数字信号处理实验讲义2016-9-2
数字信号处理课件ppt
![数字信号处理课件ppt](https://img.taocdn.com/s3/m/b399d458ad02de80d4d840de.png)
| rws (k ) |2
2 w
1 dz 1 C Sss ( z) H opt ( z)S xs ( z ) z 2πj
通过前面的分析, 因果维纳滤波器设计的一般方法可以按 下面的步骤进行:
(1) 根据观测信号x(n)的功率谱求出它所对应的信号模型的
传输函数,即采用谱分解的方法得到B(z)。 S xs ( z) (2) 求 B( z 1 ) 的Z反变换,取其因果部分再做Z变换,即 S xs ( z ) 舍掉单位圆外的极点,得 B( z 1 ) (3) 积分曲线取单位圆,应用(2.3.38)式和(2.3.39)式,计 算Hopt(z), E[|e(n)|2]min。
1 ˆ' rxx (m) N
N |m|1
n 0
x ( n ) x ( n m)
平稳随机序列通过线性系统:
y (n)
k
h( k ) x ( n k )
k
m y E[ y (n )]
h(k ) E[ x(n k )]
k
ryy (m)
m0
k=0, 1, 2, …
利用白化x(n)的方法求解维纳-霍夫方程:
x(n)=s(n)+υ (n)
H(z) (a)
ˆ y ( n) s ( n)
x(
x(n)
1 B( z )
w(n)
G(z) (b)
ˆ y ( n) s ( n)
x(
图2.3.5 利用白化x(n)的方法求解维纳-霍夫方程
D (m)
2 x
rxx (m)
2 x (m)
赵雪英10版《数字信号处理》实验讲义..
![赵雪英10版《数字信号处理》实验讲义..](https://img.taocdn.com/s3/m/4ca3c86a8e9951e79b8927e9.png)
《数字信号处理》实验讲义信息学院赵雪英2013.1前言数字信号处理是利用计算机或专用数字处理设备,采用数值计算的方法对信号进行处理的一门学科,它包括数据采集,变换、分析、综合、滤波、估值与识别等加工处理,以便于提取信息和应用。
数字信号处理的主要优点有:(1)灵活性好。
适合用计算机、可编程器件(如通用单片机、DSP、可编程逻辑器件等)实现,通过编程很容易改变数字信号处理系统得参数,从而使系统实现各种不同的处理功能。
如数字电话系统中采用的时分复用技术。
(2)稳定可靠。
(3)处理精度高。
(4)便于加解密。
(5)便于大规模集成化、小型化。
(6)便于自动化、多功能化。
(7)可实现模拟系统无法实现的复杂处理功能。
数字信号处理原理、实现和应用是本学科研究和发展的三个主要方面。
数字信号处理应用非常广泛,涉及语音、雷达、声呐、地震、图像处理、通信系统、系统控制、生物医学工程、机械振动、遥感遥测、航空航天、电力系统、故障检测和自动化仪表等领域。
MATLAB是美国MathWorks公司开发的一种功能极其强大的高技术计算语言和内容极其丰富的软件库。
其中的信号处理工具箱是一个内容丰富的信号处理软件库,是学习、应用数字信号处理的一个极好工具。
在学习数字信号处理理论的同时,熟练掌握MATLAB的使用,对理工科的学生是非常必要的。
目录实验一时域离散信号和系统 (4)实验二时域离散信号和系统的频域分析 (6)实验三离散傅里叶变换及其快速算法 (8)实验四特殊滤波器 (9)实验五IIR数字滤波器设计 (10)实验六FIR数字滤波器设计 (12)实验七综合实验-数字滤波器设计 (14)实验八时域离散系统的实现 (15)实验一 时域离散信号和系统一、实验目的(一)常用时域离散信号的MATLAB 表示(二)应用MATLAB 求线性卷积(三)应用MATLAB 求解差分方程二、实验内容(一)常用时域离散信号的MATLAB 表示用两个参数向量x 和n 表示有限长序列x(n),x 是x(n)的样值向量,n 是位置向量; n 与x 长度相等。
数字信号处理实验讲义
![数字信号处理实验讲义](https://img.taocdn.com/s3/m/155023030740be1e650e9a57.png)
数字信号处理实验指导书淮北煤炭师范学院物理与电子信息学院电子技术实验室目录实验一数字信号处理系统结构和编程 (1)实验二用FFT作谱分析 (4)实验三IIR滤波器的设计 (10)实验四FIR滤波器的设计 (17)附录一 (24)附录二 (26)附录三 (31)实验一数字信号处理系统结构和编程一、实验目的1.学习C语言的编程;2.掌握在CCS环境下的C程序设计方法;3.学会使用C和汇编语言混合编程;4.熟悉用C语言开发DSP程序的流程。
二、实验设备计算机,仿真器,THRS-1实验箱三、实验步骤与内容1.连接好DSP开发系统,实验箱上电,运行CCS;2.按流程图编写C程序,实现所要求的功能;3.例程序操作说明。
启动CCS 2.0,用Project/Open打开“DSP54X-01”目录下的“DSP54X01.pjt”工程文件,双击“DSP54X01.pjt”及“Source”可查看各源程序;并加载“DSP54X01.out”;单击“Run”运行程序;可以观察到D8指示灯闪烁;用View/Graph/Time/Frequency打开一个图形观察窗口;设置该观察图形窗口变量及参数;观察变量为x,长度为500,数值类型为16位有符号整型变量;如下图所示,图中下半部分为观察图形窗口的设置,上半部分为观察的图形。
四、程序框图五、实验说明CCS包含C编译器,支持标准C以及C和汇编混合编程。
C编译器包括三个功能模块:语法分析、代码优化和代码产生,如下图所示。
其中,语法分析(Parser)完成C语法检查和分析;代码优化(Optimizer)对程序进行优化,以便提高效率;代码产生(Code Generator)将C程序转换成C54x的汇编源程序。
本实验通过一些对数组及数据指针的基本操作,让实验者能够对使用C语言在CCS环境下编程有一个一目了然的认识。
并使用汇编语句,以体会两者综合运用时的优越性。
