各类梁剪力弯矩挠度计算公式一览表

合集下载

各类梁的弯矩剪力计算汇总表p3及p15

各类梁的弯矩剪力计算汇总表p3及p15

表1 简单载荷下大体梁的剪力图与弯矩图注:外伸梁= 悬臂梁+ 端部作用集中力偶的简支梁2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两头固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面持续梁的内力及变形表(1)等跨持续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·mV B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

[解] M1=0.080×11.76×62=33.87kN ·m 。

2)三跨等跨梁的内力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

各类梁的弯矩剪力计算汇总表94397

各类梁的弯矩剪力计算汇总表94397

表1 简单载荷下基本梁的剪力图与弯矩图梁的简图剪力Fs 图弯矩M 图1laFsF F l a F l al -+-F la l a )(-+M2l eMsF lM e +MeM +3laeMsF lM e +Me M lal -e M la +-4lqsF +-2ql 2qlM82ql +2l5lq asF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+la l qa 2)(2-la l a 2)2(-6lqsF +-30l q 60l qM3920l q +3)33(l-7aFlsF F+Fa-M8aleMsF+eM M9lqs F ql+M22ql -10lqsF 2l q +M620l q -注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征某一段梁上的外力情况 剪力图的特征弯矩图的特征无载荷水平直线斜直线或集中力 F突变 F 转折或或集中力偶eM 无变化 突变e M均布载荷q斜直线抛物线 或零点极值表3 各种约束类型对应的边界条件约束类型 位移边界条件力边界条件(约束端无集中载荷)固定端0=w ,0=θ—简支端0=w0=M 自由端—0=M ,0=S F注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA y I 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

各类梁弯矩剪力计算汇总表

各类梁弯矩剪力计算汇总表

各类梁弯矩剪力计算汇总表表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4 )。

基本计算公式如下:??=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =m ,每跨各有一集中荷载F =,求中间支座的最大弯矩和剪力。

[解] M B 支=(-××52)+(-××5)=(-)+()=-·m V B 左=(-××5)+(-×)=(-)+(-)=-[例2] 已知三跨等跨梁l =6m ,均布荷载q =m ,求边跨最大跨中弯矩。

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表表1 简单载荷下基本梁的剪力图与弯矩图lF l a -l eMsF lM e +M+laeMsF lM e +Me M lal -e M la +-lqsF +-2ql 2qlM82ql +2l lqasF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+l a l qa 2)(2-la l a 2)2(-sF 30l q 2l q注:外伸梁= 悬臂梁+ 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件约束类型位移边界条件力边界条件(约束端无集中载荷)固定端=w,0=θ—简支端=w0=M自由端—=M,0=S F注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰∙=AdA y I 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max y I W = 3.i 称截面回转半径(mm ),其基本计算公式如下:A Ii =4.上列各式中,A为截面面积(mm2),y为截面边缘到主轴(形心轴)的距离(mm),I为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。

