红外电路收发设计

合集下载

(整理)红外发射和接收器件示例

(整理)红外发射和接收器件示例

图2-2 红外发射和接收器件示例红外一体化接收头内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。

红外监测二极管监测到红外信号,然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。

交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。

注意输出的高低电平和发射端是反相的。

图2-3为红外发射和接收解码的示意图。

在发射部分设计一个38kHz的载波,在发射数据(全码)为高电平时输出载波,发射数据(全码)为低电平时输出低电平,二者实现了逻辑与的关系,得到的信号(红外发射)驱动红外发射二极管向空间发射红外线。

红外一体化接收头接收到红外信号后,解码出与发射数据(全码)逻辑相反的数据。

图2-3 红外发射和接收解码的示意图3系统硬件设计3.2红外遥控单元本设计中作为发射部分使用的遥控器为M5046AP机芯的电视机遥控器。

电视机遥控器应用的是红外收发原理,即遥控器前端侧面的红外发射管发射出红外信号,电路板上红外接收管接收到信号后送到单片机内部,经译码后变成相应的操作指令,以实现定时、遥控风扇的功能。

红外遥控器的内部关键电路和接收管电路如图3-1所示。

图3-13.3单片机控制单元本设计以AT89S51单片机为主控器,单片机控制电路设计如图3-2所示。

单片机的P1.2-P1.4口用于控制风扇的3个档次,设计中用继电器来模拟风扇换挡开关;P1.6和P1.7引脚控制时钟电路;P2口作为液晶显示的8位数据线;P3.0和P3.1口控制风扇工作状态指示灯,分为手动和自动2个状态;P3.2中断0用于接收红外遥控编码信号;P3.4接收温度数据;P3.5-P3.7三个引脚分别控制液晶显示器的控制端。

图3-2为单片机控制电路。

图3-23.4时钟单元3.4.1DS1307简介种低功耗、BCD码的8引脚实时时钟芯片。

红外无线数据传输系统的设计与实现-毕业论文

红外无线数据传输系统的设计与实现-毕业论文

摘要红外无线数据传输系统是一种利用红外线作为传输媒介的无线数据传输方式,它相对于无线电数据通信具有功耗低、价格便宜、低电磁干扰、高保密性等优点,目前发展迅猛,尤其是在近距离无线数据通信中得到广泛的运用.本文主要介绍基于51单片机的红外无线数据传输系统的原理.在硬件设计原理的介绍中,主要分析了系统中NE555数据调制电路、红外发射电路、红外接收电路、DS18B20温度传感器电路、单片机外围电路以及声光报警电路。

在系统软件设计的介绍中,我们主要分析单片机串口通信协议、控制温度传感器采集数据、对数据的编解码;而液晶显示部分软件则是为了具有更好的人机交互界面。

通过调试后,本系统基本达到预期要求,1、正确实现双机通信功能,在2400波特率下通信距离达到7米左右;2、具有在超时通信不畅的情况下进行报警提示功能;3、具有自动搜寻一帧数据起始位的功能,这样可以有效防止外界的干扰;4、通过串口可以与PC机实现正确通信,可以作为计算机的红外无线终端,完成数据的上传和下放.因此本系统具有广阔的实用价值。

关键词:AT89S52单片机;数据采集;红外通信;调制解调;串口通信AbstractInfrared wireless data transmission system is a wireless data transfer method that uses infrared as a transmission medium, Compared with the radio data communication,it has many advantages in power consumption, Production costs,electromagnetic interference,and the confidentiality. At present,this technology is developing rapidly,In particular, It is widely used in short—range wireless data communications,In this paper,we are introduced infrared wireless data transmission system’s theory that based on the single—chip microcomputer 51. In the hardware design principle introduction,We mainly analysis the system's data modulation circuit of NE555, infrared transmitter,IR receiver circuit, DS18B20 temperature sensor circuit,microcontroller peripheral circuits, as well as sound and light alarm circuit。

[教材]38kHz红外发射与接收

[教材]38kHz红外发射与接收

38kHz 红外发射与接收红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。

1.红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。

由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。

红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。

红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。

电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。

2.红外线发射和接收人们见到的红外遥控系统分为发射和接收两部分。

发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。

常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5 mm发光二极管相同,只是颜色不同。

一般有透明、黑色和深蓝色等三种。

判断红外发光二极管的好坏与判断普通二极管一样的方法。

单只红外发光二极管的发射功率约100mW。

红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。

接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。

红外接收二极管一般有圆形和方形两种。

由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。

然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。

红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。

所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。

图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。

接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。

红外收发对管电路

红外收发对管电路

红外收发对管1、红外收发对管是一种利用红外线的开关管;接受管在接受和不接受红外线时电阻发生明显的变化;利用外围电路可以时输出产生明显的高低电平的变化;高低电平的变化输入单片机就可使之识别;从而实现智能控制..我们使用的单片机是凌阳61板;经过我们试验;在输入电压小于1.5伏时单片机识别为低电平;在输入电压大于1.85伏时单片机识别为高电平..2、用途:蔽障、计数记液体点滴的个数、记玻璃小球的个数、记小车轮子的转数、寻迹3、红外发射接收电路:3.1输入信号采用38KHz的调制波红外发射电路由电阻R2、三极管Q2、电阻R3与红外发射二极管D1构成;如图接收电路由红外接收管和放大电路组成;如图 2.2..Q4接收到红外信号后;经过三极管Q1进行第一级放大;放大后的信号送入三极管Q3进行第二级放大;通过Rx就可以得到放大后的红外接收信号..为了降低干扰; Tx一般采用调制方式;这里;其波形如图 2.3..图2.3 38KHz调制波对应图2.3的调制波;如果VCC为5V;发射接收对管的有效距离单片机可检测大概为20cm;如果VCC为3V;发射接收对管的有效距离单片机可检测大概为10cm..3.2直接采用直流电源本电路电路简单;性能稳定;安装方便;但距离比较近..当阻挡了接收管接收红外线的强度时;产生一个低电平的脉冲信号;由于对管的发射口径较小;单光束发射;小球相对红外装置正交落下时;很容易检测处理..使用此电路寻迹实现小车跟黑色轨道行驶;在行驶过程中不超出该线..考虑到黑线和白纸组合;我们采用红外对管辨认路面的黑白两种不同状态..由于红外对管对黑白色的感应比较明显;又不需要很高的精度;适用于简单的寻迹..但外部影响比较大;所以须将接收头用黑皮套套上以提高信号的接受率..该小车采用三对红外对管; 通过他们送入单片机信号的不同;将其逻辑组合后向小车的各个电机发送启动信号;从而;驱动小车实现寻迹功能..。

红外接收电路设计

红外接收电路设计

[光

Spectrum ]
b. Noise 频 系 Noise 在R/M上使用可以遮断可见光的光学滤波。 使用High Frequency(30KHz ~ 56.9KHz) Carrier Modulation 在Pre-Amp Chip上,使用 I-V Stage 可变impedance及低频噪声折断滤波器。
Receiver Module Transmitter Vcc Vout GND C R Vcc Rp µ-com GND
8
REMOCON
c. 由于Vcc line Ripple Noise而没有输出信号的事例 - Set 區 : 卫星接收器的机顶盒。 - Noise Source : 在前面板的显示使用的七段码现使用脉冲驱动开关电路的噪声流入到 R/M的 Vcc Line上.. Vcc line noise 觀 R/M Output 觀 – Transmitter signal
[ incandescent lamp & Halogenlamp ]
R球

- Electronic Ballast ]
* channel 構 - ch-1 : Lamp ˘ - ch-M : spectrum * Modulation = - 120 Hz *} ¯ - Main : 47.0KHz
Vcc line Noise signal Noise signal
= 120Hz
R/M Output
② EMI Noise
a. Noise Source - TV CRT 的 b. Noise - 应用可以遮断 以及其他周边设备放射的 .
的金属屏蔽设计, 即可简单的路掉电磁波噪声. 整机厂商的IQC or PCB Ass’y 检查时,必须将金属屏蔽外壳和GND相连。 如果不接地,可能会使遥控距离变短。

红外遥控的发射和接收

红外遥控的发射和接收

红外遥控的发射和接收Donna 发表于2006-5-12 10:08:00光谱位于红色光之外,波长为0.76~1.5μm,比红色光的波长还长,这样的光被称为红外线。

红外遥控是利用红外线进行传递信息的一种控制系统,红外遥控具有抗干扰,电路简单,编码及解码容易,功耗小,成本低的优点,目前几乎所有的视频和音频设备都支持这种控制方式。

