汽车减速器毕业设计
rv减速器毕业设计
rv减速器毕业设计RV减速器毕业设计一、引言随着科技的不断发展,机械工程领域的研究和应用也在不断推进。
在机械传动领域,减速器是一种非常重要的装置,它可以将高速旋转的输入轴转换为低速高扭矩的输出轴。
在众多减速器中,RV减速器因其结构紧凑、传动效率高等优点而备受关注。
因此,本文将探讨RV减速器的毕业设计。
二、RV减速器的原理与结构RV减速器是一种由行星齿轮传动和柔性齿轮传动组成的减速器。
其工作原理是通过输入轴和行星齿轮传动实现输入和输出轴之间的转速变换。
行星齿轮传动是通过行星齿轮与太阳齿轮和内齿轮之间的啮合来实现传动的。
而柔性齿轮传动则是通过柔性齿轮的弹性来实现传动。
RV减速器的结构紧凑,传动效率高,因此在工业机械和机器人等领域得到广泛应用。
三、RV减速器的设计要点1. 齿轮的选材与设计在RV减速器的设计中,齿轮是一个关键的部件。
齿轮的选材和设计直接影响着减速器的性能和寿命。
一般来说,齿轮应选择高强度、高硬度的材料,并进行合理的热处理。
同时,齿轮的设计应考虑到齿面接触应力、齿面强度等因素,以保证减速器的可靠性和稳定性。
2. 轴承的选择与布局RV减速器中的轴承起着支撑和定位的作用。
轴承的选择应考虑到承载能力、刚度和摩擦损失等因素。
同时,轴承的布局应合理,以减小传动过程中的振动和噪音。
3. 传动效率的提高RV减速器的传动效率直接影响着整个系统的能量损失和工作效率。
为了提高传动效率,可以采用优化的齿轮几何参数、减小齿轮啮合间隙、提高齿轮表面质量等方法。
四、RV减速器的应用领域由于RV减速器具有结构紧凑、传动效率高等优点,因此在众多领域得到广泛应用。
1. 工业机械在工业机械中,RV减速器可以用于各种传动装置,如输送带、机床、起重机等。
其结构紧凑的特点使得机械设备更加灵活,同时传动效率的提高也使得机械设备的工作效率更高。
2. 机器人在机器人领域,RV减速器被广泛应用于各种关节传动装置。
其结构紧凑、传动效率高的特点使得机器人具有更高的精度和稳定性。
载货汽车双极主减速器设计毕业论文
载货汽车双极主减速器设计毕业论文一、概览随着物流行业的快速发展,载货汽车的需求与日俱增,其性能和设计质量对于运输效率和安全性至关重要。
作为载货汽车的核心部件之一,双极主减速器在车辆动力传输和性能优化方面扮演着举足轻重的角色。
本文旨在深入探讨载货汽车双极主减速器的设计研究,以期提高减速器的性能,满足现代载货汽车的高效、安全、可靠等要求。
本文首先概述了研究背景和意义,介绍了载货汽车双极主减速器在车辆传动系统中的作用及其发展现状。
阐述了研究的主要内容和目标,包括减速器的设计原理、结构特点、性能参数等。
在此基础上,本文的重点是探讨双极主减速器的设计优化方案,以提高其承载能力和传动效率,降低能耗和噪音,并增强其可靠性和耐用性。
文章还将对设计过程中遇到的关键问题和解决方法进行深入剖析,展示研究成果的实用价值和理论意义。
在论文的结构安排上,本文将遵循科学严谨的研究方法和技术路线。
首先进行文献综述,梳理国内外相关研究现状和进展;其次进行理论分析和数学建模,研究双极主减速器的设计理论和优化方法;然后进行实验验证和性能评估,确保设计的减速器的性能和可靠性;最后进行总结和展望,对研究成果进行总结评价,并提出未来研究的方向和展望。
本文的研究成果将为载货汽车双极主减速器的设计提供理论支持和技术指导,对于提高载货汽车的性能和运输效率具有重要意义。
本文的研究成果也可以为其他类型车辆的减速器设计提供参考和借鉴。
本文旨在通过深入研究和实践,推动载货汽车双极主减速器设计的进步和发展。
1. 研究背景及意义随着经济的飞速发展,物流行业在中国乃至全球范围内都呈现出蓬勃发展的态势。
作为物流行业的重要组成部分,载货汽车在其中扮演着至关重要的角色。
它们承载着大量的货物,穿梭于城市的各个角落,为人们的生产和生活提供了便利。
随着物流需求的不断增加,载货汽车的载重、速度、效率等性能要求也在不断提高。
主减速器作为载货汽车传动系统中的重要组成部分,其性能直接影响到整车的动力性、经济性和安全性。
汽车减速器毕业设计
要着工业和国防现代化的发展,无论对公路运输还是非公路运输的车辆都提出更高的要求。
主减速器是汽车传动部分的重要部件之一,是汽车传动系最主的部件之一。
主要作用是依靠齿数少的锥齿轮带动齿数多的锥齿轮降速增矩,对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。
为满足不同的使用要求,主减速器的结构形式也是不一样的。
文设计的是轻型卡车主减速器的设计,设计主要包括:主减速器结构的选择、主、从动锥齿轮的设计、轴承的设计与校核,轴的设计与校核等。
减速器对提高汽车形式平稳性和其通过性有着独特的作用,是汽车设计的重点之一。