各类梁的弯矩剪力计算汇总表-剪力计算系数

各类梁的弯矩剪力计算汇总表-剪力计算系数

表1 简单载荷下基本梁的剪力图与弯矩图之邯郸勺丸创作注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的鸿沟条件注:力鸿沟条件即剪力图、弯矩图在该约束处的特征.经常使用截面几何与力学特征表表2-5 创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4).基本计算公式如下:⎰•=AdAy I 22.W 称为截面抵当矩(mm 3), 它暗示截面抵当弯曲变形能力的年夜小, 基本计算公式如下:max y I W =3.i 称截面回转半径(mm ), 其基本计算公式如下:A I i =4.上列各式中, A为截面面积(mm2), y为截面边缘到主轴(形心轴)的距离(mm), I为对主轴(形心轴)的惯性矩.5.上列各项几何及力学特征, 主要用于验算构件截面的承载力和刚度.创作时间:二零二一年六月三十日2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=. 2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI w 100Fl 表中系数3⨯=. 2)三跨等跨梁的内力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=.2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI w 100Fl 表中系数3⨯=. 3)四跨等跨连续梁内力和挠度系数 表2-13注:同三跨等跨连续梁.4)五跨等跨连续梁内力和挠度系数 表2-14注:同三跨等跨连续梁.创作时间:二零二一年六月三十日(2)不等跨连续梁的内力系数(表2-15、表2-16)1)二不等跨梁的内力系数表2-15创作时间:二零二一年六月三十日注:1.M=表中系数×ql21;V=表中系数×ql1;2.(M max)、(V max)暗示它为相应跨内的最年夜内力.2)三不等跨梁内力系数表2-16创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日注:1.M=表中系数×ql21;V=表中系数×ql1;2.(M max)、(V max)为荷载在最晦气安插时的最年夜内力.创作时间:二零二一年六月三十日4.双向板在均布荷载作用下的内力及变形系数表(表2-17~表2-22) 符号说明如下:刚度 )1(1223υ-=Eh K 式中 E ——弹性模量;h ——板厚; ν——泊松比;ω、ωmax ——分别为板中心点的挠度和最年夜挠度;M x ——为平行于l x 方向板中心点的弯矩; M y ——为平行于l y 方向板中心点的弯矩; M x 0——固定边中点沿l x 方向的弯矩; M y 0——固定边中点沿l y 方向的弯矩. 正负号的规定:弯矩——使板的受荷面受压者为正; 挠度——变位方向与荷载方向相同者为正.四边简支 表2-17三边简支, 一边固定 表2-18两边简支, 两边固定表2-19 一边简支, 三边固定表2-20四边固定表2-21两边简支, 两边固定表2-225.拱的内力计算表(表2-23)各种荷载作用下双铰抛物线拱计算公式表2-23注:表中的K为轴向力变形影响的修正系数.(1)无拉杆双铰拱1)在竖向荷载作用下的轴向力变形修正系数式中 I c——拱顶截面惯性矩;A c——拱顶截面面积;A——拱上任意点截面面积.当为矩形等宽度实腹式变截面拱时, 公式I=I c/cosθ所代表的截面惯性矩变动规律相当于下列的截面面积变动公式:此时, 上式中的n可表告竣如下形式:下表中列出了矩形等宽度实腹式变截面拱的n值.f/ln2)在水平荷载作用下的轴向力变形修正系数, 近似取K=1(2)带拉杆双铰拱1)在竖向荷载作用下的轴向力变形修正系数式中 E——拱圈资料的弹性模量;E1——拉杆资料的弹性模量;A1——拉杆的截面积.2)在水平荷载作用下的轴向力变形修正系数(略去拱圈轴向力变形影响)式中 f——为矢高;l——为拱的跨度.6.刚架内力计算表内力的正负号规定如下:V——向上者为正;H——向内者为正;M——刚架中虚线的一面受拉为正.(1)“┌┐”形刚架内力计算(表2-24、表2-25)“┌┐”形刚架内力计算表(一)表2-34“┌┐”形刚架内力计算表(二)表2-35(2)“”形刚架的内力计算(表2-26)”形刚架的内力计算表表2-26。

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =m ,每跨各有一集中荷载F =,求中间支座的最大弯矩和剪力。

[解] M B 支=(-××52)+(-××5)=(-)+()=-·m V B 左=(-××5)+(-×)=(-)+(-)=-[例2] 已知三跨等跨梁l =6m ,均布荷载q =m ,求边跨最大跨中弯矩。

各类梁的弯矩剪力计算汇总表-剪力计算系数

各类梁的弯矩剪力计算汇总表-剪力计算系数

表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

2)三跨等跨梁的力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

各类梁弯矩剪力计算汇总表

各类梁弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =m ,每跨各有一集中荷载F =,求中间支座的最大弯矩和剪力。

[解] M B 支=(-××52)+(-××5)=(-)+()=-·m V B 左=(-××5)+(-×)=(-)+(-)=-[例2] 已知三跨等跨梁l =6m ,均布荷载q =m ,求边跨最大跨中弯矩。