实验源程序如下:#include <math.h>#define pi 3.1415926#define N 500void main(){ int i,j;int *p;int x[500];for(i=0;i<N;i++)x[i]=0; for(i=0;i<N;i++){ x[i]=(int)100*sin(2*pi*i/250);}p=(int *)0x100;for(i=0;i<N;i++){ *p=x[i];p++ ;}for(;;){ asm(" rsbx xf");for(i=0;i<30000;i++)for(j=0;j<10;j++){ asm(" nop");asm(" nop");}asm(" ssbx xf");for(i=0;i<30000;i++)for(j=0;j<10;j++){asm(" nop");asm(" nop");}}}实验二用FFT作谱分析一、实验目的1.加深对DFT算法原理和基本性质的理解;2.熟悉FFT算法原理和FFT子程序的应用;3.学习用FFT对连续信号和时域信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。
数字信号处理讲义
![数字信号处理讲义](https://img.taocdn.com/s3/m/db5cdb7231b765ce0508145d.png)
在数值上它等于信号的采样值,即
x(n)=xa(nT),
自动化系
-∞<n<∞ (1.2.2)
信号随n的变化规律表示
自动化系
1.2.1 常用的典型序列
1. 单位采样序列δ(n)
1, n 0 ( n) (1.2.3) 0, n 0 单位采样序列也可以称为单位脉冲序列,特点是 仅在n=0时取值为1,其它均为零。它类似于模拟信号 和系统中的单位冲激函数δ(t),但不同的是δ(t)在t=0时, 取值无穷大,t≠0时取值为零,对时间t的积分为1。单 位采样序列和单位冲激信号如图1.2.1所示。
fs
(1.2.11)
自动化系
6. 复指数序列
x(n) e ( j0 ) n
式中ω0为数字域频率,设σ=0,用极坐标和实部虚 部表示如下式:
x ( n ) e j 0 n
x(n)=cos(ω0n)+jsin(ω0n)
由于n取整数,下面等式成立: e j(ω0+2πM)n= e jω0n, M=0,±1,±2…
自动化系
1.3.2 时不变系统
如果系统对输入信号的运算关系T[·]在整个运 算过程中不随时间变化,或者说系统对于输入信号的 响应与信号加于系统的时间无关,则这种系统称为时 不变系统,用公式表示如下: y(n) = T[x(n)] y(n-n0) = T[x(n-n0)] (1.3.5)
自动化系
例1.3.2
值要保证N是最小的正整数,满足这些条件,正弦序列 才是以N为周期的周期序列。具体正弦序列有以下三种
情况:
(1) 当2π/ω0为整数时,k=1,正弦序列是以2π/ ω0 为周期的周期序列。例如sin(π/8)n, ω0 =π/8,2π/ ω0 =16,该正弦序列周期为16。
数字信号处理讲义-2抽取与内插滤波器
![数字信号处理讲义-2抽取与内插滤波器](https://img.taocdn.com/s3/m/c572a33e856a561253d36f29.png)
L:内插的倍数 M:抽样的倍数。
例:离散信号x[k]是由抽样频率为10Hz,试求出抽样频
率为15Hz的序列y[k]。
f=0.35;N=40;
fs=10;fs1=15;
k=0:N-1;t=k/fs;
k1=0:N*1.5-1;t1=k1/fs1;
x=cos(2*pi*f*t);
xr=cos(2*pi*f*t1);
l=3时,要求的阻带为[(6p0.4p)/4,(6p+0.4p)/4]=[1.4p,1.6p]
综上所述,抽取滤波器阻带为 [0.4p,0.6p],[0.9p, p] 7
2021/3/18
x = firls(511,[0 0.1 0.1 0.5 0.5 1],[1 1 1 0 0 0]); f=[0.1 0.4 0.6 0.9];a=[1 0 0];dev=[0.01 0.001 0.001]; %设计滤波器 [N,fo,ao,w] = remezord(f,a,dev); h = remez(N,fo,ao,w); xd=filter(h,[1],x); y=xd(1:4:end); w=linspace(0,pi,512); mag=freqz(h,[1],w); subplot(3,1,1);plot(w/pi,20*log10(abs(mag))); xlabel('Normalized frequency'); ylabel('Gain, dB'); X=freqz(x,[1],w);Y=freqz(y,[1],w); subplot(3,1,2);plot(w/pi,(abs(X))); xlabel('Normalized frequency'); ylabel('magnitude');title('Spectrum of x'); Subplot(3,1,3);plot(w/pi,abs(Y)); xlabel('Normalized frequency'); ylabel('magnitude');title('Spectrum of y');
数字信号处理ppt课件
![数字信号处理ppt课件](https://img.taocdn.com/s3/m/8a8dd25a6fdb6f1aff00bed5b9f3f90f77c64d59.png)
三.自相关函数与 自协方差函数的性质
24
性质1 :相关函数与协方差函数的关系
Cxx m rxx m mx 2
Cxy m rxy m m*xmy
当 mx 0
Cxx m rxx m Cxy m rxy m
25
性质2:均方值、方差与相关函数和协方差函数
rxx
0
E
xn
2
Cxx 0 rxx 0 mx 2
五、功率谱密度
44
维纳——辛钦定理
1. 复频域
rxx
(m)
1
2
j
c Sxx (z)zm1dz,
Sxx
(z)
m
rxx
(m)z
m
C (Rx , Rx )
45
2. 频域
{ rxx(m)
1
2