关键词:主减速器齿轮轴承设计校核AbstractWith the development of industry and national defense modernization "regardless of the highway transportation or non - road transport vehicles are put forward higher requirements. Automobile main reducer is automotive drive axle of the main assembly structure is one of the main transmission components, automotive transmission system.Automobile main reducer in the transmission lines use to vehicle speed,increased the torque ,it is less dependent on the bevel of more gear drive of less bevelgear.Purchase of the longitudinal engine automobiles,the main bevel gear reducer also used to change the driving force for the direction of transmission. Automobile main reduce has different strcture to fit different requirement.The design mainly includes:main gear box structures choice.host、driven bevel gear’s design,bearing’s design and check,axis’s design and check.Automobile main reducer to reducer the car driving and differential stability and its though sex has a unique function,is one of the focal points of automotive design. Key word: Automobile main reduce Gear Bearing Design Check.第一章绪论1.1.1主减速器概述减速器功用是在传动系中降低转速,增大转矩并改变转矩旋转方向(90°).另外它布置在动力向驱动轮分流之前的位置。
多级减速器毕业设计 (1)
一:多级减速器的工作原理及结构组成工作原理:单级减速器就是一个主动椎齿轮(俗称角齿),和一个从动伞齿轮(俗称盆角齿),主动椎齿轮连接传动轴,顺时针旋转,从动伞齿轮贴在其右侧,啮合点向下转动,与车轮前进方向一致。
由于主动锥齿轮直径小,从动伞齿轮直径大,达到减速的功能。
双级减速器多了一个中间过渡齿轮,主动椎齿轮左侧与中间齿轮的伞齿部分啮合,伞齿轮同轴有一个小直径的直齿轮,直齿轮与从动齿轮啮合。
这样中间齿轮向后转,从动齿轮向前转动。
中间有两级减速过程。
双级减速由于使车桥体积增大,过去主要用在发动机功率偏低的车辆匹配上,现在主要用于低速高扭矩的工程机械方面。
在双级式主减速器中,若第二级减速在车轮附近进行,实际上构成两个车轮处的独立部件,则称为轮边减速器。
这样作的好处是可以减小半轴所传递的转矩,有利于减小半轴的尺寸和质量。
轮边减速器可以是行星齿轮式的,也可以由一对圆柱齿轮副构成。
当采用圆柱齿轮副进行轮边减速时可以通过调节两齿轮的相互位置,改变车轮轴线与半轴之间的上下位置关系。
这种车桥称为门式车桥,常用于对车桥高低位置有特殊要求的汽车。
按主减速器传动比档数分,可分为单速式和双速式两种。
目前,国产汽车基本都采用了传动比固定的单速式主减速器。
在双速式主减速器上,设有供选择的两个传动比,这种主减速器实际上又起到了副变速器的作用。
二结构组成1、齿轮、轴及轴承组合小齿轮与轴制成一体,称齿轮轴,这种结构用于齿轮直径与轴的直径相关不大的情况下,如果轴的直径为d,齿轮齿根圆的直径为df,则当df-d≤6~7mn时,应采用这种结构。
而当df-d>6~7mn时,采用齿轮与轴分开为两个零件的结构,如低速轴与大齿轮。
此时齿轮与轴的周向固定平键联接,轴上零件利用轴肩、轴套和轴承盖作轴向固定。
两轴均采用了深沟球轴承。
这种组合,用于承受径向载荷和不大的轴向载荷的情况。
当轴向载荷较大时,应采用角接触球轴承、圆锥滚子轴承或深沟球轴承与推力轴承的组合结构。
毕业设计论文----减速器毕业设计
一. 选择电动机类型按工作要求和条件,选用Y 型异步电动机封闭式结构,电压380V 。
二. 选择电动机容量工作机主轴功率P W =FV=2500×1.5=3.75KW传动装置的总功率ηa =η1.η23. η3. η4. η5=0.95×0.993×0.96×0.99× 0.96=0.841 式中(由表2-2查得)η1=0.95 η2=0.99 η3=0.96 η4=0.99 η5=0.96分别为V 带传动.轴承.齿轮传动(齿轮精度为8级,不包括轴承效率)联轴器.卷筒∴.P d =w aP η=3.75kw0.841=4.459kw三. 确定电动机转速 卷筒轴工作转速为:η=60×1000×1.5πD =60×1000×1.5π×260110.24r min按表2.1推荐的传动比合理范围初取V 带传动的传动比为1i '=2∼4 齿轮传动比2i '=3∼7则总传动比合理范围为i '=21i i ''=6∼28∴电动机转速的合理范围为n d =i 'n=(6∼28)×110.24=(661.2∼3086.72)r min根据电动机详细技术特征和外形及安装尺寸见表 根据额度功率P ed ≥P d ,且转速满足 661.2r min <n d <3086.72r min 选电动机型号为:Y132S-4 nd=1440r min 四.