各类梁的弯矩剪力计算汇总表-剪力计算系数

各类梁的弯矩剪力计算汇总表-剪力计算系数

作品编号:DG13485201600078972981创作者:玫霸*表1 简单载荷下基本梁的剪力图与弯矩图注:外伸梁= 悬臂梁+ 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。

基本计算公式如下:⎰•=AdA y I 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max y IW =3.i 称截面回转半径(mm ),其基本计算公式如下:AI i = 4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。

5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

2)三跨等跨梁的内力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

各类梁支反力剪力弯矩挠度计算公式一览表

各类梁支反力剪力弯矩挠度计算公式一览表

各类梁支反力剪力弯矩挠度计算公式一览表一、简支梁1、支反力对于均布荷载 q 作用下的简支梁,两端支反力大小相等,均为 R = qL / 2 ,其中 L 为梁的跨度。

2、剪力距离左端为 x 处的剪力 V = qx qL / 2 (0 < x < L )3、弯矩距离左端为 x 处的弯矩 M = qx^2 / 2 qLx / 2 (0 < x < L )最大弯矩发生在跨中,Mmax = qL^2 / 84、挠度均布荷载下的挠度ω = 5qL^4 / 384EI ,其中 E 为材料的弹性模量,I 为梁截面的惯性矩。

二、悬臂梁1、支反力固定端支反力 R = qL ,支反力矩 M = qL^2 / 22、剪力距离固定端为 x 处的剪力 V = qL + qx (0 < x < L )3、弯矩距离固定端为 x 处的弯矩 M = qLx + qx^2 / 2 (0 < x < L )最大弯矩发生在固定端,Mmax = qL^2 / 24、挠度均布荷载下的挠度ω = qL^4 / 8EI三、外伸梁外伸梁的计算较为复杂,需要根据具体的荷载分布和外伸长度进行分析。

1、支反力一般通过对梁的整体受力平衡和力矩平衡方程求解得出。

2、剪力分别计算各段的剪力表达式。

3、弯矩同样分段计算弯矩表达式。

4、挠度利用叠加原理,将各段的挠度贡献相加。

四、连续梁连续梁由多个跨度组成,各跨之间通过中间支座相连。

1、支反力通过结构力学的方法,如力法、位移法等求解。

2、剪力和弯矩根据求得的支反力,计算各跨的剪力和弯矩。

3、挠度通常采用结构力学的方法或有限元分析软件进行计算。

五、变截面梁对于变截面梁,其截面特性(惯性矩I 等)沿梁长度方向发生变化。

1、支反力计算方法与等截面梁类似,但需考虑截面变化的影响。

2、剪力和弯矩采用积分的方法求解。

3、挠度计算过程较为复杂,可能需要借助数值方法或专业软件。

在实际工程中,梁的受力情况往往较为复杂,可能同时受到多种荷载的作用,如集中力、集中力偶、分布荷载等。

各类梁的弯矩剪力计算汇总表-剪力计算公式一览表

各类梁的弯矩剪力计算汇总表-剪力计算公式一览表

作品编号:DG13485201600078972981创作者:玫霸*表1 简单载荷下基本梁的剪力图与弯矩图2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·mV B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

[解] M1=0.080×11.76×62=33.87kN ·m 。

2)三跨等跨梁的内力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

梁计算公式大全范文

梁计算公式大全范文

梁计算公式大全范文1.梁的弯曲应力计算公式:梁的弯曲应力可以由弯矩和截面惯性矩计算得出。

当梁受到弯矩M作用时,产生的弯曲应力σ_b可以使用下面的公式计算:σ_b=(M*c)/I其中,M是弯矩,c是离中性轴的距离,I是截面惯性矩。

2.梁的剪切应力计算公式:梁的剪切应力可以由剪力和截面面积计算得出。

当梁受到剪力V作用时,产生的剪切应力τ可以使用下面的公式计算:τ=V/A其中,V是剪力,A是截面面积。

3.梁的挠度计算公式:梁的挠度是指梁在受到力作用时产生的弯曲变形。

梁的挠度可以使用不同的方法进行计算,其中一种计算方法是使用梁的弹性挠度理论。

对于简支梁,其挠度可以使用下面的公式计算:δ=(5*w*L^4)/(384*E*I)其中,w是梁的均布荷载,L是梁的跨度,E是梁的材料弹性模量,I 是截面惯性矩。

