建筑中的数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑中的数学

作者:李敏 (初中数学河南驻马店平舆县初中数学班) 评论数/浏览数:0 / 3783 发表日期:

2011-12-24 15:02:47

当我们看着巍峨飞动的长城、清丽宁静的江南民居、雄浑博大的宫殿、明丽典雅的帕特农神庙、充满力量的埃菲尔铁塔等等这些名动天下的建筑时,在我们深感它们响彻古今的美丽时,可曾想到这些宏大的建筑珍品里面隐藏着怎样的数学奥秘?本文主要详细介绍了建筑中普遍包含的一些

数学知识,包括几何学、黄金分割、数列及拓扑学,以达到更深入了解建筑美的目,展现出建筑与数学这两门学科独特而又不可分割的美。

数学美是一种客观存在,是自然美在数学中的反映。建筑在数学思维的启发下不断发展为世界创造和谐美。拜占庭时期的建筑师们将正方形、圆、立方体和带拱的半球等概念优雅地组合起来,就像他们在康士坦丁堡的索菲娅教堂里所运用的那样;埃皮扎夫罗斯古剧场的布局和位置的几何精确性经过专门计算,以提高音响效果,并使观众的视域达到最大;圆、半圆、半球和拱顶的创新用法成了罗马建筑师引进并加以完善的主要数学思想;文艺复兴时期的石建筑物,显示了一种在明暗和虚实等方面都堪称精美和文雅的对称……

随着新建筑材料的发现,适应于这些材料最大潜力发挥的新的数学思想也应运而生。用各种各样可以得到的建筑材料,诸如石头、木材、砖块合成材料等等,建筑师们能够设计出实质为任何形状的建筑物。在近代,我们能亲眼见到双曲抛物体形式的建筑物如旧金山圣玛丽大教堂、抛物线型的机棚、模仿游牧部落帐篷的立体组合结构、支撑东京奥林匹克运动大厅的悬链线缆,以及带有椭圆顶天花板的八角形房屋,中国北京的奥林匹

克运动会的主场馆鸟巢与水立方的遥相辉映等等。我们常说“简约而不简单”,建筑就是一种能够最终归结为数学的简约的艺术。

建筑的几何学价值首先表现在简洁美。几何学的理论基础在于格式塔心理学的视觉简化规律,简洁产生了重复性,重复演绎出高层建筑的节奏和韵律美,最终形成建筑和谐统一的审美感受;同时,简洁的形体易于谐调,使不同的形体组合具有统一美感。

建筑,只有数与形结合,才更具有神韵,数学赋予了建筑活力,同时它的美也被建筑表现得淋漓尽致,当你在欣赏一座跨海大桥时,其实是在不知不觉中惊叹大桥的静定多跨结构中包含的数学和自然融合美的成分。

千百年来,数学已成为设计和构图的无价工具.它既是建筑设计的智力资源,也是减少试验、消除技术差错的手段。比例、与比例相关的均衡、尺度、布局的序列都是构成建筑美的要素。和谐的比例和尺度是建筑结构呈现自然美的基本条件。比例的均称与平衡,圆形的对称和和谐,曲面的柔软与变幻,总能不断地启发建筑师创造出更具和谐美和雅致美的建筑。

•发表评论

静的江南民居、雄浑博大的宫殿、明丽典雅的帕特农神庙、充满力量的埃菲尔铁塔等等这些名动天下的建筑时,在我们深感它们响彻古今的美丽时,可曾想到这些宏大的建筑珍品里面隐藏着怎样的数学奥秘?本文主要详细介绍了建筑中普遍包含的一些数学知识,包括几何学、黄金分割、数列及拓扑学,以达到更深入了解建筑美的目,展现出建筑与数学这两门学科独特而又不可分割的美。