Pxx (e j )e jm d
2
Pxx (e j ) rxx (m)e jm
m
46
3.性质
实平稳随机信号 rxx m rxx m
rxx m E x x n1 n1m
x1x2 p x1 , x2 ; m dx1dx2
18
自协方差函数
Cxx (m) E (xn1 mx )*(xn2 mx ) E (xn1 mx )*(xn1m mx )
rxx m mx 2
19
对于均值为零的随机过程 rxx m Cxx m
①偶函数
Pxx e j Pxx e j
②实函数
Pxx e j Pxx e j
③极点互为倒数出现
Sxx
z
Sxx
1 z
47
④功率谱在单位圆上的积分等于平均功率
E
x2
数字信号处理讲义线性时不变系统的变换分析
![数字信号处理讲义线性时不变系统的变换分析](https://img.taocdn.com/s3/m/c754408451e2524de518964bcf84b9d528ea2cf8.png)
数字信号处理讲义线性时不变系统的变换分析1. 数字信号处理概述数字信号处理(Digital Signal Processing,简称DSP)是一种利用计算机对数字信号进行采集、处理和传输的技术。
它在许多领域都有广泛的应用,如通信、音频处理、图像处理、雷达、声纳等。
数字信号处理的核心任务是对离散时间信号进行采样、量化、编码和解码等操作,以实现信号的高效处理和传输。
采样:从连续时间信号中抽取一系列有限长度的样本点。
采样频率是指单位时间内抽取的样本点数,通常用赫兹(Hz)表示。
采样频率越高,还原出的连续时间信号越接近原始信号。
量化:将采样得到的样本值映射到一个固定范围(如8位整数)内的离散值。
量化过程引入了量化误差,但可以通过增加量化比特数来减小误差的影响。
编码:将量化后的离散值编码成二进制数据,以便于存储和传输。
常见的编码方式有频移键控(Frequency Shift Keying, FSK)、相移键控(Phase Shift Keying, PSK)等。
解码:将接收到的二进制数据还原为原始的离散值。
解码过程需要根据预先设定的解码算法进行计算。
数字信号处理技术的发展使得信号处理系统具有更高的实时性、可靠性和灵活性。
现代数字信号处理器(Digital Signal Processor,简称DSP)在性能和功耗方面已经达到了很高的水平,可以满足各种复杂信号处理的需求。
1.1 信号与系统信号是信息的载体,它可以是声音、图像、数据等任何可以传递信息的物理量。
在数字信号处理中,我们通常研究的信号是随时间变化的连续或离散取值序列。
信号可以根据其时间特性分为连续时间信号和离散时间信号,根据取值特性分为模拟信号和数字信号。
系统是由相互关联、相互作用的元素组成的,具有特定功能和行为的整体。
在信号处理中,系统通常指的是对输入信号进行某种处理或转换的装置。
根据系统对输入信号的响应特性,系统可以分为线性系统、非线性系统、时不变系统和时变系统。
(完整版)数字信号处理实验二
![(完整版)数字信号处理实验二](https://img.taocdn.com/s3/m/9a7665a7ee06eff9aff80745.png)
y = filter(num,den,x,ic);
yt = a*y1 + b*y2;
d = y - yt;
subplot(3,1,1)
stem(n,y);
ylabel('振幅');
title('加权输入: a \cdot x_{1}[n] + b \cdot x_{2}[n]的输出');
subplot(3,1,2)
%扫频信号通过2.1系统:
clf;
n = 0:100;
s1 = cos(2*pi*0.05*n);
s2 = cos(2*pi*0.47*n);
a = pi/2/100;
b = 0;
arg = a*n.*n + b*n;
x = cos(arg);
M = input('滤波器所需的长度=');
num = ones(1,M);
三、实验器材及软件
1.微型计算机1台
2. MATLAB 7.0软件
四、实验原理
1.三点平滑滤波器是一个线性时不变的有限冲激响应系统,将输出延时一个抽样周期,可得到三点平滑滤波器的因果表达式,生成的滤波器表示为
归纳上式可得
此式表示了一个因果M点平滑FIR滤波器。
2.对线性离散时间系统,若y1[n]和y2[n]分别是输入序列x1[n]和x2[n]的响应,则输入
plot(n, y);
axis([0, 100, -2, 2]);
xlabel('时间序号 n'); ylabel('振幅');
数字信号处理实验讲义(修订版)
![数字信号处理实验讲义(修订版)](https://img.taocdn.com/s3/m/b09a7dfd4693daef5ef73d3b.png)
数字信号处理实验指导书(2009版)宋宇飞编南京工程学院目录实验一信号、系统及系统响应 (1)一、实验目的 (1)二、实验原理与方法 (1)三、实验内容及步骤 (4)四、实验思考 (4)五、参考程序 (4)实验二离散时间傅里叶变换DTFT及IDTFT (9)一、实验目的 (9)二、实验原理与方法 (9)三、实验内容及步骤 (9)四、实验思考 (10)五、参考程序 (10)实验三离散傅里叶变换DFT及IDFT (12)一、实验目的 (12)二、实验原理与方法 (13)三、实验内容及步骤 (14)四、实验思考 (14)五、参考程序 (14)实验四用FFT做频谱分析 (17)一、实验目的 (17)二、实验原理与方法 (17)三、实验内容及步骤 (19)四、实验思考 (20)五、参考程序 (21)实验五用双线性变换法设计IIR数字滤波器 (25)一、实验目的 (25)二、实验原理与方法 (25)三、实验内容及步骤 (27)四、实验思考 (27)五、参考程序 (27)实验六用窗函数法设计FIR数字滤波器 (29)一、实验目的 (29)二、实验原理与方法 (29)三、实验内容及步骤 (33)四、实验思考 (34)五、参考程序 (34)附录一滤波器设计示例 (38)一、Matlab设计IIR基本示例 (38)二、Matlab设计IIR高级示例 (42)附录二部分习题参考答案 (50)习题一(离散信号与系统) (50)习题二(离散傅里叶变换及其快速算法) (51)习题三(IIR滤波器设计) (53)习题四(FIR滤波器) (54)习题五(数字信号处理系统的实现) (56)附录三相关MATLAB习题及答案 (57)第1章离散时间信号与系统 (57)第2章离散傅里叶变换及其快速算法 (60)第3章无限长单位脉冲响应(IIR)滤波器的设计方法 (63)第4章有限长单位脉冲响应(FIR)滤波器的设计方法 (67)第5章数字信号处理系统的实现 (69)第6章多采样率信号处理 (73)实验一 信号、系统及系统响应一、实验目的1、掌握时域离散信号的表示及产生方法;2、掌握时域离散信号简单的基本运算方法;3、掌握离散系统的响应特点。
