(完整word版)用matlab解决线性规划问题的几道题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、用MATLAB 求解线性规划问题
(1)
编写的M 文件为:
f=[-1;-1]
A=[1 -2;1 2]
b=[4,8]
[x,feval]=linprog(f,A,b,[],[],zeros(2,1))
所求解为:x 1=6,x 2=1;min f=-7
(2) 编写的M 文件为:
f=[-4;-3]
A=[3 4;3 3;4 2]
b=[12;10;8]
[x,feval]=linprog(f,A,b,[],[],zeros(1,2))
所求得的解为:x 1=0.8,x 2=2.4;max f=10.4
(3)
(4) 编写的M 文件为:
f=[-1;-3;3]
Aeq=[1 1 2;-1 2 1]
beq=[4;4]
[x,feval]=linprog(f,[],[],Aeq,beq,zeros(3,1))
所求得的结果为:x 1=4/3,x 2=8/3,x 3=0;max f=28/3。
12
121212min 24s.t.28
,0f x x x x x x x x ì=--ïïïï-?镲íï+?ïïï
³ïî12
1212121243max 3412
..3310
428
,0
f x x x
x s t x x x x x x ì
=+ïïïï+?ïïï+?íïïï+?ïïï³ïî123
12312313min 3s.t.211
423
21
0(1,2,3)
j f x x x x x x
x x
x x x x j =--ìïïïï-+?ïïïï-++?íïï-+=ïï
ïïï
?ïî123
123123max 3s.t.24
24
0(1,2,3)
j f x x x x
x x x x x x j =+-ìïïïï++=ïïí-++=ïïïï
ï?ïî
(5)(选做)
先做如下转化:
% x=u1-v1,,y=u2-v2,,z=u3-v3
% min f=u1+u2+u3+v1+v2+v3
% s.t. u1+u2-v1-v2<=1
% 2*u1+u3-2*v1-v3=3
则编写的M 文件为:
f=[1;1;1;1;1;1]
A=[1 1 0 -1 -1 0]
b=1
Aeq=[2 0 1 -2 0 -1]
beq=3
[x,feval]=linprog(f,A,b,Aeq,beq,zeros(6,1))
所求得的结果为:u 1=1.0936,u 2=0,u 3=0.8192,v 1=0,v 2=0.9302,v 3=0
Min f =2。
二、 某机构现在拥有资本200万元,为了获取更大的收益,该机构决定将这200万元进行投资,以期最大回报,现在共有四个方案可供选择,投资的方式为每年初将机构持有的所有资本都用于投资。
方案1:从第1年到第4年的每年年初都需要投资,次年末回收本利1.15
方案2:第3年初投资,到第5年末收回本利1.25,最大投资额为80万元
方案3:第2年初投资,到第5年末收回本利1.40,最大投资额为60万元
方案4:每年初投资,每年末收回本利1.06
那么应该采用何种投资组合策略,使得该机构5年末的总资本最大?
三、某饲养场有5种饲料.已知各种饲料的单位价格和每百公斤饲料的蛋白质、矿物质、维生素含量如表所示,又知该场每日至少需蛋白质70单位、矿物质3单位、维生素10毫单位.间如何混合调配这5种饲料.才能使总成本最低?
min s.t.123f x y z x y x z ìï=++ïïï+?íïïï+=ïïî
解:设五种饲料的使用量分别为x1,x2,x3,x4,x5。所用饲料的总成本为f。
则该问题的线性规划模型为:
()
12345
12345
12345
12345
min27435
0.30 2.20.06 1.870
0.10.050.020.200.053
0.050.10.020.20.0810
01,2,3,4,5
j
f x x x x x
x x x x x
x x x x x
x x x x x
x j
=++++
++++≥
⎧
⎪++++≥
⎪
⎨++++≥
⎪
⎪≥=
⎩
所编写的M文件为:
f=[2;7;4;3;5]
A=[-0.3 -2.2 -1.00 -0.06 -1.80;-0.10 -0.05 -0.02 -0.20 -0.05;-0.05 -0.10 -0.02 -0.20 -0.08]
b=[-70;-3;-10]
[x,feval]=linprog(f,A,b,[],[],zeros(5,1))
解得的结果为:x1=0,x2=0,x3=0,x4=34.9,x5=37.8;min f=293.4
总上即知按如上使用才能使总成本最低为293.4元。
四、设有两个建材厂C1和C2,每年沙石的产量分别为35万吨和55万吨,这些沙石需要供应到W1、W2和W3三个建筑工地,每个建筑工地对沙石的需求量分别为26万吨、38万吨和26万吨,各建材厂到建筑工地之间的运费(万元/万吨)如表所示,问题是应当怎么调运才能使得总运费最少?
解:设c1往w1,w2,w3运送的沙石分别为x1,x2,x3;c2往w1,w2,w3分别为x4,x5,x6.总运费为f 则该问题的线性规划模型为:
()
123456
123
456
14
25
36
min1012981113
35
55
26
38
26
01,2,3,4,5,6
j
f x x x x x x
x x x
x x x
x x
x x
x x
x j
=+++++
++=
⎧
⎪++=
⎪
⎪+=
⎪
⎨+=
⎪
⎪+=
⎪
≥=
⎪⎩
所编的M文件为:
f=[10;12;9;8;11;13]
Aeq=[1 1 1 0 0 0;0 0 0 1 1 1;1 0 0 1 0 0;0 1 0 0 1 0;0 0 1 0 0 1]