4.梁的自振频率计算公式:当梁受到冲击或振动力作用时,会发生自振现象。

梁的自振频率可以使用下面的公式计算:f = (1 / 2π) * sqrt(k / m)其中,f是自振频率,k是梁的刚度,m是梁的质量。

5.梁的跨度计算公式:在设计梁的时候,需要确定其合适的跨度。

简支梁的跨度可以使用下面的公式计算:L = sqrt((5 * w * L^4) / (384 * σ))其中,w是梁的均布荷载,L是梁的跨度,σ是所允许的最大应力。

6.梁的横向稳定性计算公式:梁在承受侧向荷载时,需要考虑其横向稳定性。

梁的横向稳定系数可以使用下面的公式计算:Φ_b = 1 - (b / 12h) * sqrt(E / σ_c)其中,b是梁的宽度,h是梁的高度,E是梁的材料弹性模量,σ_c 是混凝土的抗压强度。

7.梁的最大挠度计算公式:梁的最大挠度限制可以使用下面的公式计算:δ_max = (5 * q * L^4) / (384 * E * I)其中,q是梁的集中荷载,L是梁的跨度,E是梁的材料弹性模量,I 是截面惯性矩。

8.梁的抗弯承载力计算公式:梁的抗弯承载力可以使用下面的公式计算:M_r=Z*σ其中,M_r是梁的抗弯承载力,Z是塑性截面模量,σ是所允许的最大应力。

各类梁的弯矩剪力计算汇总表

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁2.单跨梁的力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EI w 100ql 表中系数4⨯=。

2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。

[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。

[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·mV B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。

[解] M1=0.080×11.76×62=33.87kN ·m 。

2)三跨等跨梁的力和挠度系数 表2-12注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。

各类梁的弯矩剪力计算汇总表-剪力计算公式一览表

各类梁的弯矩剪力计算汇总表-剪力计算公式一览表

表 1 简单载荷下基本梁的剪力图与弯矩图注:外伸梁= 悬臂梁+ 端部作用集中力偶的简支梁2.单跨梁的内力及变形表(表2-6~表2-10)1)简支梁的反力、剪力、弯矩、挠度表2-62)悬臂梁的反力、剪力、弯矩和挠度表2-73)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-84)两端固定梁的反力、剪力、弯矩和挠度表2-95 )外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14 )1)二跨等跨梁的内力和挠度系数表2-11均布荷载 q =11.76kN/m ,每跨各有一集中荷载 F =29.4kN ,求中间支座的最大弯矩和剪力。

M B 支=(-0.125×11.76×52)+(- 0.188×29.4×5)=(- 36.75)+( -27.64)=- 64.39kN ·mV B 左=(-0.625×11.76×5)+(- 0.688×29.4)=(- 36.75)+(- 20.23)=- 56.98kN[例 2] 已知三跨等跨梁 l = 6m ,均布荷载 q =11.76kN/m ,求边跨最大跨中弯矩 [解 ] M1 = 0.080×11.76×62=33.87kN ·m 。