数字信号处理实验讲义
![数字信号处理实验讲义](https://img.taocdn.com/s3/m/736336b169dc5022aaea009f.png)
数字信号处理实验讲义实验一序列、频谱、卷积一、实验目的1.掌握序列的输入方法;2.熟悉不同序列的特征;3.了解确定性信号谱分析的方法;4.验证卷积的计算过程;二、实验要求1.利用matlab程序,生成几种常用的序列,如矩形序列,单位脉冲序列;2.绘制图形,观察序列特征;3.研究其频率特性,绘制图形,观察频率响应特征;4.利用matlab程序,验证卷积的过程;三、实验步骤1.矩形序列(1)生成长度为N的矩形序列,观察并记录生成的图形;n=1:50x=sign(sign(10-n)+1);close all;subplot(3,1,1);stem(x);title('单位矩形信号序列');(2)研究其频率特性,()∑∞-∞=-=n nj Nj en R e H ωω)(,分别研究其幅频特性和相频特性,观察并记录生成的图形;k=-25:25;X=x*(exp(-j*pi/25)).^(n'*k); magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title('单位矩形信号的幅度谱'); angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title ('单位矩形信号的相位谱')2.单位脉冲序列(1)生成单位脉冲序列,观察并记录生成的图形;n=1:50; %定义序列的长度是50x=zeros(1,50); %注意:MATLAB中数组下标从1开始x(1)=1;close all;subplot(3,1,1);stem(x);title('单位冲击信号序列');(2) 研究其频率特性,()∑∞-∞=-=n nj j en x e H ωω)(,分别研究其幅频特性和相频特性,观察并记录生成的图形;k=-25:25;X=x*(exp(-j*pi/12.5)).^(n'*k); magX=abs(X); %绘制x(n)的幅度谱subplot(3,1,2);stem(magX);title('单位冲击信号的幅度谱'); angX=angle(X); %绘制x(n)的相位谱subplot(3,1,3);stem(angX) ; title ('单位冲击信号的相位谱')3.卷积过程∑∞-∞=-= =mmnhmxnhnxny)()()(*)()(,n=1:50; %定义序列的长度是50hb=zeros(1,50); %注意:MATLAB中数组下标从1开始hb(1)=1;hb(2)=2.5;hb(3)=2.5;hb(4)=1;close all;subplot(3,1,1);stem(hb);title('系统hb[n]');m=1:50; %定义序列的长度是50A=444.128; %设置信号有关的参数a=50*sqrt(2.0)*pi;T=0.001; %采样率w0=50*sqrt(2.0)*pi;x=A*exp(-a*m*T).*sin(w0*m*T);subplot(3,1,2);stem(x);title('输入信号x[n]');y=conv(x,hb);subplot(3,1,3);stem(y);title('输出信号y[n]');四、实验报告要求1.写出生成对应序列的matlab程序,并分析;2.记录生成的图形;3.描述对应的序列和频率特性的特征;4.验证卷积计算结果;五、思考:1.如何生成实指数序列?写出对应的matlab程序a1=2n=1:50x1=(a1.^n)subplot(1,1,1)stem(x1);title('实指数序列')2.编写程序验证卷积定律。
赵雪英10版《数字信号处理》实验讲义
![赵雪英10版《数字信号处理》实验讲义](https://img.taocdn.com/s3/m/5b1e7810a8114431b90dd818.png)
《数字信号处理》实验讲义信息学院赵雪英2013.1前言数字信号处理是利用计算机或专用数字处理设备,采用数值计算的方法对信号进行处理的一门学科,它包括数据采集,变换、分析、综合、滤波、估值与识别等加工处理,以便于提取信息和应用。
数字信号处理的主要优点有:(1)灵活性好。
适合用计算机、可编程器件(如通用单片机、DSP、可编程逻辑器件等)实现,通过编程很容易改变数字信号处理系统得参数,从而使系统实现各种不同的处理功能。
如数字电话系统中采用的时分复用技术。
(2)稳定可靠。
(3)处理精度高。
(4)便于加解密。
(5)便于大规模集成化、小型化。
(6)便于自动化、多功能化。
(7)可实现模拟系统无法实现的复杂处理功能。
数字信号处理原理、实现和应用是本学科研究和发展的三个主要方面。
数字信号处理应用非常广泛,涉及语音、雷达、声呐、地震、图像处理、通信系统、系统控制、生物医学工程、机械振动、遥感遥测、航空航天、电力系统、故障检测和自动化仪表等领域。
MATLAB是美国MathWorks公司开发的一种功能极其强大的高技术计算语言和内容极其丰富的软件库。
其中的信号处理工具箱是一个内容丰富的信号处理软件库,是学习、应用数字信号处理的一个极好工具。
在学习数字信号处理理论的同时,熟练掌握MATLAB的使用,对理工科的学生是非常必要的。