一、红外遥控系统结构红外遥控系统主要分为调制、发射和接收三部分,如图1 所示:图1 红外遥控系统1.调制红外遥控发射数据时采用调制的方式,即把数据和一定频率的载波进行“与”操作,这样可以提高发射效率和降低电源功耗。

调制载波频率一般在30khz到60khz之间,大多数使用的是38kHz,占空比1/3的方波,如图2所示,这是由发射端所使用的455kHz晶振决定的。

在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。

图2 载波波形1.发射系统目前有很多种芯片可以实现红外发射,可以根据选择发出不同种类的编码。

由于发射系统一般用电池供电,这就要求芯片的功耗要很低,芯片大多都设计成可以处于休眠状态,当有按键按下时才工作,这样可以降低功耗芯片所用的晶振应该有足够的耐物理撞击能力,不能选用普通的石英晶体,一般是选用陶瓷共鸣器,陶瓷共鸣器准确性没有石英晶体高,但通常一点误差可以忽略不计。

红外线通过红外发光二极管(LED)发射出去,红外发光二极管内部材料和普通发光二极管不同,在其两端施加一定电压时,它发出的是红外线而不是可见光。

图3a 简单驱动电路图3b 射击输出驱动电路如图3a和图3b是LED的驱动电路,图3a是最简单电路,选用元件时要注意三极管的开关速度要快,还要考虑到LED的正向电流和反向漏电流,一般流过LED的最大正向电流为100mA,电流越大,其发射的波形强度越大。

图3a电路有一点缺陷,当电池电压下降时,流过LED的电流会降低,发射波形强度降低,遥控距离就会变小。

单片机红外接受发送实验报告

单片机红外接受发送实验报告

单片机红外发射与接收实验报告指导老师:报告人:一·实验选题:基于单片机的红外发射与接收设计任务要求:设计一个以单片机为核心控制器件的红外收发系统。

发射载频:38KHz工作温度:-40℃--+85℃接收范围:2m二·系统概述方案设计与论证红外遥控收发系统(以下简称红外遥控系统)是指利用红外光波作为信息传输的媒介以实现远距离控制的装置。

从实际系统的硬件结构看,红外遥控系统包括发射装置和接收装置,其中发射装置包括电源模块、输入模块、红外发射模块和单片机最小系统,接收装置包括电源模块、红外接收模块、输出模块和单片机最小系统。

本设计选题设计任务要求设计一个以单片机为核心控制器件的红外收发系统。

其中,发射载波 38KHz,电源 5V/0.2A 5V/0.1A,工作温度-40℃--+85℃,接收范围 2m,传输速率 27bit/s,反应时间 2ms。

利用单片机的定时功能或使用载波发生器(用于产生载波的芯片)均可产生 38KHz 的发射载波。

单片机系统可以直接由 5V/0.1A 的电源供电,也可以通过三端稳压芯片由 9V/0.2A 电源供电。

采用工业级单片机可以工作在-40℃--+85℃。

为保证接收范围达到 2m,在发射载频恒为 38KHz 的前提下,应采用电流放大电路使红外发射管发射功率足够大。

传输速率和反应时间取决于所使用的编码芯片或程序的执行效率。

通过上述分析可知,为实现设计任务并满足设计指标,应采用工业级单片机,由电流放大电路驱动红外发射管。

将针对设计任务提出两种设计方案。

三·程序功能将程序编译通过并下载成功后,两个板上的红外光电器件都要套上黑色遮光罩,就可以进行实验了。

测距实验:手持1号板和2号板,两管相对,慢慢拉远或移近两管的距离,观察LED的读数变化。

阻断实验:可请另一人协助,将一张纸或其他障碍物放在两管之间再拿开,会看到读数有大幅度的变化。

反射实验:将1号和2号实验板并排拿在手中,并形成一个小夹角,向一张白纸移动观察读数变化。

红外感应灯电路设计及原理

红外感应灯电路设计及原理

红外感应灯电路设计及原理1、电路主要光学元件(1)光敏电阻的应用光敏电阻又称光导管, 它几乎都是用半导体材料制成的光电器件。

光敏电阻没有极性, 是一个电阻器件。

制作光敏电阻的材料一般是金属硫化物和金属硒化物,通常采用涂敷、喷涂等方法,在陶瓷基片上涂上半导体薄膜,经烧结而成。

光敏电阻的结构:在底板上均匀地涂上一层薄薄的半导体物质,称为光导层。

半导体的两端装有金属电极与引出线端相连接,通过引出线端接入电路。

为了防止周围介质的影响,在半导体光敏层上覆盖了一层漆膜,漆膜的成分应使它在光敏层最敏感的波长范围内透射率最大。

为了提高灵敏度,光敏电阻的电极一般采用梳状图案,光敏电阻结构,光敏电阻电极,光敏电阻接线图光敏电阻工作原理--内光电效应。

光照射到本征半导体上,材料中的价带电子吸收了光子能量跃迁到导带,激发出电子、空穴对,增强了导电性能,使阻值降低。

光照停止,电子空穴对又复合,阻值恢复。

亮电阻很小,暗电阻很大。

要使价带电电子跃迁到导带,入射光子的能量满足刚好发生内光电效应的临界波长。

常用的光敏电阻器是硫化镉光敏电阻器,它是由半导体材料制成的。

光敏电阻器的阻值随入射光线(可见光)的强弱变化而变化,在黑暗条件下,它的阻值(暗阻)可达1-10MΩ;在强光条件(100LX)下,它阻值(亮阻)仅有几百至数千欧姆。

光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4-0.76um)的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。

本电路采用MG42型CdS光敏电阻,CdS光敏电阻属半导体光敏器件,产品经受强化老练实验,除具有灵敏度高,反应速度快,光谱特性好等特点外,在高温、多湿的恶劣环境下,仍能保持其高度的稳定性和可靠性,适合于将其用于各种环境,MG42型光敏电阻与其它型号相比具有:工作电压和额定功率比较低的特点,其亮、暗电阻也适合于本照明电路的需要,所以在设计时选择了这个型号。

(2)可控硅元件的工作原理可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示图1可控硅等效图解图当阳极A加上正向电压时,BG1和BG2管均处于放大状态。

常用红外数据传输电路的设计及其注意事项

常用红外数据传输电路的设计及其注意事项

常用红外数据传输电路的设计及其注意事项摘要:简要介绍IrDA红外数据传输的特征;详细说明各种常见IrDA类型器件的构成;重点阐述常用红外数据传输电路的设计及其注意事项。

关键词:红外数据传输红外检测IrDA编/解码调制/解调引言红外数据传输,成本低廉、连接方便、简单易用、结构紧凑,在小型移动设备中得到了广泛的应用。

近年来,很多著名半导体厂商,如Agilent、Vishay、Sharp、Zilog、Omron 等,相继推出了许多遵循同一规范的不同类型的器件。

本文就IrDA红外数据传输、各种IrDA器件的构成及其不同类型的红外通信电路设计进行综合阐述。

1红外数据传输及其规范简介红外数据传输,使用传播介质——红外线。

红外线是波长在750nm~1mm之间的电磁波,是人眼看不到的光线。

红外数据传输一般采用红外波段内的近红外线,波长在μm~25μm之间。

红外数据协会成立后,为保证不同厂商的红外产品能获得最佳的通信效果,限定所用红外波长在850nm~900nm。

IrDA是国际红外数据协会的英文缩写,IrDA相继制定了很多红外通信协议,有侧重于传输速率方面的,有侧重于低功耗方面的,也有二者兼顾的。

协议基于异步收发器UART,最高通信速率在,简称SIR(SerialInfrared,串行红外协议),采用3/16ENDEC编/解码机制。

协议提高通信速率到4Mbps,简称FIR(FastInfrared,快速红外协议),采用4PPM(PulsePositionModulation,脉冲相位调制)编译码机制,同时在低速时保留协议规定。

之后,IrDA又推出了最高通信速率在16Mbps的协议,简称VFIR(VeryFastInfrared,特速红外协议)。

IrDA标准包括三个基本的规范和协议:红外物理层连接规范IrPHY(InfraredPhysicalLayerLinkSpecification),红外连接访问协议IrLAP(InfraredLinkAccessProtocol)和红外连接管理协议IrLMP(InfraredLinkManagementProtocol)。

红外发射与接收(附电路图)

红外发射与接收(附电路图)

红外发射与接收资料注意:TI公司给2012年电子设计大赛提供的部分元件如下:1波长600-1000nm的LED及相应光电接收元件2光敏元件3高亮度LED元件4无线通信模块(如CC11xx,CC24xx,CC25xx系列)请大家引起足够的重视。