2)三跨等跨梁的内力和挠度系数 表 2-12注: 1.在均布荷载作用下: M =表中系数×4ql 2;V =表中系数× ql ; w 表中系数ql。

100EI Fl 3Fl ;V =表中系数× F ; w 表中系数 Fl。

100EI2.在集中荷载作用下: M =表中系数×[例 1] 已知二跨等跨梁 l =5m ,[解]f ⅜ 跨内帰大 支座弯矩 弯矩荷載图VCXAflM 2-0.5500 -O I OSo-O (O 5Q0.4500.550(Jf≡¾-0,050 -0.500 D.0751-0.050 -0.050 -0,0500,5000.050UHiD跨度中点挠度-0.45(J 0,990 -0.625 0.990L A 4-L073L054-0÷117-0.033 0.383D-0.C67 0.0170.433f t J÷175 -0.150一(L 1500.350-0,075 -0.0750.425ΓJ⅛3.175 -0.075-0.075-0,07S0.050-0.3131 0,677 -0.313λ1620.1370 + 175-o r osα 0,325-0.617-0.4170*033 0.5β3 0.033-0.5670.0830.5730.365 -0.208-O.on-0,017 0.885 -0.313 0.104-0.650 0.500"-W0.650-0,5750 0.575-0.425E146 1.6150.208 1.146- 0,075- 0,50C 0.5000.0750.075-0Λ69-0.9371U46L 615-0.469-0,675-0.375 0,6250.0500.0500.9900.677 L 0.3124 注:1.在均布荷载作用下:M =表中系数× ql2;V=表中系数× ql;w表中系数ql 100EI2.在集中荷载作用下:M =表中系数× Fl;V=表中系数× F;w 表中系数Fl。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各类梁反力剪力弯矩挠度计算公式一览表
第 5 页共 11பைடு நூலகம்页
桥梁工程专业技术论坛——桥头堡: 桥梁工程专业技术论坛——桥头堡:/index.php ——桥头堡
各类梁反力剪力弯矩挠度计算公式一览表
第 6 页共 11 页
桥梁工程专业技术论坛——桥头堡: 桥梁工程专业技术论坛——桥头堡:/index.php ——桥头堡
各类梁反力剪力弯矩挠度计算公式一览表
第 7 页共 11 页
桥梁工程专业技术论坛——桥头堡: 桥梁工程专业技术论坛——桥头堡:/index.php ——桥头堡
各类梁反力剪力弯矩挠度计算公式一览表
第 8 页共 11 页
桥梁工程专业技术论坛——桥头堡: 桥梁工程专业技术论坛——桥头堡:/index.php ——桥头堡
各类梁反力剪力弯矩挠度计算公式一览表
第 9 页共 11 页
桥梁工程专业技术论坛——桥头堡: 桥梁工程专业技术论坛——桥头堡:/index.php ——桥头堡
各类梁反力剪力弯矩挠度计算公式一览表
第 10 页共 11 页
桥梁工程专业技术论坛——桥头堡: 桥梁工程专业技术论坛——桥头堡:/index.php ——桥头堡
各类梁反力剪力弯矩挠度计算公式一览表
第 3 页共 11 页
桥梁工程专业技术论坛——桥头堡: 桥梁工程专业技术论坛——桥头堡:/index.php ——桥头堡
各类梁反力剪力弯矩挠度计算公式一览表
第 4 页共 11 页
桥梁工程专业技术论坛——桥头堡: 桥梁工程专业技术论坛——桥头堡:/index.php ——桥头堡
桥头堡技术论坛: 桥头堡技术论坛:/index.php
子 菁 整理发布 2008 年 6 月 2 日
各类梁反力剪力弯矩挠度计算公式一览表 第 11 页共 11 页
桥梁工程专业技术论坛——桥头堡:/index.php 桥梁工程专业技术论坛——桥头堡:/index.php ——桥头堡 各类梁反力、剪力、弯矩和挠度计算公式一览表 各类梁反力、剪力、弯矩和挠度计算公式一览表
各类梁反力剪力弯矩挠度计算公式一览表
第 1 页共 11 页
桥梁工程专业技术论坛——桥头堡: 桥梁工程专业技术论坛——桥头堡:/index.php ——桥头堡
各类梁反力剪力弯矩挠度计算公式一览表
第 2 页共 11 页
桥梁工程专业技术论坛——桥头堡: 桥梁工程专业技术论坛——桥头堡:/index.php ——桥头堡
相关文档
最新文档