解和提公因式法因式分解是代数中的一种重要的运算方法,在解题过程中往往可以起到简化问题、求解方程、找出公因数等作用。

而提公因式法是因式分解的一种特殊形式,通过提取公因式来简化多项式的表达式。

本文将详细介绍因式分解和提公因式法的概念、原理以及应用。

一、因式分解的概念和原理1.1 因式分解的概念因式分解是将一个多项式拆解成若干个因式的乘积,其中每个因式都是多项式的一个因子。

通过因式分解,我们可以将复杂的多项式化简为简单的因子形式,便于进一步求解方程、计算和进行其他代数运算。

1.2 因式分解的原理因式分解的原理是根据多项式的特点和运算规律,将其拆解为不可再分解的因子相乘的形式。

常用的分解方法有提取公因式法、配方法、根据特殊公式和因式定理等。

二、提公因式法的概念和步骤2.1 提公因式法的概念提公因式法是一种较为常见且简便的因式分解方法,通过提取多项式中的公因式,将多项式拆解为公因式和剩余部分的乘积。

这样可以达到简化表达式的效果,从而便于求解方程或进行其他计算。

2.2 提公因式法的步骤步骤一:观察多项式中是否存在公因式;步骤二:提取出公因式,并在多项式外面加上括号,表示公因式;步骤三:将多项式中去掉公因式后的部分作为括号内的剩余部分;步骤四:将公因式和剩余部分用乘号连接起来,得到最终的因式分解式。

三、因式分解和提公因式法的应用3.1 解方程因式分解和提公因式法在解方程中经常被使用。

通过因式分解,可以将原方程化简为简单的因子形式,从而更容易求解。

例如,对于二次方程ax^2 + bx + c = 0,如果可以进行因式分解成(a'x + b')(c'x + d') = 0,那么可以根据方程因式乘积为零的性质,得到x的取值。

3.2 简化计算在进行复杂的数学计算时,因式分解和提公因式法可以起到简化计算的作用。

通过将多项式化简为因子形式,可以减少计算的复杂性。

特别是在涉及多次相同运算的情况下,将公因式提取出来可以减少重复计算。

因式分解———提公因式公式法

因式分解———提公因式公式法

因式分解———提公因式公式法因式分解是数学中的一个重要的方法,它可以将一个多项式拆分成更简单的乘积形式。

常用的因式分解方法有提公因式法和公式法。

一、提公因式法提公因式法是一种常用的因式分解方法,它的基本思想是找出多项式中的公因式,并将其提取出来。

下面以一个具体的例子来说明:例题:将多项式3x^2+9x分解因式。

解题步骤:1.观察多项式中的每个项,找出它们的公因式。

在这个例子中,3和9都是3的倍数,所以可以提取出公因式3来,即3x^2+9x=3(x^2+3x)。

2.检查提取出的公因式是否是多项式的最大公因子。

这一步其实是用求最大公因子的方法来验证的。

在这个例子中,公因式3是最大公因子,因为3x^2和3x都可以被3整除,而且没有其他的公因子。

3.将提取出来的公因式和剩下的部分组合在一起。

在这个例子中,可以将公因式3和剩下的部分(x^2+3x)组合在一起,即3(x^2+3x)。

综上所述,多项式3x^2+9x可以分解因式为3(x^2+3x)。

二、公式法公式法是因式分解中的另一种常用方法,它适用于具有特定形式的多项式。

下面以一个具体的例子来说明:例题:将多项式x^2+4x+4分解因式。

解题步骤:1.观察多项式的各个项的系数。

在这个例子中,x^2的系数为1,4x的系数为4,4的系数为42.检查多项式是否具有特定形式。

在这个例子中,多项式的形式为x^2+4x+4,它的形式和公式(a+b)^2非常相似。

3.根据公式(a+b)^2,将多项式进行分解。

根据公式(a+b)^2 = a^2 + 2ab + b^2,可以将多项式x^2 + 4x + 4分解为(x+2)^2综上所述,多项式x^2+4x+4可以分解因式为(x+2)^2综合练习:1.将多项式6x^2+9x+3分解因式。