一、编码解码芯片PT2262/PT2272芯片原理简介PT2262/2272是台湾普城公司生产的一种CMOS工艺制造的低功耗低价位通用编解码电路,PT2262/2272最多可有12位(A0-A11)三态地址端管脚(悬空,接高电平,接低电平),任意组合可提供地址码,PT2262最多可有6位(D0-D5)数据端管脚,设定的地址码和数据码从17脚串行输出,可用于无线遥控发射电路。

编码芯片PT2262发出的编码信号由:地址码、数据码、同步码组成一个完整的码字,解码芯片PT2272接收到信号后,其地址码经过两次比较核对后,VT脚才输出高电平,与此同时相应的数据脚也输出高电平,如果发送端一直按住按键,编码芯片也会连续发射。

当发射机没有按键按下时,PT2262不接通电源,其17脚为低电平,所以315MHz的高频发射电路不工作,当有按键按下时,PT2262得电工作,其第17脚输出经调制的串行数据信号,当17脚为高电平期间315MHz的高频发射电路起振并发射等幅高频信号,当17脚为低平期间315MHz 的高频发射电路停止振荡,所以高频发射电路完全收控于PT2262的17脚输出的数字信号,从而对高频电路完成幅度键控(ASK调制)相当于调制度为100%的调幅。

[1]PT2262特点1、CMOS工艺制造,低功耗2、外部元器件少3、RC振荡电阻4、工作电压范围宽:2.6-15v5、数据最多可达6位6、地址码最多可达种[2]应用范围1、车辆防盗系统2、家庭防盗系统3、遥控玩具4、其他电器遥控名称管脚说明A0-A11 1-8、10-13地址管脚,用于进行地址编码,可置为“0”,“1”,“f”(悬空),D0-D5 7-8、10-13数据输入端,有一个为“1”即有编码发出,内部下拉Vcc 18 电源正端(+)Vss 9 电源负端(-)TE 14 编码启动端,用于多数据的编码发射,低电平有效;OSC1 16 振荡电阻输入端,与OSC2所接电阻决定振荡频率;OSC2 15 振荡电阻振荡器输出端;Dout 17 编码输出端(正常时为低电平)在具体的应用中,外接振荡电阻可根据需要进行适当的调节,阻值越大振荡频率越慢,编码的宽度越大,发码一帧的时间越长。

红外光电探测器系统电路设计

红外光电探测器系统电路设计
光轴与 4 X4 c 0 0 m香樟 样本角度 叶板探测距离 单 位 :m
9 0。 52 .0
敏 度 ,当 运 放 的 反 相输 入 端 电 位 越 低 ,检 波 电路 的 灵敏 度越 高 ;反之 ,灵敏 度 越低 。
3 X3 c 0 0m香樟 叶板探测距离 单 位 :m
通过 电 容

U3

U4
信号增益约为 12 这 两 级 放 大器 的幅 频 响应 曲 00 线 以 2k 0 Hz为 中 心 由 C 、C 0 8 1 、提 供 低 频 段 的 二 次衰 减 曲线 而高频 段 的三 次衰 减 曲线 由 C 5和 运 放 内部 的电容 来提供 此电路中 光敏 三 极 管 Q2将接 收到 的红 外 线
发 射 、 采用 滤 波 和选 通 方 法 接 收 ,增 强 了探 测 系
后 , 5充 电 , 7⑥脚 的 电位 上升 ,在 未达 到 Vc C1 u c

之 前 ,电路 仍 然 处 于 暂稳 态 ,如 果 此 时 ,U7②脚
统 在工作 时 的抗干 扰能 力 ,适 用 于距离 探测应 用 。
控 制 , 当 U1的 ③ 脚 为 高 电 平 时 ,U 2开 始 振 荡 ,
换 。探 测器输 出的信号经处理 电路检 出。在此过 程 中 ,背 景 噪 声 和 系统 内部 的 探 测 器 噪 声 及 电 路 噪声 等都 与信 号一 起进 入 系统 …。
本 文 设 计 的 红 外 光 电 探 测 系 统 应 用 探 测 目标 物距 离 。用 红 外 线 作 为 媒 质 进 行 探 测 时 ,首 先 要 有能 够 产 生红 外 线 的光 源 和 接 收 红 外 线 信 号 的 探
探 测 器是 光敏 三极 管 3 U5 D 。

红外遥控器信号接收和显示的设计

红外遥控器信号接收和显示的设计

电子电路综合设计总结报告题目:红外遥控器信号接收和显示的设计(设计选题十四)姓名:班级:学号:成绩:摘要:随着电子技术的发展,红外遥控器越来越多的应用到电器设备中,但各种型号遥控器的大量使用带来的遥控器大批量多品种的生产,使得检测成为难题,因此智能的红外遥控器检测装置成为一种迫切的需要。

在该红外遥控器信号的接收和显示电路以单片机和一体化红外接收器为核心技术,具体由单片机最小系统、单片机与PC机间的通信模块、红外接收模块、数码管显示模块和流水灯模块组成。

在本系统的设计中,利用红外接收器接收遥控器发出的控制信号,并通过软件编程将接收信号存储、处理、比较,并将数据处理送至数码管显示模块。

总之,通过对电路的设计和实际调试,可以实现红外遥控器信号的接收与显示功能。

根据比较接收信号的不同,在数码管显示电路及流水灯电路上显示相应的按键数字或闪烁变化功能,并可实现单片机及PC机之间的通信功能,使得控制信号能在PC机上显示。

关键词:单片机红外接收器HS0038 解码串口调试设计任务结合单片机最小电路和红外线接收接口电路共同设计一个基于单片机的红外遥控信号接收与转发系统,用普通电视机遥控器控制该系统,使用数码管显示信号的接收结果。

1、实现单片机最小系统的设计。

2、当遥控器按下数字键时,在数码管上显示其键值。

如按下数字键1,则在数码管上显示号码01。

3、当遥控器按下音量△及音量▽时,用两位数码的周围段实现顺时针或者逆时针旋转的流水灯功能。

(为使得音量的增减清晰显示,试验中在单片机的P1口外接一排流水灯,具体功能的实现见方案的可行性论证)* 运用串口调试助手,在遥控器有按键按下时,将其键值显示在PC机上。

* 当遥控器按下频道△及频道▽时,在数码管上显示加1或减1后的数值。

一、系统方案比较与论证1、方案比较与选择为了实现系统整体功能,红外解码部分是核心,红外解码是指将遥控发射器所产生的红外遥控编码脉冲所对应的键值翻译出来的过程。

(完整版)红外遥控电路设计

(完整版)红外遥控电路设计

引言随着远程教育系统的不断发展和日趋完善,利用多媒体作为教学手段在各级各类学校都得到了广泛应用。

近年来,在多媒体教学系统的使用、开发和研制中,经常遇到同时使用多种设备,如:数字投影机、DVD、VCD、录像机、电视机等,由于各种设备都自带遥控器,而且不同的设备所遵循的红外传输规约也不尽相同,操纵这些设备得使用多种遥控器,给使用者带来了诸多不便。