【关键词】建筑设计黄金分割几何学数列拓扑学

1. 数学思维为建筑设计拓展了思路,创造了灵感

数学美是一种客观存在,是自然美在数学中的反映。建筑在数学思维的启发建筑中的数

——

【摘要】

打开中外建筑史,我们可以看到,凡有人之处必有建筑,而几乎每个建筑中都埋藏着一门科学——数学。当我们看着巍峨飞动的长城、清丽宁下不断发展为世界创造和谐美。拜占庭时期的建筑师们将正方形、圆、立方体和带拱的半球等概念优雅地组合起来,就像他们在康士坦丁堡的索菲娅教堂里所运用的那样;埃皮扎夫罗斯古剧场的布局和位置的几何精确性经过专门计算,以提高音响效果,并使观众的视域达到最大;圆、半圆、半球和拱顶的创新用法成了罗马建筑师引进并加以完善的主要数学思想;文艺复兴时期的石建筑物,显示了一种在明暗和虚实等方面都堪称精美和文雅的对称……

随着新建筑材料的发现,适应于这些材料最大潜力发挥的新的数学思想也应运而生。用各种各样可以得到的建筑材料,诸如石头、木材、砖块合成材料等等,建筑师们能够设计出实质为任何形状的建筑物。在近代,我们能亲眼见到双曲抛物体形式的建筑物如旧金山圣玛丽大教堂、抛物线型的机棚、模仿游牧部落帐篷的立体组合结构、支撑东京奥林匹克运动大厅的悬链线缆,以及带有椭圆顶天花板的八角形房屋,中国北京的奥林匹克运动会的主场馆鸟巢与水立方的遥相辉映等等。我们常说“简约而不简单”,建筑就是一种能够最终归结为数学的简约的艺术。

2. 建筑中包含的数学知识

2.1 建筑中的几何学

建筑的几何学价值首先表现在简洁美。几何学的理论基础在于格式塔心理学的视觉简化规律,简洁产生了重复性,重复演绎出高层建筑的节奏和韵律美,最终形成建筑和谐统一的审美感受;同时,简洁的形体易于谐调,使不同的形体组合具有统一美感。

2.1.1 几何学在建筑中的早期运用

几何学的开端可以追溯到古埃及、古印度和古巴比伦。早期的几何学是关于长度、角度、面积和体积的经验原理,用于测绘、建筑、天文和各种工艺制作。通常认为,几何学是“geometry”的音译,其词头“geo”是“土地”的意思,词尾“metry”是“测量学”的意思,合起来即“土地测量学”。可见,建筑学与几何学的关联由来已久。

2.1.2文艺复兴时期的建筑几何学

到了文艺复兴时期,人们普遍确信建筑学是一门科学,建筑的每一部分,无论是内部还是外部,都能够被整合到数学比例中。“比例”成为建筑几何学在文艺复兴时期的代名词,而象心形、圆形、穹顶则是文艺复兴时期建筑的基本形式,只要人们用几何化的形式来诠释宇宙和谐概念的话,就无法避免这些形式。在这一时期,建筑师追求绝对的、永恒的、秩序化的逻辑,形式的完美取代了功能的意义。

2.1.3 科学改革之后的建筑几何学

17世纪科学革命所揭示的宇宙是一部数学化的机器。这一时期法国最重要的建筑理论家都是科学家,在笛卡尔理性主义精神的引导下,一切问题讨论的基础都以理性为原则,数学被认为是保证“准确性”和“客观性”的唯一方法。笛卡尔通过解析几何沟通了代数与几何,蒙日则将平面上的投影联系起来,在《画法几何》中第一次系统地阐述了平面图式空间形体方法,将画法几何提高到科学的水平。与传统的模拟视觉感受方式不同,画法几何切断了视觉与知识之间的直接联系,赋予建筑以不受个人主观认识影响的客观真实性,时至今日仍然是建筑学交流最重要的媒介。

2.2 建筑中的黄金分割

2.2.1 黄金分割的简介

黄金分割是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1:0.618或1.618:1,即长段为全段的0.618。

相关文档
最新文档