解:可以观察到,多项式的各个项的系数都是3的倍数,所以可以提取公因式3,即6x^2+9x+3=3(2x^2+3x+1)。

2.将多项式x^3-8分解因式。

因式分解-提取公因式法

因式分解-提取公因式法
因式分解-提取公因式法
因式分解是数学中的一种重要技巧,通过提取公因式,可以简化复杂的表达 式,更容易进行后续运算。
提取公因式法的定义
提取公因式法是一种因式分解的方法,通过找出表达式中的公因式,将其提取出来,从而简化表达式。
提取公因式法的基本原理
1 寻找公因式
观察表达式中的各项,找 出它们的共同因子。
将3x+6分解为3(x+2)。
练习二
将4y+8分解为4(y+2)。
练习三
将5z+10分解为5(z+2)。
其他因式分解方法的比较
提取公因式法
适用于有公因式的表达式,简 化运算。
配方法
适用于二次型的因式分解。
分组分解法
适用于四项的因式分解,通过 分组化简表达式。
提取公因式法的应用和意义
提取公因式法在代数表达式的化简、解方程、因式分解、展开式等方面有着 广泛的应用。它可以帮助简化运算、找出规律、化简复杂的代数式。
2 提取公因式
将公因式提取出来,得到 一个简化的表达式。
3 化简表达式
对去除公因式后的表达式 行进一步化简。
提取公因式法的步骤与例子
1
步骤一
观察各项中的公因子,将其提取。
2
步骤二
对剩余项进行化简,如需要可以应用其他因式分解方法。
3
例子
例如,将2x+4分解为2(x+2)。
提取公因式法的练习题
练习一
结论和总结
提取公因式法是一种简化代数表达式的重要工具,通过寻找和提取公因式,可以简化运算、化简表达式、发现 规律,并在各种数学问题中应用广泛。

因式分解的四种方法

因式分解的四种方法

因式分解的四种方法
1. 因式分解法一:提取公因式法
这种方法适用于多项式中存在公共因式的情况。

首先,找出多项式中的公共因式,然后将其提取出来,在剩下的部分进行进一步的因式分解。

例如,对于多项式2x² + 4x,可以提取公因式2x,得到2x(x + 2)。

2. 因式分解法二:二次因式法
这种方法适用于多项式中存在二次因式的情况。

具体步骤是将多项式进行因式分解,将其表示为一个二次因式乘以一个一次因式的形式。

例如,对于多项式x² - 4,可以通过差平方公式进行因式分解,得到(x - 2)(x + 2)。

3. 因式分解法三:分组法
这种方法适用于多项式中存在四项以上的情况。

具体步骤是将多项式中的项进行分组,然后在每个组内因式分解,最后再进行合并。

例如,对于多项式x³ + 8y³ + 2xy² + 16y²,可以将其分为(x³ + 2xy²) + (8y³ + 16y²),然后在每个组内因式分解,得到x(x² + 2y²) + 8y²(y + 2),最后合并得到(x + 2y)(x² + 8y²)。

4. 因式分解法四:完全平方式
这种方法适用于多项式是平方差的形式。

具体步骤是将多项式表示为两个完全平方数的差,然后应用差平方公式进行因式分解。

例如,对于多项式x⁴ - 16,可以将其表示为(x²)² - 4²,然后应用差平方公式得到(x² - 4)(x² + 4)。

因式分解-提公因式法

因式分解-提公因式法
例如,我们可以使用提公因式法对多项式 4x^2 - 8x 进行因式分解。 首先,我们找到多项式中的公因式 4x。 然后,我们提取公因式得到:4x(x - 2)。 最后,我们对剩余部分 x - 2 进行因式分解。 因此,多项式 4x^2 - 8x 的因式分解结果为:4x(x - 2)。
提公因式法的应用场景
• 可提取公因式简化 多项式
• 需要进一步分解剩 余部分
配方法
• 适用于二次方程式 • 通过转化为平方完
成因式分解 • 适用范围有限
根式法
• 适用于含有平方根 的多项式
• 通过提取平方根进 行因式分解
• 限制较多
提公因式法的优点
简单易用
提公因式法是一种较为简单的因式分解方法,易于掌握和应用。
通用性强
因式分解-提公因式法
因式分解是一种重要的数学概念,提公因式法是常用的因式分解方法之一。
提公因式法的定义
提公因式法是一种通过找出多项式中的公因式,将其进行提取,从而达到进 行因式分解的目的的方法。
提公因式法的步骤
1. 找出多项式中的公因式 2. 提取公因式 3. 将剩余部分进行因式分解
示例:使用提公因式法进行因式分解
提公因减少计算量
通过提取公因式,可以简化多项式,减少计算的复杂度。
结论
提公因式法是一种重要的因式分解方法,能够帮助我们简化复杂的代数表达 式,解决方程,以及进行数学建模。
1 简化表达式
提公因式法可以帮助我们简化复杂的代数表达式,使计算更加简便。
2 解方程
提公因式法可以用于解决一些复杂方程,帮助我们找到方程的根。
3 数学建模
提公因式法是数学建模中常用的一种方法,可以帮助我们更好地理解和描述实际问题。