本次毕业设计的主题就是红外遥控电路设计。

红外遥控的特点是利用红外线进行点对点通信的技术,不影响周边环境,不干扰其他电器设备。

室内近距离(小于10米),信号无干扰、传输准确度高、体积小、功率低的特点,遥控中得到了广泛的应用。

通过基于单片机的控制指令来对多种设备进行远程控制,可以选择不同的按键来控制不同的设备。

从而方便快捷的实现远程控制。

常用的红外遥控系统一般分发射和接收两个部分。

发射部分的主要元件为红外发光二极管。

它实际上是一只特殊的发光二极管;由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。

红外发光二极管一般有黑色、深蓝、透明三种颜色。

判断红外发光二极管好坏的办法与判断普通二极管一样;用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。

红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉锯法来粗略判判定。

接收部分的红外接收管是一种光敏二极管。

在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。

红外发光二极管一般有圆形和方形两种。

由于红外发光二极管的发射功率一般都较小,所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。

最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。

成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。

均有三只引脚,即电源正(VDD)、电源负(GND)和数据输出(VO或OUT)。

HS0038红外接受电路设计与应用

HS0038红外接受电路设计与应用

HS0038红外接受电路设计与应用红外接收电路是一种常用的电子电路,在很多领域中都有广泛的应用。

它主要用于接收和解码红外线信号,从而实现远程控制、通信、遥控器等功能。

本文将从红外接受电路的原理、设计和应用方面进行详细介绍。

一、红外接收电路的原理红外接收电路主要由红外传感器以及解码电路组成。

其中,红外传感器是将红外线信号转化为电信号的核心部件,而解码电路则用于解码接收到的电信号,以获取所需的信息。

红外传感器一般采用的是红外光敏二极管,常用的红外光敏二极管有HS0038、HS0038B等型号。

它们是一类特殊的二极管,只对红外线具有敏感性。

当红外线照射到光敏二极管时,光敏二极管内部会产生电压信号,信号的幅度与照射光的强度成正比。

然后,这个电压信号会通过一个电压比较器进行放大和处理,最后输出一个数字信号。

解码电路是将接收到的数字信号解码为对应的功能信号。

常用的解码电路有NEC、SONY等协议解码电路。

解码电路会识别数字信号的序列标识,根据标识的不同来生成相应的功能信号。

例如,遥控器的数字信号可以代表不同的按键操作,解码电路会根据接收到的数字信号来判断用户所按下的按键,并触发相应的功能。

二、红外接收电路的设计在设计红外接收电路时,需要考虑到传感器的信号放大、滤波以及解码等多个方面。

下面是一个简单的红外接收电路设计流程:1.选择合适的红外传感器:在选择红外传感器时,要根据具体的应用场景来确定。

不同的红外传感器有不同的特性和响应频率,需要根据实际需求进行选择。

2.放大和滤波电路设计:接收到的红外信号一般较弱,需要经过放大电路的放大处理。

常见的放大电路有共射放大电路、共集放大电路等。

此外,为了去除杂波信号,还需要设计一个合适的滤波电路。

3.解码电路设计:解码电路根据具体的协议来设计。

常用的解码协议有NEC、SONY等。

解码电路的设计需要根据协议的要求,选择合适的电子元件和电路连接方式。

4.供电电路设计:红外接收电路一般需要外部供电,因此需要设计一个合适的供电电路。

电路原理初探——红外线发射与接收教案

电路原理初探——红外线发射与接收教案

电路原理初探——红外线发射与接收教案一、教学目标1.了解红外线的基本原理和应用范围;2.掌握红外线发射和接收电路的基本原理;3.实验设计和调试能力的培养。

二、教学重点和难点1.掌握红外线的基本原理和应用场合;2.掌握红外线发射和接收电路的基本原理和对应的电子元器件的参数选择;3.实验设计和调试能力的培养。

三、教学方法1.讲授法:讲解红外线的基本原理、发射器和接收器的工作原理和电路设计要点等;2.实验操作法:通过制作一套红外线的发射和接收的电路并进行实验,掌握具体的电路设计和调试要点;3.示范法:对电路制作和实验调试过程中需要注意的要点进行示范;4.讨论法:针对不同学生的问题进行讨论,帮助学生理解和把握重难点。

四、教学步骤1.红外线的基本原理第一节课将首先讲解红外线的基本原理。

红外线通常是指波长在0.75-1000微米之间的电磁波,因此不能被肉眼直接看到。

它主要是由热源向外发射,人体的辐射能量大约有50%以上集中在8-15毫米的波段,也就是我们所说的红外线区域。

红外线能够穿透一些透明物质,如水、玻璃、塑料等,但是它却被大多数不透明物质阻挡,所以在使用红外线技术时,需要考虑物体表面的透明度。

红外线广泛应用于遥控、空调、安防等方面。

2.红外线发射器的原理第二节课将讲解红外线发射器的原理。

红外线发射器是指通过电子元器件将电能转换为红外线辐射出去的器件。

常用的红外线发射器有两种:LED和半导体激光器。

在发射器中,LED是最为常见的发射器材料,这种器件具有结构 compact、广泛的功率输出范围、激发电压低和发射频率高等优点,其工作原理为:通过P型掺杂工艺形成p-n结,当加在p-n结上的电压将电子和空穴注入n型和p型半导体材料时,它们将交叉重组并释放出能量,从而产生电子激发态(excitation)或激子(exciton)。

当此时电子回到基态(ground state)时,所释放的能量以光的形式辐射出去,这样就形成了红外线。

单片机红外接受发送实验报告(可编辑)

单片机红外接受发送实验报告(可编辑)