目录实验一时域离散信号和系统 (4)实验二时域离散信号和系统的频域分析 (6)实验三离散傅里叶变换及其快速算法 (8)实验四特殊滤波器 (9)实验五IIR数字滤波器设计 (10)实验六FIR数字滤波器设计 (12)实验七综合实验-数字滤波器设计 (14)实验八时域离散系统的实现 (15)实验一 时域离散信号和系统一、实验目的(一)常用时域离散信号的MATLAB 表示 (二)应用MATLAB 求线性卷积 (三)应用MATLAB 求解差分方程 二、实验内容(一)常用时域离散信号的MATLAB 表示用两个参数向量x 和n 表示有限长序列x(n),x 是x(n)的样值向量,n 是位置向量; n 与x 长度相等。
数字信号处理实验讲义(修改版2016)
![数字信号处理实验讲义(修改版2016)](https://img.taocdn.com/s3/m/4c789c2c0812a21614791711cc7931b765ce7b7e.png)
数字信号处理实验讲义(修改版2016)实验⼀离散信号的matlab 实现⼀、实验⽬的1、熟悉matlab 软件,学会matlab 语⾔的编写2、使⽤matlab 软件产⽣⼀些常见的离散信号3、掌握⽤matlab 软件作信号的相关分析⼆、实验环境计算机操作系统、matlab 软件三、实验内容1、⽤matlab 程序产⽣下列离散信号或连续信号,并画出其波形。
a 单位抽样序列的产⽣)(n δ参考程序:N=100;x=zeros(1,N); 产⽣⼀个1⾏N 列值全为0的矩阵,如看成数组x (1)-x (100)都为0x(1)=1;n=0:N-1;stem(n,x);产⽣序列)20(-n δ参考程序:N=100;x=zeros(1,N);k=20;x(k+1)=1;xn=0:N-1;stem(xn,x);xlabel(’x ’)ylabel(’y’)grid on;x yb 单位阶跃序列的产⽣)(n u参考程序:N=32;x=ones(1,N);产⽣⼀个1⾏N 列值全为1的矩阵n=0:N-1;stem(n,x);产⽣序列)20(-n u参考程序:N=32;k=20;x1=zeros(1,k);x2=ones(1,N-k);x=[x1,x2];xn=0:N-1;stem(xn,x);xlabel(’x’)ylabel(’y’)grid on;x yc 模拟信号)8cos(5)4sin(2)(t t t x ππ+=,以t=0.01n (n=0:N-1)进⾏采样后的离散信号。
参考程序: N=128;n=[0:N-1]; t=0.01*n;x=2*sin(4*pi*t)+5*cos(8*pi*t);figure(1);subplot(211);xlabel(’x’)ylabel(’y’)grid on;stem(t,x);subplot(212);ylabel(’y’)grid on;x y020406080100120140x yd 产⽣⼀个sinc(t)=sint/t 抽样函数参考程序:n=200;step=4*pi/n;t=-2*pi:step:2*pi;y=sinc(t);plot(t,y,t,zeros(size(t)));%同时画出y(t )和横轴grid on;plot(t,y,t,zeros(size(t)),zeros(size(y)),y);%同时画出y(t )和横轴、纵轴xlabel(’x’)ylabel(’y’)grid on;x ye ⽅波信号square(t) square(t,duty) 产⽣周期是2pi ,幅度为正负1的⽅波,duty 占空⽐,⾼电平跟整个周期的⽐值参考程序:t=0:0.01:2*pi;y=square(t,50);plot(t,y);xlabel(’x’)yx试产⽣⼀个周期为2pi,⾼低电平分别为半个周期的⽅波信号2、相关分析去除噪声x(n)=sin(2*pi*n)+u(n) 噪声为⾼斯分布⽩噪声,使⽤相关分析去除噪声,噪声1功率为1,噪声2功率为0.1%rxy=xcorr(x,y);%rx=xcorr(x,Mlag,'flag') Mlag表⽰rx的单边长度,总长度为2Mlag+1, flag---'biased' rx(m)/N --unbiased rx(m)/(N-abs(m))参考程序:N=500;p1=1;p2=0.1;f=1/8;Mlag=60;u=randn(1,N);u2=u*sqrt(p2);n=[0:N-1];s=sin(2*pi*f*n);x1=u(1:N)+s;rx1=xcorr(x1,Mlag,'biased');subplot(211);plot(-Mlag:Mlag,rx1);xlabel(’x’)ylabel(’y’)grid on;x2=u2(1:N)+s;rx2=xcorr(x2,Mlag,'biased');subplot(212);plot(-Mlag:Mlag,rx2);grid on;yxx实验⼆、离散信号的傅⾥叶变换⼀、实验⽬的1、进⼀步熟悉matlab 软件的使⽤,熟悉matlab 的编程语⾔2、⽤matlab 语⾔编写程序进⾏离散信号的傅⾥叶分析⼆、实验原理设离散序列)(n x ,长度为N ,其DTFT 定义为:∑∞-∞=-=n jwn j e n x e X )()(ω在实际计算中⽆法取到⽆限长序列,通常通过⽆限长序列加窗作有限长序列的DTFT 。
数字信号处理实验
![数字信号处理实验](https://img.taocdn.com/s3/m/4174ff13b42acfc789eb172ded630b1c59ee9b96.png)
数字信号处理实验数字信号处理实验讲义前⾔ (2)实验⼀MATLAB简介 (3)实验⼆⽤FFT实现信号的谱分析 (5)实验三IIR数字巴特沃思滤波器的设计 (8)实验四FIR数字滤波器的设计 (9)前⾔信号处理与计算机的应⽤紧密结合。
⽬前⼴泛应⽤的MA TLAB⼯具软件包,以其强⼤的分析、开发及扩展功能为信号处理提供了强有⼒的⽀持。