因式分解常用的六种方法详解

因式分解常用的六种方法详解

一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。

例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。

常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。

提公因式法分解因式

提公因式法分解因式
提公因式法分解因式
汇报人: 2024-01-10
目录
• 提公因式法简介 • 提公因式法的应用场景 • 提公因式法的步骤与技巧 • 提公因式法的注意事项 • 提公因式法的练习与实例
01
提公因式法简介
定义将多项式分解为几个因式的乘 积,其中每个因式都包含一个公 共因子。
将提取公因式后的多项式 进行简化,确保结果正确 。
重复提取
如果存在多个公因式,需 要重复提取,直到无法再 提取为止。
化简表达式
合并同类项
将多项式中的同类项合并 ,简化表达式。
化简结果
对提取公因式后的多项式 进行化简,得到最终结果 。
检查答案
最后检查结果是否正确, 确保答案无误。
04
提公因式法的注意事项
避免过度化简
在化简过程中,要避免过度化简,以免改变多项式的值。
避免提取复杂公因式
避免提取复杂公因式
在提取公因式时,应尽量提取简单的公因式,避免提取复杂的公因式,以简化 计算过程。
灵活运用提取公因式法
在提取公因式时,应根据具体情况灵活运用提取公因式法,以达到更好的化简 效果。
05
提公因式法的练习与实例
提取公因式的正确性
确定公因式的正确性
在提取公因式时,需要确保提取的公 因式是正确的,即公因式应该是多项 式中各项的公共因子。
避免误提公因式
在提取公因式时,要仔细检查,避免 误提公因式,以免影响后续的化简和 计算。
化简表达式的简洁性
保持化简的简洁性
在提取公因式后,需要进一步化简多项式,使表达式更加简 洁。
02
提公因式法的应用场景
代数表达式
01
代数表达式中,如果存在多个项 具有相同的公因数,可以使用提 公因式法进行因式分解,简化表 达式。

因式分解的13种方法

因式分解的13种方法

因式分解的13种方法因式分解是将多项式分解成几个因式的乘积的过程。

它是代数中的一个重要技巧,可以帮助我们简化计算、解方程、求根等。

以下是13种常见的因式分解方法。

方法一:提公因式法提公因式法是将多项式的共同因子提出来,使得多项式可以分解为几个因子的乘积。

例如,对于多项式2x^2+4x,我们可以提取公因式2x,得到2x(x+2)。

方法二:分组提公因式法分组提公因式法是将多项式中的项按照一定的规则进行分组,然后分别提取每组的公因式。

例如,对于多项式2x^3+4x^2+3x+6,可以将其分组为(2x^3+4x^2)+(3x+6),然后对每个组提取公因式,得到2x^2(x+2)+3(x+2),再提取公因式(x+2),最终得到(x+2)(2x^2+3)。

方法三:差平方公式差平方公式是指a^2-b^2=(a+b)(a-b)。

如果我们遇到一个差平方的形式,可以直接利用差平方公式进行因式分解。

例如,对于多项式x^2-4,可以利用差平方公式得到(x+2)(x-2)。

方法四:和差化积公式和差化积公式是指a^3±b^3=(a±b)(a^2∓ab+b^2)。

如果我们遇到一个和差的形式,可以直接利用和差化积公式进行因式分解。

例如,对于多项式x^3+8,可以利用和差化积公式得到(x+2)(x^2-2x+4)。

方法五:平方差公式平方差公式是指a^2±2ab+b^2=(a±b)^2、如果我们遇到一个平方差的形式,可以直接利用平方差公式进行因式分解。

例如,对于多项式x^2+4x+4,可以利用平方差公式得到(x+2)^2方法六:二次差公式二次差公式是指a^2-b^2=(a-b)(a+b)。

如果我们遇到一个二次差的形式,可以直接利用二次差公式进行因式分解。

例如,对于多项式x^2-9,可以利用二次差公式得到(x-3)(x+3)。

方法七:完全平方公式完全平方公式是指a^2±2ab+b^2=(a±b)^2、如果我们遇到一个完全平方的形式,可以直接利用完全平方公式进行因式分解。

因式分解提公因式法

因式分解提公因式法

因式分解
提公因式法
回顾因式分解的定义:
把一个多项式化为几个整式的积的形式,叫做多项式的因式分解。
ma+mb+mc=
我们称m为公因式。
m(a+b+c)
像多项式ma+mb+mc中的每一项都含有一个相同的因式m,
把公因式m提出来,多项式ma+mb+mc 就可以分解成两个因式m和(a+b+c) 的乘积,像这种因式分解的方法,叫做提公因式法。
(1)3a2-9ab (2) -5a2+25a (3)2(x+y)2-4x(x+y) (4)2(a-1)+a(1-a)
分析第(1)题: 由公因式的定义,我们按以下几步确定公因式: ①定系数:∵系数3和-9的最大公约数为3,∴公因式的系数为( ) ②定“字母(或整体)”:∵两项中的相同字母是( ), ∴公因式的字母取( ); ③定指数:∵相同字母的最小指数为( ),∴相同字母的指数取(
);
因此, 3a2-9ab 的公因式为:(
3a2-9ab
=