单片机红外接受发送实验报告单片机红外发射与接收实验报告指导老师报告人一·实验选题基于单片机的设计任务要求设计一个以单片机为核心控制器件的红外收发系统发射载频38KHz 工作温度-40--85℃接收范围2m系统概述方案设计与论证红外遥控收发系统以下简称红外遥控系统是指利用红外光波作为信息传输的媒介以实现远距离控制的装置从实际系统的硬件结构看红外遥控系统包括发射装置和接收装置其中发射装置包括电源模块输入模块红外发射模块和单片机最小系统接收装置包括电源模块红外接收模块输出模块和单片机最小系统本设计选题设计任务要求设计一个以单片机为核心控制器件的红外收发系统其中发射载波 38KHz电源 V02A 5V01A工作温度-40--85℃接收范围 2m传输速率 27bits反应时间 2ms 利用单片机的定时功能或使用载波发生器用于产生载波的芯片均可产生 38KHz 的发射载波单片机系统可以直接由 5V01A 的电源供电也可以通过三端稳压芯片由 9V02A 电源供电采用工业级单片机可以工作在-40--85℃为保证接收范围达到 2m在发射载频恒为 38KHz 的前提下应采用电流放大电路使红外发射管发射功率足够大传输速率和反应时间取决于所使用的编码芯片或程序的执行效率通过上述分析可知为实现设计任务并满足设计指标应采用工业级单片机由电流放大电路驱动红外发射管针对设计任务提出设计方案程序功能将程序编译通过并下载成功后两个板上的红外光电器件都要套上黑色遮光罩就可以进行实验了测距实验手持号板和号板两管相对慢慢拉远或移近两管的距离观察LED的读数变化阻断实验可请另一人协助将一张纸或其他障碍物放在两管之间再拿开会看到读数有大幅度的变化反射实验将号和号实验板并排拿在手中并形成一个小夹角向一张白纸移动观察读数变化寻迹实验将白纸的部分区域涂黑让你手中的这对红外发射与接收器件在黑色区域与白色区域之间来回移动观察读数变化另外我们选用的红外接收管灵敏很高对室内散射光计算机显示器的辐射日光灯管甚至冬天的暖气等都有感应实验时要注意这些因素的干扰注意实验场地要适当遮光不要有直射光或在窗前进行实验红外线接收模块的原理如下以小型红外接收解调模块SFH506-38超小型红外接收解调模块RPM-638CBR为例来介绍分析一般的红外接收模块主要由CX2016APC1373等集成电路外加阻容元件红外线接收管及滤波光片等组成因而体积较大而新一代一体化红外遥控接收头SFH506-38与RPM-638CBR将红外接收管前置放大解调等电路集成在同一基片上内电路框图如图1所示具有体积小无外部元件抗干扰性能好接收角度宽价格低等优点1小型红外接收解调模块SFH506-38该接收模块采用黑色环氧树脂封装灵敏度较高用小功率红外发射管发射信号接收距离达35米其外型及管脚如图2所示主要电参数如下电源电压VCC为5V 接收峰值波长为095um接收角度为-55度接受距离为35米最大静态电流05mA接收频率为38KHz另有派为3033364056KHz系列供选用2超小型红外接收解调模块RPM-638CBR次模块采用树脂封装有直立与卧式两种封装形式其主要电参数VCC为45--55V静态电流无光照及信号输入Icc为3MA峰值波长为094uM接收最大距离为8--15M水平接收角为33度上下接收角为14度接收频率为38KHz工作温度为-25度----75度由于SFH506-38和RPM-638CBR能直接与红外遥控专用解码电路配合使用因此完全可以取代电视音响等设备中的常规红外接收头且实践证明效果很好红外线接收模块的技术参数1工作电压DC5-20V 可订做范围DC3V-DC24V2静态功耗lt50微安3集电极开路输出负载电流 500mA 其它电流值需订做4延时时间可订做零点几秒几十分钟5封锁时间可订做零点几秒几十秒6触发方式L不可重复触发H可重复触发7感应范围 140度距离5-7米以内 25时8尺寸直径 23mm 默认另有127mm8mm可选9工作温度-20-70℃10外形尺寸2638mm螺丝孔距325mm 注可按客户的各种要求生产模块11感光度可按要求订做 21 红外接收电路一体化的红外接收装置将遥控信号的接收放大检波整形集于一身并且输出可以让单片机识别的TTL 信号这样大大简化了接收电路的复杂程度和电路的设计工作方便使用在本系统中我们采用红外一体化接收头HS0038外观图如图 3 所示HS0038 黑色环氧树脂封装不受日光荧光灯等光源干扰内附磁屏蔽功耗低灵敏度高在用小功率发射管发射信号情况下其接收距离可达35m它能与TTLCOMS 电路兼容HS0038 为直立侧面收光型它接收红外信号频率为38 kHz周期约26 μs同时能对信号进行放大检波整形得到TTL 电平的编码信号三个管脚分别是地+5 V 电源解调信号输出端红外一体化接收头的测试可以利用图4 所示的电路进行在HS0038 的电源端与信号输出端之间接上一只二极管及一只发光二极管后再配上规定的工作电源为+5V当手拿遥控器对着接收头按任意键时发光二极管会闪烁说明红外接收头和遥控器工作都正常如果发光二极管不闪烁发光说明红外接收头和遥控器至少有一个损坏只要确保遥控器工作正常很容易判断红外接收头的优劣HS0038的内部结构1PINPIN光敏二极管光敏二极管工作时加有反向电压没有光照时其反向电阻很大只有很微弱的反向饱和电流暗电池当有光照时就会产生很大的反向电流亮电流光照越强该亮电流就越大光敏二极管是一种光电转换二极管所以又叫光电二极管PN结光敏二极管由于相应速度慢不能再通信系统中得到应用PIN光敏二极管就是在PN结中间夹入一层轻掺杂本征半导体PIN光敏二极管特点响应时间短暗电流小入射光量与输出电流的直线性良好PIN光敏二极管的主要用途遥控传真机光通信短距离2AGC Automatic Gain Control 自动增益控制放大器增益表示放大器功率放大倍数以输出功率同输入功率比值的常用对数表示单位为分贝它是输出限幅装置的一种是利用线性放大和压缩放大的有效组合对输出信号进行调整当输入信号较弱时线性放大电路工作保证输出信号的强度当输入信号强度达到一定程度时启动压缩放大线路使输出幅度降低满足了对输入信号进行衰减的需要也就是说AGC功能可以通过改变输入输出压缩比例自动控制增益的幅度它能够在输入信号幅度变化很大的情况下使输出信号幅度保持恒定或仅在较小范围内变化不至于因为输入信号太小而无法正常工作也不至于因为输入信号太大而使接收机发生饱和或堵塞3Band Passband-pass filter 带通滤波器带通滤波器是指能通过某一频率范围内的频率分量但将其他范围的频率分量衰减到极低水平的滤波器4Demodulator解调器解调是将模拟信号- 数字信号HS0038参考电路在实际的应用中可以参考以下电路进行电路原理图的设计TSAL62是指红外发射头TSAL6200uc是指微控制器HS0038对数据格式的要求 The data signal should fullfill the following condition载波频率接近38kHz1要求脉冲的长度不小于10个周期2脉冲之间的时间距离不小于14个周期3如果每个脉冲的长度超过18ms那么需要在数据流中添加一些空隙空隙的长度要在脉冲长度的4倍以上4每秒钟可以连续接收800个短脉冲符合数据格式的列子有 Some examples for suitable data format areNEC CodeToshiba Micom Format Sharp Code RC6 Code R–2000 Code等红外通信解调功能从图中我们可以看出HS0038接收到的信号正好与发射信号是不对应的当输出脉冲为高时对应HS0038的低电平也就是说发送的红外信号与接收到的红外信号互为相反hs0038 应用 C51编程五·外围器件一.电阻器简介11 电阻器的含义在电路中对电流有阻碍作用并且造成能量消耗的部分叫电阻12 电阻器的英文缩写RResistor 及排阻RN13 电阻器在电路符号 R14 电阻器的常见单位千欧姆KΩ兆欧姆MΩ15 电阻器的单位换算 1兆欧 103千欧 106欧16 电阻器的特性电阻为线性原件即电阻两端电压与流过电阻的电流成正比通过这段导体的电流强度与这段导体的电阻成反比即欧姆定律I UR 表 17 电阻的作用为分流限流分压偏置滤波与电容器组合使用和阻抗匹配等18 电阻器在电路中用R加数字表示如R15表示编号为15的电阻器19 电阻器的在电路中的参数标注方法有3种即直标法色标法和数标法a直标法是将电阻器的标称值用数字和文字符号直接标在电阻体上其允许偏差则用百分数表示未标偏差值的即为±20b数码标示法主要用于贴片等小体积的电路在三为数码中从左至右第一二位数表示有效数字第三位表示10的倍幂或者用R表示 R表示0 如472 表示 47×102Ω即47KΩ 104则表示100KΩR22表示022Ω 122 1200Ω 12KΩ 1402 14000Ω 14KΩ R22 022Ω 50C 324100 324KΩ17R8 178Ω000 0Ω 0 0Ωc色环标注法使用最多普通的色环电阻器用4环表示精密电阻器用5环表示紧靠电阻体一端头的色环为第一环露着电阻体本色较多的另一端头为末环现举例如下如果色环电阻器用四环表示前面两位数字是有效数字第三位是10的倍幂第四环是色环电阻器的误差范围见图一四色环电阻器普通电阻标称值第一位有效数字标称值第二位有效数字标称值有效数字后0的个数 10的倍幂允许误差颜色第一位有效值第二位有效值倍率允许偏差黑0 0 棕 1 1 ±1 红 2 2 ±2 橙3 3 黄4 4 绿5 5 ±05 蓝6 6 ±025 紫7 7 ±01 灰8 8白9 9 ―20 50 金 5 银10无色20 图1-1 两位有效数字阻值的色环表示法如果色环电阻器用五环表示前面三位数字是有效数字第四位是10的倍幂第五环是色环电阻器的误差范围见图二五色环电阻器精密电阻标称值第一位有效数字标称值第二位有效数字标称值第三位有效数字标称值有效数字后0的个数10的倍幂允许误差颜色第一位有效值第二位有效值第三位有效值倍率允许偏差黑0 0 0 棕 1 1 1 1 红 2 2 22 橙3 3 3 黄4 4 4 绿55 5 05 蓝6 6 6 025 紫7 7 7 01灰8 8 8 白9 9 9 -20~50 金±5 银±10图1-2 三位有效数字阻值的色环表示法110 SMT电阻的尺寸表示用长和宽表示如0201060308051206等具体如02表com111 一般情况下电阻在电路中有两种接法串联接法和并联接法电阻的计算R1 R1 R2R2串连并联R R1R2 R 1R11R2112 多个电阻的串并联的计算方法串联R总串 R1R2R3Rn并联1R总并 1R2R3R1Rn二.