在数字信号处理实验中,我们主要应⽤MA TLAB的信号处理⼯具箱及其灵活、便捷的编程⼯具,通过上机实验,帮助学⽣学习、掌握和应⽤MA TLAB软件对信号处理所学的内容加以分析、计算,加深对信号处理基本算法的理解。
实验⼀ MATLAB 简介实验⽬的1.熟悉MATLAB 软件的使⽤⽅法; 2.MA TLAB 的绘图功能;3.⽤MA TLAB 语句实现信号的描述及变换。
实验原理1.在MA TLAB 下编辑和运⾏程序在MA TLAB 中,对于简单问题可以在命令窗(command windows )直接输⼊命令,得到结果;对于⽐较复杂的问题则可以将多个命令放在⼀个脚本⽂件中,这个脚本⽂件是以m 为扩展名的,所以称之为M ⽂件。
⽤M ⽂件进⾏程序的编辑和运⾏步骤如下:(1)打开MA TLAB ,进⼊其基本界⾯;(2)在菜单栏的File 项中选择新建⼀个M ⽂件;(3)在M ⽂件编辑窗⼝编写程序;(4)完成之后,可以在编辑窗⼝利⽤Debug ⼯具调试运⾏程序,在命令窗⼝查看输出结果;也可以将此⽂件保存在某个⽬录中,在MATLAB 的基本窗⼝中的File 项中选择Run The Script ,然后选择你所要运⾏的脚本⽂件及其路径,即可得出结果;也可以将此⽂件保存在当前⽬录中,在MA TLAB 命令窗⼝,“>>”提⽰符后直接输⼊⽂件名。
2.MA TLAB 的绘图功能plot(x,y) 基本绘图函数,绘制 x 和y 之间的坐标图。
figure(n ) 开设⼀个图形窗⼝nsubplot(m,n,N) 分割图形窗⼝的MATLAB 函数,⽤于在⼀个窗⼝中显⽰多个图形,将图形窗⼝分为m ⾏n 列,在第N 个窗⼝内绘制图形。
数字信号处理实验讲义
![数字信号处理实验讲义](https://img.taocdn.com/s3/m/2feeb9e85ef7ba0d4a733b81.png)
实验一 连续时间信号的时域取样与重建实验目的:1、 掌握连续时间信号的离散化过程,深刻理解时域取样定理;2、 掌握由取样序列恢复原连续信号的基本原理与实现方法。
实验原理:取样解决的是把连续信号变成适于计算机处理的离散信号的问题。
取样就是从连续信号)(t f 中取得一系列的离散样点值。
1、理想取样设待取样信号为)(t x ,理想取样表示成:)()()(t t x t x T s δ=,其中 ∑-=nT nT t t )()(δδ。
T 为取样周期(间隔),T x s /1=为取样频率,T s /2πω=为取样角频率。
由傅里叶变换频域卷积定理,得取样信号的频谱)(ωj X s :∑-=ns s n j X T j X ))((1)(ωωω。
取样定理给出了取样信号包含原连续信号的全部信息的最大取样间隔。
时域取样定理的内容是:若带限信号)(t f 的最高角频率为m ω,其频谱函数在m ωω>||各处为零;对该信号以m f T 21≤的取样间隔(即取样频率为m s f f 2≥)进行等间隔取样时,则信号)(t f 可以由取样点值唯一地恢复。
其中πω2)(m m HZ f =。
在实际取样时,关键是确定信号的最高频率。
如果信号频率很宽或无限宽,无法满足取样定理,会引起频谱混叠误差,可以通过提高取样率减少误差。
例:对信号)*2*20cos()*2*10cos()(t t t x ππ+=进行取样。
解:信号最高频率为20HZ 取样频率为80HZ Fs=80;%sampling frequencyt=0:1/Fs:1;%one second worth of samples xn=cos(2*pi*10*t)+cos(2*pi*20*t);2、信号的重建当以满足取样定理的速率对信号)(t x 取样后,由取样信号)(t x s 恢复原信号)(t x 的过程称为重建。
用一个截止频率为2s c ωω=的理想低通滤波器对)(t x s 进行滤波,就能从)(t x s 中将原信号)(t x 恢复。
数字信号处理实验讲义-长师
![数字信号处理实验讲义-长师](https://img.taocdn.com/s3/m/be19ef04de80d4d8d15a4f4a.png)
前言数字信号处理的理论和技术一出现就受到人们的极大关注,发展非常迅速。
20世纪60年代以来,随着信息科学和计算技术的迅速发展,数字信号处理的理论与应用飞跃发展,它的重要性日益在通信、信息技术、图像处理、遥感、声呐、雷达、生物医学、地震、语音处理等领域的应用中表现出来,并发展成为一门极其重要的学科。
数字信号处理是一门理论与实践紧密联系的课程,适当的上机实验有助于深入理解和巩固难基本理论知识,锻炼初学者用计算机和MA TLAB语言及其工具箱函数解决数字处理算法的仿真和滤波器设计问题的能力。
由于信号处理涉及大量的运算,可以说离开了计算机及相应的软件,就不可能解决任何稍微复杂的实际应用问题。
Matlab是1984年美国MathWorks公司的产品,MATLAB语言具备高效、可视化及推理能力强等特点,它的推出得到了各个领域专家学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础,是目前工程界流行最广的科学计算语言。
早在20世纪90年代中期,MATLAB就己成为国际公认的信号处理的标准软件和开发平台。
从1996年后,美国新出版的信号处理教材就没有一本是不用MA TLAB的。
本学期实验结合数字信号处理的基本理论和基本内容,设计了五个上机实验,每个实验对应一至两个主题内容。
包括常见离散信号的MA TLAB产生和图形显示、离散时间信号的Z变换、快速傅立叶变换FFT 及其应用、数字滤波器的MATLAB实现、用窗函数法设计FIR数字滤波器。
每个实验中均给出了实验方法和步骤,及部分的MATLAB程序,此外,还有习题和上机实验。
通过实验可以使学生掌握数字信号处理的基本原理和方法。
用科学计算语言MATLAB实现数字信号处理的方法和实践,通过实验用所学理论来分析解释程序的运行结果,进一步验证、理解和巩固学到的理论知识,从而达到掌握数字信号处理的基本原理和方法的目的。
实验一 常见离散信号的MATLAB 产生和图形显示一、实验目的1、学会用MA TLAB 在时域中产生一些基本的离散时间信号。
数字信号处理实验讲义