找到公因式后,可以利用多项式除以单项式的法则得出另一个因式
(1)3a2-9ab (2)-5a2+25a (3)2(x+y)2-4x(x+y) (4)2(a-1)+a(1-a)
(4)可以先将(1-a)转化为-(a-1) -5a2+25a 定系数 定字母(整体)
=2(a-1)-a(a-1)
2(a-1)+a(1-a)
2(x+y)2-4x(x+y)
-5
a 1
2
(x+y)
1 (a-1) 1 (a-1)

因式分解的常用方法7种

因式分解的常用方法7种

因式分解的常用方法(7种)把一个多项式化成几个整式积的形式这种变形叫做把这个多项式因式分解(或分解因式) 因式分解X2-1 ---------- * (X+1)(X-1)I y整式乘法一■、提公因式法.:ma+mb+mc = m(a+b+c)如何找公因式?(1)取各项系数的最大公约数;(2)取各项都含有的相同字母;(3)取相同字母的最低次赛.二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2(2)(a±b)2 = a2±2ab+b2(3)(a+b)(a2-ab+b2) = a3-a2b+ab2+a2b-ab2+b3= a3+b3(4)(a-b)(a2+ab+b2) = a3+a2b+ab2-a2b-ab2-b3= a3-b3下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ac=a2+2ab+b2+2ac+2bc+c2=(a+b) 2+2(a+b)c +c 2=[(a+b)+c] 2=(a+b+c) 2 ;(6)a3+b3+c3-3abc=(a3+ab2+ac2-a2b-abc-ca2) + (a2b+b3+bc2-ab2-b2c-abc) + (a2c+b2c+c3-abc-bc2-c2a) = (a+b+c)(a2+b2+c2-ab-bc-ca);例.已知a,b, c是A ABC的三边,且a 2 + b 2 + c 2 = ab + bc + ca,则A ABC的形状是() 人.直角三角形8等腰三角形C等边三角形口等腰直角三角形解:a 2 + b 2 + c 2 = ab + bc + ca n 2 a 2 + 2 b 2 + 2 c 2 = 2 ab + 2 bc + 2 can (a一b)2 + (b一c)2 + (c一a)2 = 0 n a = b = c三、分组分解法.(一)分组后能直接提公因式例1、分解因式:am + an + bm + bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部” 看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

《提取公因式法》因式分解

《提取公因式法》因式分解

规划上,应该根据自己的实际情况和学习进度,合理 安排时间进行学习和练习。同时,要注重系统性学习 ,把相关的知识点串联起来,形成完整的知识体系。
感谢您的观看
THANKS
04
习题与解析
习题一:提取公因式法
详细描述
2. 将公因式提取出来,可以使用 乘法分配律。
总结词:提取公因式法是因式分 解的一种基本方法,通过找到多 项式中的公因式,将其提取出来 ,使多项式得到简化。
1. 找到多项式中的公因式,通常 是最简公分母或同类项的系数。
3. 将提取公因式后的多项式进行 因式分解,得到若干个单项式。
因式分解的应用
01
02
03
解决数字计算问题
通过因式分解可以解决一 些数字计算问题,例如简 化计算、求值、整除性问 题等。
解决几何问题
因式分解在几何中也有广 泛的应用,例如解三角形 的问题。
解决方程问题
通过因式分解可以解决一 些方程问题,例如解一元 二次方程等。
03
提取公因式法与因式分解 的关系
提取公因式法是因式分解的一种方法
对于初学者来说,提取公因式法可能比较抽 象,难以理解,尤其是当多项式项数较多时 ,更容易出现错误。
解决这个问题的方法包括:多看例题、多做 练习题,通过大量的实践来加深对提取公因 式法的理解和掌握。同时,要学会总结和归 纳提取公因式法的各种情况,以便更好地掌
握这种方法。
对后续学习的展望和规划
掌握提取公因式法之后,可以进一步学习其他的因式 分解方法,如分组分解法、十字相乘法等。同时,通 过不断的学习和实践,可以逐渐提高自己的数学水平 。
习题二:因式分解
总结词:因式分解是将一个多项式分解 为若干个单项式的乘积,每个单项式是 多项式的因式。