电容器1 电容器的含义衡量导体储存电荷能力的物理量2 电容器的英文缩写C capacitor3 电容器在电路中的表示符号 C 或CN 排容4 电容器常见的单位毫法mF微法uF纳法nF皮法pF5 电容器的单位换算 1法拉 103毫法 106微法 109纳法 1012皮法1pf 10-3nf 10-6uf 10-9mf 10-12f6 电容的作用隔直流旁路耦合滤波补偿充放电储能等7 电容器的特性电容器容量的大小就是表示能贮存电能的大小电容对交流信号的阻碍作用称为容抗它与交流信号的频率和电容量有关电容的特性主要是隔直流通交流通低频阻高频8 电容器在电路中一般用C加数字表示如C25表示编号为25的电容9 电容器的识别方法与电阻的识别方法基本相同分直标法色标法和数标法3种a 直标法是将电容的标称值用数字和单位在电容的本体上表示出来如220MF表示220UF01UF表示001UFR56UF表示056UF6n8表示6800PFb 不标单位的数码表示法其中用一位到四位数表示有效数字一般为PF而电解电容其容量则为UF如3表示3PF2200表示2200PFcomFc 数字表示法一般用三为数字表示容量的大小前两位表示有效数字第三位表示10的倍幂如102表示10102 1000PF224表示22104 02UFd 用色环或色点表示电容器的主要参数电容器的色标法与电阻相同电容器偏差标志符号100-0--H100-10--R50-10--T30-10--Q50-20--S80-20--Z10 电容的分类根据极性可分为有极性电容和无极性电容我们常见到的电解电容就是有极性的是有正负极之分11 电容器的主要性能指标是电容的容量即储存电荷的容量耐压值指在额定温度范围内电容能长时间可靠工作的最大直流电压或最大交流电压的有效值耐温值表示电容所能承受的最高工作温度稳压二极管发光二极管光电二极管变容二极管3 半导体二极管在电路中常用加数字表示如D5表示编号为5的B锗二极管在两极加上电压并且电压大于02V时才能导通导通后电压保持在02-03V之间5 半导体二极管主要特性是单向导电性也就是在正向电压的作用下导通电阻很小而在反向电压作用下导通电阻极大或无穷大 7 半导体二极管的识别方法a目视法判断半导体二极管的极性一般在实物的电路图中可以通过眼睛直接看出半导体二极管的正负极在实物中如果看到一端有颜色标示的是负极另外一端是正极b用万用表指针表判断半导体二极管的极性通常选用万用表的欧姆档 R*100或R*1K 然后分别用万用表的两表笔分别出接到二极管的两个极上出当二极管导通测的阻值较小一般几十欧姆至几千欧姆之间这时黑表笔接的是二极管的正极红表笔接的是二极管的负极当测的阻值很大一般为几百至几千欧姆这时黑表笔接的是二极管的负极红表笔接的是二极管的正极 c测试注意事项用数字式万用表去测二极管时红表笔接二极管的正极黑表笔接二极管的负极此时测得的阻值才是二极管的正向导通阻值这与指针式万用表的表笔接法刚好相反变容二极管是根据普通二极管内部 PN结的结电容能随外加反向电压的变化而变化这一原理专门设计出来的一种特殊二极管变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上实现低频信号调制到高频信号上并发射出去在工作状态变容二极管调制电压一般加到负极上使变容二极管的内部结电容容量随调制电压的变化而变化变容二极管发生故障主要表现为漏电或性能变差1发生漏电现象时高频调制电路将不工作或调制性能变差2变容性能变差时高频调制电路的工作不稳定使调制后的高频信号发送到对方被对方接收后产生失真三极管在电路中常用Q加数字表示如Q17表示编号为17的三极管特点三极管简称管是内部含有2个PN结并且具有放大能力的特殊器件它分NPN型和PNP型两种类型这两种类型的三极管从工性上可互相弥补所谓OTL电路中的对管就是由PNP型和NPN型配对使用按材料来分可分硅和锗管我国目前生产的硅管多为NPN型锗管多为PNP型E 发射极 C 集电极 E 发射极 C 集电极B 基极B 基极NPN型三极管 PNP 型三极管4 半导体三极管放大的条件要实现放大作用必须给三极管加合适的电压即管子发射结必须具备正向偏压而集电极必须反向偏压这也是三极管的放大必须具备的外部条件5 半导体三极管的主要参数a 电流放大系数对于三极管的电流分配规律Ie IbIc由于基极电流Ib的变化使集电极电流Ic发生更大的变化即基极电流Ib的微小变化控制了集电极电流较大这就是三极管的电流放大原理即βΔIcΔIbb极间反向电流集电极与基极的反向饱和电流c极限参数反向击穿电压集电极最大允许电流集电极最大允许功率损耗6半导体三极管具有三种工作状态放大饱和截止在模拟电路中一般使用放大作用饱和和截止状态一般合用在数字电路中a半导体三极管的三种基本的放大电路共射极放大电路共集电极放大电路共基极放大电路电路形式直流通道静态工作点交流通道微变等效电路ri Rbrbe ro RC RC 用途多级放大电路的中间级输入输出级或缓冲级高频电路或恒流源电路b三极管三种放大电路的区别及判断可以从放大电路中通过交流信号的传输路径来判断没有交流信号通过的极就叫此极为公共极注交流信号从基极输入集电极输出那发射极就叫公共极交流信号从基极输入发射极输出那集电极就叫公共极交流信号从发射极输入集电极输出那基极就叫公共极7 用万用表判断半导体三极管的极性和类型用指针式万用表a先选量程R*100或R*1K档位b判别半导体三极管基极用万用表黑表笔固定三极管的某一个电极红表笔分别接半导体三极管另外两各电极观察指针偏转若两次的测量阻值都大或是都小则改脚所接就是基极两次阻值都小的为NPN型管两次阻值都大的为PNP型管若两次测量阻值一大一小则用黑笔重新固定半导体三极管一个引脚极继续测量直到找到基极c判别半导体三极管的c极和e极确定基极后对于NPN管用万用表两表笔接三极管另外两极交替测量两次若两次测量的结果不相等则其中测得阻值较小得一次黑笔接的是e极红笔接得是c 极若是PNP型管则黑红表笔所接得电极相反d 判别半导体三极管的类型如果已知某个半导体三极管的基极可以用红表笔接基极黑表笔分别测量其另外两个电极引脚如果测得的电阻值很大则该三极管是NPN型半导体三极管如果测量的电阻值都很小则该三极管是PNP型半导体三极管五.PCB的简介1 PCB的英文缩写PCB Printed Circuit Board2 PCB的作用PCB作为一块基板他是装载其它电子元器件的载体所以一块PCB设计的好坏将直接影响到产品质量的好坏3 PCB的分类和常见的规格根据层数可分为单面板双面板和多层板我们主机板常用的是4层板或者6层板而显示卡用的是8层板而主机板的尺寸为AT规格的主机板尺寸一般为13X12 单位为英寸 ATX主机板的尺寸一般为12X96 单位为英寸 Micro Atx主机板尺寸com 单位为英寸注明1英寸 254CM六.晶振1晶振在线路中的符号是”X”Y2晶振的名词解释能产生具有一定幅度及频率波形的振荡器3晶振在线路图中的表示符号4晶振的测量方法测量电阻方法用万用表RX10K档测量石英晶体振荡器的正反com英晶体振荡器有一定的阻值或为零则说明该石英晶体振荡器已漏电或击穿损坏动态测量方法用是波器在电路工作时测量它的实际振荡频是否符合该晶体的额定振荡频率如果是说明该晶振是正常的如果该晶体的额定振荡频率偏低偏高或根本不起振表明该晶振已漏电或击穿损坏七·555定时器555集成时基电路称为集成定时器是一种数字模拟混合型的中规模集成电路其应用十分广泛该电路使用灵活方便只需外接少量的阻容元件就可以构成单稳多谐和施密特触发器因而广泛用于信号的产生变换控制与检测它的内部电压标准使用了三个5K的电阻故取名555电路其电路类型有双极型和CMOS型两大类两者的工作原理和结构相似几乎所有的双极型产品型号最后的三位数码都是555或556所有的CMOS产品型号最后四位数码都是7555或7556两者的逻辑功能和引脚排列完全相同易于互换555和7555是单定时器556和7556是双定时器双极型的电压是5V15V输出的最大电流可达200mACMOS型的电源电压是3V18V 图8-1 555定时器内部框图555电路的工作原理555电路的内部电路方框图如图8-1所示它含有两个电压比较器一个基本RS 触发器一个放电开关T比较器的参考电压由三只5KΩ的电阻器构成分压它们分别使高电平比较器A1同相比较端和低电平比较器A2的反相输入端的参考电平为和A1和A2的输出端控制RS触发器状态和放电管开关状态当输入信号输入并超过时触发器复位555的输出端3脚输出低电平同时放电开关管导通当输入信号自2脚输入并低于时触发器置位555的3脚输出高电平同时放电开关管截止是复位端当其为0时555输出低电平平时该端开路或接VCCVc是控制电压端5脚平时输出作为比较器A1的参考电平当5脚外接一个输入电压即改变了比较器的参考电平从而实现对输出的另一种控制在不接外加电压时通常接一个001uf的电容器到地起滤波作用以消除外来的干扰以确保参考电平的稳定T为放电管当T导通时将给接于脚7的电容器提供低阻放电电路555定时器的典型应用图8-2 555构成单稳态触发器上图8-2为由555定时器和外接定时元件RC 构成的单稳态触发器D为钳位二极管稳态时555电路输入端处于电源电平内部放电开关管T导通输出端Vo输出低电平当有一个外部负脉冲触发信号加到Vi端并使2端电位瞬时低于低电平比较器动作单稳态电路即开始一个稳态过程电容C 开始充电Vc按指数规律增长当Vc充电到时高电平比较器动作比较器A1翻转输出Vo从高电平返回低电平放电开关管T重新导通电容C上的电荷很快经放电开关管放电暂态结束恢复稳定为下个触发脉冲的来到作好准备波形图见图8-3 图8-3 单稳态触发器波形图暂稳态的持续时间Tw即为延时时间决定于外接元件RC的大小Tw 11RC通过改变RC的大小可使延时时间在几个微秒和几十分钟之间变化当这种单稳态电路作为计时器时可直接驱动小型继电器并可采用复位端接地的方法来终止暂态重新计时此外需用一个续流二极管与继电器线圈并接以防继电器线圈反电势损坏内部功率管如图8-4由555定时器和外接元件R1R2C构成多谐振荡器脚2与脚6直接相连电路没有稳态仅存在两个暂稳态电路亦不需要外接触发信号利用电源通过R1R2向C充电以及C通过R2向放电端放电使电路产生振荡电容C在和之间充电和放电从而在输出端得到一系列的矩形波对应的波形如图8-5所示图8-4 555构成多谐振荡器图8-5 多谐振荡器的波形图输出信号的时间参数是 T07R1R2C07R2C其中为VC由上升到所需的时间为电容C放电所需的时间555电路要求R1与R2均应不小于1KΩ但两者之和应不大于33MΩ外部元件的稳定性决定了多谐振荡器的稳定性555定时器配以少量的元件即可获得较高精度的振荡频率和具有较强的功率输出能力因此这种形式的多谐振荡器应用很广3组成占空比可调的多谐振荡器电路如图8-6它比图8-4电路增加了一个电位器和两个引导二极管D1D2用来决定电容充放电电流流经电阻的途径充电时D1导通D2截止放电时D2导通D1截止图8-6 555构成占空比可调的多谐振荡器可见若取电路即可输出占空比为50℅的方波信号图8-7 555构成施密特触发器图8-8 555构成施密特触发器的波形图实现基本和常用逻辑运算的电子电路叫逻辑门电路实现与运算的叫与门实现或运算的叫或门实现非运算的叫非门也叫做反相器等等用逻辑1表示高电平用逻辑0表示低电平2 与门逻辑表达式F=A B。