![数字信号处理实验讲义](https://img.taocdn.com/s3/m/bb99099e856a561253d36f33.png)
实验一:用FFT 对信号作频谱分析(2学时)1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。
2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。
可以根据此式选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
3.实验步骤及内容(1)对以下序列进行谱分析。
⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它n n n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析。
4()cos 4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。
《数字信号处理》实验讲义(信息计算)
![《数字信号处理》实验讲义(信息计算)](https://img.taocdn.com/s3/m/f02d175bad02de80d4d84076.png)
《数字信号处理》实验指导书实验一 常见离散信号的产生一、实验目的1. 加深对离散信号的理解。
2. 掌握典型离散信号的Matlab 产生和显示。
二、实验原理及方法在MATLAB 中,序列是用矩阵向量表示,但它没有包含采样信息,即序列位置信息,为此,要表示一个序列需要建立两个向量;一是时间序列n,或称位置序列,另一个为取值序列x ,表示如下: n=[…,-3,-2,-1,0,1,2,3,…]x=[…,6,3,5,2,1,7,9,…]一般程序都从0 位置起始,则x= [x(0), x(1), x(2),…]对于多维信号需要建立矩阵来表示,矩阵的每个列向量代表一维信号。
数字信号处理中常用的信号有指数信号、正弦信号、余弦信号、方波信号、锯齿波信号等,在MATLAB 语言中分别由exp, sin, cos, square, sawtooth 等函数来实现。
三、实验内容1. 用MATLAB 编制程序,分别产生长度为N(由输入确定)的序列:①单位冲击响应序列:()n δ可用MATLAB 中zeros 函数来实现; ②单位阶跃序列:u(n)可用MATLAB 中ones 函数来实现; ③正弦序列:()sin()x n n ω=; ④指数序列:(),nx n a n =-∞<<+∞⑤复指数序列:用exp 函数实现()0()a jb nx n K e+=,并给出该复指数序列的实部、虚部、幅值和相位的图形。
(其中00.2,0.5,4,40a b K N =-===.)参考流程图:四、实验报告要求1. 写出实验程序,绘出单位阶跃序列、单位阶跃序列、正弦序列、指数序列的图形以及绘 出复指数序列的实部、虚部、幅值和相位的图形。
2. 序列信号的实现方法。
3. 在计算机上实现正弦序列0()sin(2)x n A fn πϕ=+。
实验二 离散信号的运算一、实验目的1. 掌握离散信号的时域特性。
2. 用MATLAB 实现离散信号的各种运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 常见离散信号产生和实现一、实验目的1.加深对常用离散信号的理解;2.掌握matlab 中一些基本函数的建立方法。
二、实验原理1.单位抽样序列如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:2.单位阶跃序列3.正弦序列)/2sin()(ϕπ+=Fs fn A n x在MATLAB 中,n=0:N-1;x=A*sin(2*pi*f 0*n/fs+phi)4.复指数序列n j e r n x ϖ⋅=)(在MATLAB 中,n=0:N-1;x=r*exp(j*w*n)5.指数序列n a n x =)(在MATLAB 中,n=0:N-1;x=a.^n三、实验内容实现和图形生成1.五种基本函数的生成程序如下:(1)单位抽样序列方法一:% 单位抽样序列和延时的单位抽样序列n=0:10; x1=[1 zeros(1,10)];x2=[zeros(1,5) 1 zeros(1,5)];subplot(1,2,1);stem(n,x1,'.');xlabel ('时间序列n');ylabel('振幅');title('单位抽样序列x1');grid on;subplot(1,2,2);stem(n,x2,'.'); xlabel('时间序列n');ylabel('振幅');title('延时了5的单位抽样序列'); grid on;方法二:先在matlab中定义单位抽样序列:function [x,n]=impseq(n1,n2,n0)n=[n1:n2];x=[(n-n0)==0]; /n等于n0时1在运行命令:[x,n]=impseq(-5,5,3)stem(n,x,'.');xlabel('n');title('单位抽样序列x');grid(2)单位阶跃序列方法一:n=-4:6;u=[zeros(1,4) ones(1,7)];stem(n,u,'.');xlabel ('时间序列n');ylabel('振幅');title('单位阶跃序列');grid 所得的图形如下所示:方法二;先在matlab中定义单位阶跃序列:function [x,n]=stepseq(n1,n2,n0)n=[n1:n2];x=[(n-n0)>=0];在运行命令:[x,n]=stepseq(-5,5,3)stem(n,x,'.');xlabel('n');title('单位阶跃序列x');grid(3)正弦函数n=-5:20;x=2*sin(pi*n/6+pi/3); stem(n,x,'.'); xlabel ('时间序列n'); ylabel('振幅'); title('正弦函数序列x=2*sin(pi*n/6+pi/3)');grid on(4)复指数序列n=-5:30;x=2*exp(j*3*n);stem(n,real(x),'.'); xlabel ('时间序列n');ylabel('振幅');title('复指数序列x=2*exp(j*3*n)的实部');grid on图形如下:(5)指数序列n=1:30;x=1.2.