因式分解提公因式法ppt

因式分解提公因式法ppt
发展
提公因式法在数学中不断发展完善,现在已经成为中学数学 中的一个重要内容,也是数学竞赛中的常考点之一
02
提公因式法的原理
提公因式法的数学原理
公式解释
提公因式法是因式分解的一种常用方法,其基本思想是将一个多项式中的公 共因子提取出来,形成新的因子,从而将原多项式分解为多个因式的乘积。
数学原理
通过将多项式中所有项的公因式提取出来,并将其放在一个新的因子中,再 用这个公因式将原多项式进行因式分解。
3
提公因式法可以应用于各种不同的多项式中, 例如:二次三项式、高次多项式、分式等。
提公因式法的反思
01
提公因式法的应用有一定的局限性,因为有时候多项式没有公 因式可以提取。
02
在提公因式的过程中,需要注意不要漏掉任何一个公因式,同
时要避免将不是公因式的项也提取出来。
提取出来的公因式有时候可能并不是最简单的形式,需要进一
在分数的加减法中,提公因式法可以用来简化分数,从而更 容易进行加减运算。
数据的分析
在进行数据的分析时,提公因式法可以用来对数据进行分类 和整理,从而更好地理解数据的分布和特征。
对未来数学学习的建议
深入理解提公因式法的本质
提公因式法是一种重要的数学方法,需要深入理解其本质和原理,以便更好 地掌握和使用。
对余下的多项式继续进行因式分 解
提公因式法步骤的应用示例
例子1
将$2x^3+3x^2y-5x-3y$分解因式
例子2
将$3x^3-6x^2y+4xy^2-2y^3$分解因式
提公因式法步骤的注意事项
注意项中公因式的系数,有时候不是所有项系数的最大公约数 注意各项符号,有时候会出现负号,需要特别注意

《因式分解提公因式法》教案

《因式分解提公因式法》教案

《因式分解-提公因式法》教案第一章:教学目标1.1 知识与技能:学生能理解因式分解的概念及其意义。

学生能掌握提公因式法的基本步骤。

学生能运用提公因式法对简单多项式进行因式分解。

1.2 过程与方法:学生通过观察和分析实例,探索提公因式法的步骤和规律。

学生通过练习题,提高运用提公因式法进行因式分解的能力。

1.3 情感态度与价值观:学生培养对数学的兴趣和自信心,感受数学的实用性。

学生学会合作和交流,培养解决问题的能力。

第二章:教学内容2.1 课题:因式分解-提公因式法2.2 教学重点与难点:重点:掌握提公因式法的基本步骤。

难点:灵活运用提公因式法进行因式分解。

2.3 教学准备:教师准备PPT演示文稿和练习题。

学生准备笔记本和文具。

2.4 教学过程:引入:通过实例引入因式分解的概念,引导学生思考如何将多项式分解成几个整式的乘积。

讲解:讲解提公因式法的基本步骤,通过示例演示如何提取公因式。

练习:学生通过练习题,运用提公因式法进行因式分解,教师给予指导和反馈。

第三章:教学活动3.1 课堂讲解:教师通过PPT演示文稿,讲解提公因式法的基本步骤和注意事项。

教师通过举例说明如何提取公因式,并引导学生思考和发现规律。

3.2 课堂练习:教师给出一些简单多项式,学生分组进行讨论和练习,尝试运用提公因式法进行因式分解。

教师选取部分学生的答案进行讲解和点评,指出其中的错误和不足之处。

3.3 课后作业:教师布置一些练习题,要求学生独立完成,巩固提公因式法的应用。

第四章:教学评价4.1 课堂参与度:观察学生在课堂讲解和练习中的参与程度,了解他们对提公因式法的理解和掌握程度。

4.2 练习题完成情况:检查学生课后作业的完成情况,评估他们对提公因式法的应用能力。

4.3 学生反馈:收集学生的反馈意见,了解他们对提公因式法的掌握情况和教学效果。

第五章:教学拓展5.1 拓展练习:给出一些较复杂的多项式,学生尝试运用提公因式法进行因式分解,提高他们的解题能力。

《因式分解-提公因式法》知识点归纳

《因式分解-提公因式法》知识点归纳

因式分解-提公因式法知识点归纳1. 什么是因式分解-提公因式法?因式分解是将一个多项式写成两个或多个不可再因式分解的多项式相乘的形式。

提公因式法是一种常用的因式分解方法,它通过提取多项式中的公因式来简化多项式的表示。

2. 如何进行因式分解-提公因式法?步骤1:提取公因式首先,观察多项式中是否存在公因式,即是否有因子可以整除多项式的每一项。

如果存在公因式,将其提取出来。

例如:2x^2 + 4x = 2x(x + 2)步骤2:判断多项式的可进一步因式分解性质提取公因式后,判断剩余的部分是否还可以进行进一步因式分解。

常见的因式分解性质包括二次平方差公式、差平方公式等。

例如:x^2 - 4 = (x + 2)(x - 2)3. 因式分解-提公因式法的应用因式分解-提公因式法在解决各种数学问题时广泛应用,包括但不限于以下几个方面:3.1. 简化多项式因式分解-提公因式法可以将复杂的多项式简化为更简洁的形式,从而使问题的求解更加方便。