红外遥控接收电路

红外遥控接收电路

接收数据 移位脉冲
SC9149A/SC9150A
标识 0.42ms
数据 "1" 0.84ms
标识
数据 "0"
校验脉冲
接收数据、移位脉冲和校验脉冲的状态如上图。移位脉冲由脉冲发生器根据接收信号的频率 和解码器的频率容差范围综合判断给出。
4、 用户码的比较
为了防止不同机型间的相互干扰,C1、C2和C3用来校验发射和接收的码是否吻合。 只有当两位码都吻合时,才会产生内部锁存电路驱动脉冲,以此脉冲来锁存接收到的数据和将 输出由低电平置成高电平。如果两位码不吻合,就不会产生内部锁存驱动脉冲,输出也就维持在低 电平。 根据接收电路的不同,用户码位的使用也就不同,见下表:
主要特点:
★ 可并行输出从遥控发射电路来的多重按键信号。 (SC9149A可并行输出5个功能,SC9150A可并行输 出6个功能)。
★ 可输出单脉冲(SP)、保持脉冲(HP)和循环脉冲 (CP)等信号。
★ 振荡电路的外接RC元件只用一个电路引脚。 ★ 有较强的接收码检查功能,以防止从其它电器设备来
的干扰。
循环码
CP1
18 0 0 1 0 0 0 0 0 1
循环码
CP2
C1~C3用户编码作为上述码位的补充。SC9150A能用所有的键,而SC9149A只能用键1#~5#
和键7#~11#以对应10条命令,SC9149AL/AHN 只能用键1#~5#,7#~9#和键17#,18#对应的10条命
令。
典型应用图例
单发键按下
12位
12位
单发码输出
锁存驱动脉冲
单脉冲输出
约107毫秒
在接受到两次12位的码数据,并校验正确后,输出单脉冲。输出由低电平到高电平,然后在107 毫秒之后回到低电平。

HS0038红外接受电路设计与应用

HS0038红外接受电路设计与应用

HS0038红外接受电路设计与应用1.红外通信红外通信是利用950nm近红外波段的红外线作为传递信息的媒体,即通信通道。

发送端采用脉时调制(PPM)方式,将二进制数字信号调制成某一频率的脉冲序列,并驱动红外发射管以光脉冲的形式发送出去;接收端将接收到的光脉转换成电信号,经过放大、滤波等处理之后送给解调电路进行解调,还原为二进制数字信号后输出。

简而言之,红外通信的实质就是对二进制数字信号进行调制和解调,以便利用红外通道进行传输;红外通信接口就是针对红外信道的调制解调器。

2.红外传输协议红外发射系统发射的信号是有“0”和“1”的二进制代码组成的,不同的协议对“0”和“1”的编码不同。

红外信号的传输协议严格规定了红外信号的载波频率、编码方式和数据传输的格式,以确保发送端和接收端之间数据传输的准确无误。

常见的红外传输协议有:NEC协议,ITT协议,Nokia NRC 协议,Sharp协议等。

下面一NEC协议为例,了解一下各种协议的大同小异。

NEC 标准下的编码表示其中:引导码高电平约9000us 左右,低电平约4500us 左右;用户码16 位,数据码16 位,共32位;数据0 是用“高电平约560us +低电平约560us”表示。

数据1 可用“高电平约560us+低电平约1680us”表示。

*其实自己在做红外系统时,借助示波器,可以编写自己独特的红外协议。

但要尊守一点,要以38KHz的方波来驱动红外发射LED,同时要把这38KHz的波形斩断,也就是编码。

对应的接收管会在接收到38KHz的红外信号时输出低电平,没有信号就输出高电平。

3.HS0038简介:a)光电检测和前置放大器集成在同一封装上。

b)内带PCM频率滤波器。

c)对自然光有较强的抗干扰能力。

d)改进了对电场干扰的防护性。

e)低功耗。

f)输出电平兼容TTL,CMOS。

2).极限参数4.红外接受头工作方式:红外信号收发系统的典型电路如图1所示,红外接收电路通常被厂家集成在一个元件中,成为一体化红外接收头。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《测控技术工程技能训练设计报告》班级测控1122 学号**********学生姓名段亚喆指导教师李华李洪海淮阴工学院自动化学院2015-12红外电路收发设计目录前言 (3)第1章概述 (4)第1.1节基于单片机的红外遥控系统概述 (4)第1.2节设计方案思路 (5)第1.3节研发方向和技术关键 (5)第1.4节主要技术指标 (6)第2章总体设计 (6)第2.1节红外遥控发射部分 (7)第2.2节红外遥控接收部分 (8)第2.3节红外编码标准 (9)第3章硬件设计 (11)第3.1节主控芯片AT89C52 (11)第3.2 功能概述 (12)第3.3节复位电路 (14)第3.4节红外发射接收电路 (16)第4 章软件设计 (17)第4.1节总体方案 (17)第五章仿真与调试 (18)结论 (19)附录程序代码 (20)前言近年来随着计算机在社会各领域的渗透,单片机的应用正在不断地走向深入,同时也带动传统的控制、检测等工作日益更新。

传统的遥控器大多采用无线电遥控技术,随着科技的进步,红外线遥控技术的进一步成熟,红外遥控也逐步成为了一种被广泛应用的通信和遥控手段。

为了方便实用,传统的家庭电器逐渐采用红外线遥控。

工业设备中,在高压、辐射、有毒气体、粉尘等有害环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。

红外线的光谱位于红色光之外,波长是0.76~1.5μm,比红光的波长还长。

红外遥控是利用红外线进行传递信息的一种控制方式,红外遥控具有抗干扰,电路简单,容易编码和解码,功耗小,成本低的优点。

红外遥控几乎适用所有家电的控制。

红外遥控是以调制的方式发射数据,就是把数据和一定频率的载波进行“与”操作,这样既可以提高发射效率又可以降低电源功耗。

目前有很多种芯片可以实现红外发射,可以根据选择发出不同种类的编码。

由于发射系统一般用电池供电,这就要求芯片的功耗要很低,芯片大多都设计成可以处于休眠状态,当有按键按下时才工作,这样可以降低功耗芯片所用的晶振应该有足够的耐物理撞击能力。

红外接收头的种类很多,引脚定义也不相同,一般都有三个引脚,包括供电脚,接地和信号输出脚。

根据发射端调制载波的不同应选用相应解调频率的接收头。

红外接收头内部放大器的增益很大,很容易引起干扰,因此在接收头的供电脚上须加上滤波电容,一般在22uf以上。

红外遥控的特点是不影响周边环境、不干扰其它电器设备。

由于其无法穿透墙壁,故不同房间的家用电器可使用通用的遥控器而不会产生相互干扰;电路调试简单,只要按给定电路连接无误,一般不需任何调试即可投入工作;编解码容易,可进行多路遥控。