^n;stem(n,x,'.'); xlabel ('时间序列n');ylabel('振幅');title('指数序列x=1.2.^n'); grid on2、绘出信号sn e n x =)(,当6121πj s +-=、6121πj s +=、121=s 、62πj s +=、6πj s =时的信号实部和虚部图;程序如下:s1=-1/12+j*pi/6;s2=1/12+j*pi/6;s3=1/12;s4=2+j*pi/6;s5=j*pi/6;n=0:20;x1=exp(s1*n);x2=exp(s2*n); x3=exp(s3*n);x4=exp(s4*n); x5=exp(s5*n);subplot(5,2,1);stem(n,real(x1),'.'); xlabel ('时间序列n');ylabel('实部'); title('复指数s1=-1/12+j*pi/6时序列实部');grid onsubplot(5,2,2);stem(n,imag(x1),'.'); xlabel ('时间序列n');ylabel('虚部'); title('复指数s1=-1/12+j*pi/6时序列虚部');grid onsubplot(5,2,3);stem(n,real(x2),'.'); xlabel ('时间序列n');ylabel('实部'); title('复指数s2=1/12+j*pi/6时序列实部');grid onsubplot(5,2,4);stem(n,imag(x2),'.'); xlabel ('时间序列n');ylabel('虚部'); title('复指数s2=1/12+j*pi/6时序列虚部');grid onsubplot(5,2,5);stem(n,real(x3),'.'); xlabel ('时间序列n');ylabel('实部');title('复指数s3=1/12时序列实部');grid onsubplot(5,2,6);stem(n,imag(x3),'.'); xlabel ('时间序列n');ylabel('虚部');title('复指数s3=1/12时序列虚部');grid onsubplot(5,2,7);stem(n,real(x4),'.'); xlabel ('时间序列n');ylabel('实部');title('复指数s4=2+j*pi/6时序列实部');grid onsubplot(5,2,8);stem(n,imag(x4),'.'); xlabel ('时间序列n');ylabel('虚部');title('复指数s4=2+j*pi/6时序列虚部');grid onsubplot(5,2,9);stem(n,real(x5),'.'); xlabel ('时间序列n');ylabel('实部');title('复指数s5=j*pi/6时序列实部');grid onsubplot(5,2,10);stem(n,imag(x5),'.'); xlabel ('时间序列n');ylabel('虚部'); title('复指数s5=j*pi/6时序列虚部');grid on由图的实部部分可以看出,s=j*pi/6时,序列周期为12。
计算序列周期为2*pi/(pi/6)=12。
实验和理论相符。
3.绘出信号)1.0*2sin(5.1)(n n x π=的频率是多少?周期是多少?产生一个数字频率为0.9的正弦序列,并显示该信号,说明其周期?程序如下:n=0:40;x1=1.5*sin(2*pi*0.1*n);x2=sin(0.9*n);subplot(1,2,1);stem(n,x1,'.'); xlabel ('时间序列n');ylabel('振幅');title('正弦序列x1=1.5*sin(2*pi*0.1*n)');grid onsubplot(1,2,2);stem(n,x2,'.'); xlabel ('时间序列n');ylabel('振幅');title('正弦序列x2=sin(0.9*n)');grid on运行结果如下:由上图看出:)1.0*2sin(5.1)(1n n x π=的周期是10,而)*9.0sin()(2n n x =是非周期的。
理论计算中对第一个,10)1.0/(2==ππN ,第二个0.9不是π的倍数,所以不是周期的。
因此可以看出,实验结果和理论相符。
4.使用帮助功能学习 square(方波), sawtooth(锯齿波)和sinc 函数,并绘图。
(1)方波绘图程序如下:%用squaret=-2*pi:0.001:2*pi;x=square(t); plot(t,x);axis([-8 8 -1.2 1.2]);xlabel('t'),ylabel(' x=square(t)');grid(2)三角波绘图程序如下:%用Sawtootht=-2*pi:0.001:2*pi;y=sawtooth(t);plot(t,y);axis([-8 8 -1.2 1.2]);xlabel('t'),ylabel('y=sawtooth(t);');grid(3)sinc 函数绘图程序如下:t=-pi:0.001:pi; x=sinc(t);plot(t,x);axis([-3.5 3.5 -0.5 1.2]);xlabel('t'),ylabel('sinc(t);');grid四、问题讨论与总结:1.离散正弦序列的性质:离散正弦序列就是一个连续的正弦信号被一系列冲激函数采样后的结果,原连续正弦函数一定是周期的,但采样后的离散序列却不一定是周期的。
对于离散序列)sin()(n n x ω=来说,只有当ωπ/2是一个有理数时,也就是说当ω是π的有理数倍数时,此离散序列才是周期的。
所以在本实验中)1.0*2sin(5.1)(1n n x π=的周期是10,而)*9.0sin()(2n n x =是非周期的。