例如:3x^2 + 6x = 3x(x + 2)3.2. 解方程在解方程时,因式分解-提公因式法可以帮助我们找到方程的根。

例如:x^2 - 4 = 0通过因式分解得到:(x + 2)(x - 2) = 0解得x的值为2和-2。

3.3. 求导数在微积分中,因式分解-提公因式法常常用于求函数的导数。

例如:f(x) = x^3 + 3x^2 + 3x + 1可以通过因式分解-提公因式法得到导数:f'(x) = 3x^2 + 6x + 33.4. 求极限在求极限的过程中,因式分解-提公因式法可以帮助我们简化复杂的表达式,使得求解更加便利。

例如:lim(x->0) (x^2 - 4x) / x通过因式分解-提公因式法,可以将上述表达式化简为:lim(x->0) x(x - 4) / x = lim(x->0) (x - 4) = -44. 因式分解-提公因式法的重要性因式分解-提公因式法是数学中的基础操作之一,对于深入理解和解决复杂的数学问题至关重要。

因式分解和提公因式法

因式分解和提公因式法

因式分解和提公因式法因式分解方法灵活,技巧性强,初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.1.定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。

一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

2.提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式.②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.am+bm+cm=m(a+b+c)③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.3.区分因式分解与整式的乘法:它们的关系是意义上正好相反,结果的特征是因式分解是积的形式,整式的乘法是和的形式,抓住这一特征,就不容易混淆因式分解与整式的乘法。

经典例题:1.证明:对于任何数x,y,下式的值都不会为33x5+3x4y-5x3y²+4xy4+12y5-15x²y3解:原式=(x5+3x4y)-(5x3y²+15x²y3)+(4xy4+12y5)=x4(x+3y)-5x²y²(x+3y)+4y4(x+3y)=(x+3y)(x4-5x²y²+4y4)=(x+3y)(x²-4y²)(x²-y²)=(x+3y)(x+y)(x-y)(x+2y)(x-2y)当y=0时,原式=x5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立2、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)3、 十字相乘法对于mx ²+px+q 形式的多项式,如果a×b=m,c×d=q 且ac+bd=p ,则多项式可因式分解为(ax+d)(bx+c) 分解因式7x ²-19x-6解:7x ²-19x-6=(7x+2)(x-3)4、 分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)巩固练习一、选择题1、下列从左边到右边的变形,是因式分解的是( )A 、29)3)(3(x x x -=+-B 、))((2233n mn m n m n m ++-=-C 、)1)(3()3)(1(++-=-+y y y yD 、z yz z y z z y yz +-=+-)2(22422、下列多项式中能用平方差公式分解因式的是( )A 、22)(b a -+B 、mn m 2052-C 、22y x --D 、92+-x3、若E p q p q q p ⋅-=---232)()()(,则E 是( )A 、p q --1B 、p q -C 、q p -+1D 、p q -+14、若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A 、-15B 、-2C 、8D 、25、如果2592++kx x 是一个完全平方式,那么k 的值是( )A 、 15B 、 ±5C 、 30D ±306、△ABC 的三边满足a 2+b 2+c 2=ac +bc +ab ,则△ABC 是( )A 、等腰三角形B 、直角三角形C 、等边三角形D 、锐角三角形7、已知2x 2-3xy+y 2=0(xy ≠0),则x y +y x的值是( ) A 2或212 B 2 C 212 D -2或-2128、要在二次三项式x 2+□x-6的□中填上一个整数,使它能按x 2+(a +b )x +ab 型分解为(x +a )(x +b )的形式,那么这些数只能是 ( )A .1,-1;B .5,-5;C .1,-1,5,-5;D .以上答案都不对9、已知二次三项式x 2+bx+c 可分解为两个一次因式的积(x +α)(x+β),下面说法中错误的是 ( )A .若b >0,c >0,则α、β同取正号;B .若b <0,c >0,则α、β同取负号;C .若b >0,c <0,则α、β异号,且正的一个数大于负的一个数;D .若b <0,c <0,则α、β异号,且负的一个数的绝对值较大.10、已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a 2+b 2+c 2-ab-bc-ca 的值为( )A 、0B 、1C 、2D 、3二、填空题11、已知:02,022=-+≠b ab a ab ,那么ba b a +-22的值为_____________.12、分解因式:ma 2-4ma+4a=_________________________.13、分解因式:x (a-b )2n +y (b-a )2n+1=_______________________.14、△ABC 的三边满足a 4+b 2c 2-a 2c 2-b 4=0,则△ABC 的形状是__________.15、若A y x y x y x ⋅-=+--)(22,则A =___________.16、多项式2,12,2223--+++x x x x x x 的公因式是___.17、若x 2+2(m-3)x+16是完全平方式,则m=___________.18、若a 2+2a+b 2-6b+10=0, 则a=___________,b=___________.19、若(x 2+y 2)(x 2+y 2-1)=12, 则x 2+y 2=___________.三、把下列各式因式分解(1)22)34()43)(62()3(y x x y y x y x -+-+++ (2)27624--a a(3)32)(10)(5x y n y x m -+- (4)8x m y n-1+56x m+1y n四、解答题1、求证:无论x 、y 为何值,3530912422+++-y y x x 的值恒为正。