红外遥控虽然被广泛应用,但各产商的遥控器不能相互兼容。

当今市场上的红外线遥控装置一般采用专用的遥控编码及解码集成电路,但编程灵活性较低,且产品多相互绑定,不能复用,故应用范围有限。

而本文采用单片机进行遥控系统的应用设计,遥控装置将同时具有编程灵活、控制范围广、体积小、功耗低、功能强、成本低、可靠性高等特点,因此采用单片机的红外遥控技术具有广阔的发展前景。

红外线是一种光线,具有普通光的性质,可以以光速直线传播,强度可调,可以通过光学透镜聚焦,可以被不透明物体遮挡等等。

特别制造的半导体发光二极管,可以发出特定波长(通常是近红外)的红外线,通过控制二极管的电流可以很方便地改变红外线的强度,达到调制的目的,因此,在现代电子工程应用中,红外线常常被用做近距离视线范围内的通讯载波,最典型的应用就是家电遥控器。

使用红外线做信号载波的优点很多:成本低、传播范围和方向可以控制、不产生电磁辐射干扰,也不受干扰等等。

因此被广泛地应用在各种技术领域中。

第1章概述第1.1节基于单片机的红外遥控系统概述当今社会科学技术的发展与日俱增,人们生活水平也是日益提高,为了减少人们的工作量,所以对各种家用电器、电子器件的非人工控制的要求越来越高,针对这种情况,设计出一种集成度比较高的控制体系是必然的。

现代科技的飞速发展在许多危险、不可近场合也对远程控制提出了越来越高的要求。

单片机是指一个集成在一块芯片上的完整计算机系统。

尽管他的大部分功能集成在一块小芯片上,但是它具有一个完整计算机所需要的大部分部件:CPU、内存、内部和外部总线系统,目前大部分还会具有外存。

同时集成诸如通讯接口、定时器,实时时钟等外围设备。

而现在最强大的单片机系统甚至可以将声音、图像、网络、复杂的输入输出系统集成在一块芯片上。

单片机的集成度很高,它体积小、功耗低、控制功能强、扩展灵活、微型化、使用方便等突出特点,尤其耗电少,又可使供电电源体积小、质量轻。

所以特别适用于“电脑型产品”,它的应用已深入到工业、农业、国防、科研、教育以及日常生活用品(家电、玩具)等各种领域,几乎很难找到哪个领域没有单片机的踪迹。

单片机特别适合把它做到产品的内部,取代部分老式机械、电子零件或元器件。

可使产品缩小体积,增强功能,实现不同程度的智能化。

红外线是一种光线,具有普通光的性质,可以以光速直线传播,强度可调,可以通过光学透镜聚焦,可以被不透明物体遮挡等等。

特别制造的半导体发光二极管,可以发出特定波长(通常是近红外)的红外线,通过控制二极管的电流可以很方便的改变红外线的强度,以达到调制的目的,因此,在现代电子工程应用中,红外线常常被用做近距离视线范围内的通讯载波。

使用红外线做信号载波的优点很多:成本低、传播范围和方向可以控制、不产生电磁辐射干扰,也不受干扰等等。

因此被广泛地应用在各种技术领域中。

由于红外线为不可见光,因此对环境影响很小,再由红外光波动波长远小于无线电波的波长,所以红外线遥控不会影响其他家用电器,也不会影响临近的无线电设备。

最典型的应用就是家电遥控器。

红外线遥控不具有像无线电遥控那样穿过障碍物去控制被控对象的能力,所以,在设计家用电器的红外线遥控器时,不必要像无线电遥控器那样,每套(发射器和接收器)要有不同的遥控频率或编码(否则,就会隔墙控制或干扰邻居的家用电器)。

同类产品的红外线遥控器,也可以有相同的遥控频率或编码,而不会出现遥控信号“串门”的情况。

这对于大批量生产以及在家用电器上普及红外线遥控提供了极大的方面。

本设计主要研究并设计一个基于单片机的红外发射及接收系统,实现对八路开关的隔离控制并对工作状态设备计数。

控制系统主要是由 AT89C52单片机、电源电路、红外发射电路、红外接收电路、LED 显示电路等部分组成,应用红外遥控系统由发射和接收两大部分组成,应用编/解码专业集成电路芯片来进行控制操作。

红外接收头的种类很多,引脚定义也不相同,一般都有三个引脚,包括供电脚,接地和信号输出脚。

根据发射端调制载波的不同应选用相应解调频率的接收头。

单片机编码发射遥控信号经红外接收处理传送给单片机,单片机根据不同的信息码控制 LED 发光二极管各个状态,并完成相应的状态指示(如图 1.1)。

第1.2节设计方案思路本设计主控芯片采用目前比较通用的AT89C52单片机。

此类单片机的运算能力强,软件编程灵活,自由度大,市场上比较多见,价格便宜且技术比较成熟容易实现。

红外传输利用载波对信号进行调制从而减少信号传输过程中的光波干扰,提高数据传输效率。

由单片机AT89C52定时器 T0 产生周期性的 26.3 的矩形脉冲,即每隔13us,定时器 T0 产生中断输出一个相反的信号使输出端产生周期的 38KHz 脉冲信号。

再由单片机将键盘信息及系统识别码等数据调制在红外载波上经红外发射头发射出去。

接收方由红外一体化接收头实现对接收信号的放大解调并还原为数据流,经由单片机解码后对相关IO口进行操作。

第1.3节研发方向和技术关键随着电子技术的发展,当前数字系统的设计正朝着速度快、容量大、体积重量轻的方向发展。

在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。

(1)合理设计硬件电路,使各模块功能协调;(2)红外发射信号的脉冲波形;(3)红外发射信号的编解码;(4)单片机对IO口的操作;第1.4节主要技术指标(1)遥控距离4到6m;(2)工作频率为 38KHz,即红外发射和接收的载频为 38KHz;(3)接收端可显示受控状态。

第2章总体设计红外遥控系统是集中集光、电于一体的系统。

其工作原理是用户按键信号经单片机编码处理后转化为脉冲信号,经由红外发射头发送出去;接收端由红外一体化接收头实现对接收信号的放大解调并还原为数据流,经由单片机解码后对相关IO口进行操作,从而完成整个遥控操作。

整个系统主要是由电源电路、红外发射电路、红外接收电路、LED显示电路等部分组成。

系统硬件由以下几部分组成:红外数据发射电路,键盘采用普通按键键盘,按键统一接在单片机P1口。

整体设计思路为:根据扫描到不同的按键值对发射脉冲编码赋值后 AT89C52将按照数据处理要求从 P3.4 输出控制脉冲与 T0 产生的 8KHz 的载波(周期是 26us)进行调制,经 PNP三极管对信号放大驱动红外发光管将控制信号发送出去。

红外数据接收则是采用 IRLINK 一体化红外接收头,内部集成红外接收、数据采集、解码的功能,只要在接收端 INT0 检测头信号低电平的到来,就可完成对整个串行的信号进行分析得出当前控制指令的功能。

然后根据所得的指令去操作相应的用电器件工作,如图 2.1所示。

第2.1节红外遥控发射部分红外遥控发射部分系统框图见图2.2。

发送端采用单片机的定时中断功能,由定时器 T0 产生周期为 26us 的矩形脉冲,即每隔13us定时器 T0 产生中断输出一个相反的信号使单片机输出端产生周期为38KHz的脉冲信号。

脉冲图如图 4所示。

系统通过直连单片机的按键获取用户遥控信息,经按键扫描确认,然后交由单片机对将要发射数据进行整理,将待发送的二进制信号编码调制在38kHz脉冲基波上,生成脉冲发射信号,最后通过红外发射管发射红外信号。

红外发射电路的作用是当接收到外界信号时,驱动红外发光二极管发出调制红外光。

发射系统一般要求芯片的功耗要很低,芯片大多都设计成可以处于休眠状态,当有按键按下时才工作,这样可以降低功耗。

红外线通过红外发光二极管(LED)发射出去,红外发光二极管内部材料和普通发光二极管不同,在其两端施加一定电压时,它发出的是红外线而不是可见光。

单片机红外遥控发射器主要有单片机、行列式键盘、低功耗空闲方式控制电路、红外管发射电路以及单片机的一些电源、复位、震荡子电路组成。

单片机不工作时一直处于低功耗状态,采用了空闲节电工作方式。

当遥控器的某一按键被按下以后,外部中断1产生中断,唤醒单片机进入工作状态,查询键盘按下的是哪一个按键,当确认按键后,控制软件启动定时器T0、T1,T1作为发射时间控制器,T0作为红外线发射频率控制器,T0定时溢出时中断程序使红外管接口电平反转一次,写入定时器的初值不同,在输出端口就得到不同的发射频率。

相关文档
最新文档