因式分解—提公因式法

因式分解—提公因式法

因式分解—提公因式法一、因式分解:把一个多项式化为几个整式的积的形式,也叫做把这个多项式分解因式。

是整式乘法的逆运算。

如:a2-b2=(a+b)(a-b)同类演练一:(1)2m(m-n)=2m2-2mn;(2)x2-2x+1=x(x-2)+1;(3)a2-b2=(a+b)(a-b);(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);(6)m2-1+ n2=(m+1)(n-1)二、提公因式法公因式:多项式中的每一项都含有一个相同因式,这个相同的因式叫做各项的公因式。

如:ma+mb+mc 每项都含有m,则m是这个多项式的公因式。

把这个公因式提到括号外面,这样ma+mb+mc就分解成两个因式的积m(a+b+c),即ma+mb+mc= m(a+b+c)。

这种因式分解的方法叫做提公因式法。

(用公因式法分解因式后,应保证含有多项式的因式中再无公因式)。

归纳方法:如何确定多项式各项的公因式?1.定系数:找多项式各项系数的最大公约数.2.定字母:找多项式各项相同的字母.3.定指数:相同字母的最低的次数.同类演练二:1、找出下列多项式的公因式:(1)4ax-8ay;(2)5y3+20y2;(3)a2b-2ab2+ab;(4)-4a3b2-6a2b+2ab;(5)(2a+b)(2a-3b)-3a(2a+b).2、因式分解:(1)24a3m-18a2m2;(2)5y2-15y +5;(3)28x3-14x2+7x.3、因式分解:对于首项是带有负号的多项式分解因式,多项式第一项的系数是负数,通常先提出“-”号,且括号内各项都要变号.(1)-7ab+49ab2c;(2)-6ax2+9axy -3a;(3)-2a3b2-ab3c +3abc巩固练习1、将分解因式时,应提取的公因式是( )A.a2B.aC.axD.ay2、因式分解(1);(2)-12a2b+24ab2;(3)xy-x2y2-x3y3;(4).2.已知a-b=3,ab=-1,求a2b-ab2.3.若x2+3x-2=0,求2x3+6x2-4x的值.4.先分解因式,再求值:4a2(x+7)-3(x+7),其中a=-5,x=3.能力提升5、.因式分解(1);(2);(3);(4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)若多项式(a+b)x2+(a+b)x要分解因式,
则要提的公因式是 (a+b)x .
.规律总结
分解因式与整式乘法是互逆过程. 分解因式要注意以下几点:
1.分解的对象必须是多项式. 2.分解的结果一定是几个整式的 乘积的形式. 3.要分解到不能分解为止.
课后练习 试一试 拓展应用
1. 20042+2004能被2005整除吗?
把公因式提出来,多项式ma+mb+mc 就可以
分解成两个因式m和(a+b+c)的乘积。像这种 因式分解的方法,叫做提取公因式法。
例1
解:原式=4ab2 ▪2a2-4ab2 ▪ 3bc =4ab2(2a2-3bc)
如何检验
•找出公因式 •提取公因式得 到另一个因式
·写成积的形式
解:原式=x▪3x-x ▪ 6y+x ▪ 1 =x(3x-6y+1)
说一说
8a3b2-12ab3c 的公因式是什么?
8与12的最大公约
数是 b的最低指数
公因式是4ab2
将下列多项式因式分解: (1)ax+xy=( x )(a+y) (2)3mx-6my =( 3m)(x-2y) (3)x2y+xy2=( xy )( x+y )
当多项式第一项系数 是负数,通常先提出 “-”号,使括号内第 一项系数变为正数, 注意括号内各项都要
变号。
方法二
(2)把 -24x3 –12x2 +28x 分解因式.
原式=28x—12x2—24x3 =4x (7 -3x -6x2 )
例4 分解因式 2a(b+c)-3(b+c)
解:原式= (b+c)(2a-3)
公因式可以是数,单独一个字母,多项式 练习:2a(y-z)-3b(z-y)
把下列各式分解因式:
(1)24x3y-18x2y (2) 7ma+14ma2 (3) -16x4+32x3-56x2 (4) -7ab-14abx+49aby
小结
1、什么叫因式分解?
2、确定公因式的方法:
一看系数 二看字母 三看指数
因式分解 整式乘法
(3) x2+4x+4=(x+2)2 (4) (a-3)(a+3)=a2-9 (5) 2πR+ 2πr= 2π(R+r) (6)(5a-1)2 =25a2-10a+1
因式分解 整式乘法 因式分解 整式乘法
• 1、观察下列多项式有何共同特点? ab +ac; 3x2+x; mb2+nb+b.
2. 2101+299能被5整除吗,为什么
转化为有一因式为5的倍数 3. 224-1能被63和65整除吗?
1. 若a=101,b=99,求a2-b2的值.
2. 若x=-3,求20x2-60x的值.
3. 1993-199能被200整除吗?还能被哪些 整数整除?
课后练习
4. 若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.
5. 某工厂需加工一批零件,由甲、乙、丙三位工人 共同完成,已知甲工人每天加工23个零件,乙 工人每天加工19个零件,丙工人每天加工18 个零件,三人需共同做12天才能做完,要加工 的零件共有多少?
(A)-x(4x2-8x+16) (B)x(-4x2+8x-16)
(C)4(-x3+2x2-4x) (D)-4x(x2-2x-4)
(3)若多项式-6ab+18abx+24aby的一个因式是-6ab, 那么另一 个因式是( ) D
(A)-1-3x+4y (B)1+3x-4y
(C)-1-3x-4y (D)1-3x-4y
(4) x2-6x+9= (x-3)2
因式分解定义
把一个多项式化成几个整式的积的 形式,这种变形叫做把这个多项式 因式分解(也叫分解因式).
● 想一想: 分解因式与整式乘法有何关系?
分解因式与整式乘法是互逆过程
练一练“理解概念”
判断下列各式哪些是因式分解?为什么?
(1) x2-4y2=(x+2y)(x-2y) (2) 2x(x-3y)=2x2-6xy
(4)15a2+10a=( 5a )( 3a+2 ) (5)12xyz-9x2y2=( 3xy )( 4z—3xy) (6) 2a(b+c)-3(b+c)=( b+c )(2a-3 )
探索发现
因式分解:ma mb mc 解: ma mb mc m(a b c)
公因式
提公因式法
多项式中各项都含有的相同因式,称之为公因式
比一比,看谁算得快
(1)已知:x=5,a+b=3,求 ax2+bx2的值。
(2)已知:a=101,b=99,求 a2- b2的值.
你能说说算得快的原因吗?
请把下列多项式写成整式乘积的形式
(1)x2 x x(x 1)
(2)x2 1 (x 1)(x 1)
(3)ma+mb+mc= m(a+b+c)
•找出公因式 •提取公因式得 到 另一个因式 •写成积的形式
试一试
利用提取公因式法分解因式: (1) 2x3-6x2 (2) 3ab3+15a3b
(3) 12a2b3-8a3b2-16ab4
例3. 把 -24x3 –12x2 +28x 分解因式.
解:原式= (24x3 12x228x ) = 4x (6x2+3x-7)
多项式各项都含有的相同因式, 叫做这个多项式各项的公因式。
如:ab+bc的公因式是b
说出下列各多项式的公因式:
(1)ma + mb ;m
(2)4kx - 8ky ;4k (3)5y3+20y2 ; 5y2
(4)a2b-2ab2+ab . ab
找公因式有 什么方法呢?
最大公约数 相同字母 最低指数
一看系数 二看字母 三看指数
3、提公因式法分解因式步骤(分两步): 第一步,确定公因式;第二步,求出另一个因式 第三步, 写成积的形式 4、用提公因式法分解因式应注意的问题: (1)公因式要提尽; (2)小心漏掉
(3)多项式的首项取正号
课后练习
1.选择
(1)多项式6ab2+18a2b2-12a3b2c的公因式(C )
(A)6ab2c (B)ab2 (C)6ab2 (D)6a3b2C (2)分解-4x3+8x2+16x的结果是( D )
相关文档
最新文档