传动装置的总传动比及分配传动比 1.总传动比 i=n d n 1=1440110.2413.062.分配各级传动比分配传动装置传动比 i=1j i i式中1i 、j i 分别为V 带传动和减速器的传动比为使V 带传动外廓尺寸不至于过大;初取1i =2.8则齿轮的传动比为: 2i =i i 1=13.062.8=4.66五.计算传动装置的运动和动力参数(1)各轴功率按工作机所需功率及传动效率进行计算 各轴的功率为:I 轴输入功率:I P 入=P d .η1=4.459×0.95=4.23kwII 轴输入功率:II P 入=I P 入.η2.η3=4.23×0.99×0.96=4.02kw III 轴输入功率:III P 入= II P 入.η2.η4=4.02×0.99×0.99=3.94KW (2)各轴的转速: I 轴的转速:n 1 =n i 1=14402.8=514.29r min II 轴的转速:n 2 =n 1i 1514.294.66=110.36r minIII 轴的转速:n 3=n 2=110.36r min(3)各轴的转矩为:I 轴的输入转矩 T 1=T d .i 1.η1=29.57×2.8×0.95=78.66N.mII 轴的输入转矩 T 2=T 1.i 2.η2.η3=78.66×4.66×0.99×0.96=348.37N.m III 轴的输入转矩 T3=T 2.η2η4=348.37×0.99×0.99=341.44N.m设计V 型带1.确定计算功率P CPC=K A .P ,已知P=5.5kw ,查表得K A =1.2 则P C =6.6kw2.选择带型 根据计算功率P C =6.6kw 和小带轮转速n 1=n d =1440r/min 查表得选A 型带3.确定V 带轮基准直径查表知A 型带的d min =75mm i=2.8 ε=0.02 n 2=14402.8=514.29r/minD d2 =n1n 2d d1 1−ε =2.8×100 1−0.02 =274.4查表 取dd1=100mm dd2=280mm 4.验算带速: V=πd d1n 160×1000π×100×144060×1000=7.54m/s5.确定带的基准长度L d 和中心距a按设计要求, 初取中心距 a 0=450mm ,符合0.7(d d1+d d2)<2(d d1+d d2) 即262.08<a 0<748.8 计算V 带的基准长度L 0 L 0=2a0+π2 (d d1+d d2)+(d d2−d d1)24a 0=2×450+π2(100+274.4)+(274.4−100)24×450=1504.708mm ≈1505mm 查表得L d =1550mm 计算实际中心距 a ≈a 0+L d −L 02=450+1550−15052=472.5mma min =a-0.015L d =472.5-0.015×1550=449.25mm a max =a+0.03L d =472.5+0.03×1550=519mm 6.验算小带轮包角 1 =1800−d d1−d d2a×57.30=1800−(274.4−100)472.5×57.30=158.850 ≈15907.确定V 带根数查表得:P 0=1.32kw △P 0=0.17kw K α=0.95 K L =0.98Z=Pc P 0=P Cp0+△P 0= 6.61.32+0.17 ×0.95×0.98=4.76所以Z=5根8.确定单根V 带的初拉力 F 0=500P C ZV2.5K α−1 +qV 2=500×6.65×7.54 2.50.95−1 +0.1×7.542=148.5N9.带传动作用在带轮轴上的压力F 0=2ZF 0sinα12=2×5×148.5×sin15902=1460N10.带轮结构设计设计斜齿轮大带轮n 2= 514.29r min ,即为减速器中的小齿轮转速n 3= 514.29r min 滚子的转速为110.36r min ,即为减速器中的大齿轮转速n 4=110.36r min 输入减速器轴的功率P 减=4.459×0.95=4.23kw ,每年工作300天(1) 取齿轮材料及热处理方法采用硬齿面,参考表;大小齿轮都用45#钢,表面淬火。
毕设-主减速器设计
摘要汽车驱动桥位于传动系末端,其基本功能是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右驱动车轮,并使左、右驱动车轮具有汽车行驶运动学所需要的差速功能;同时,驱动桥还需要承受作用于路面和车架或车厢之间的垂直力、纵向力和横向力。
一般汽车结构中,驱动桥包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件。
驱动桥设计应满足的基本要求:所选择的主减速比应保证汽车具有最佳的动力性和燃油经济性;外形尺寸要小,保证有必要的离地间隙;齿轮及其传动件工作平稳,噪音小;在各种转速和载荷下具有较高的传动效率;在保证足够的强度、刚度条件下,应力要尽量小,尤其是簧下质量应尽量小,以改善汽车的平顺性;与悬架导向机构运动协调;结构简单,加工工艺性好,制造容易,拆装、调整方便。
驱动桥的结构方案分析驱动桥的结构形式与驱动车轮的悬架形式密切相关。
当驱动车轮采用非独立悬架时,驱动桥应为非断开式(或称为整体式),即驱动桥壳是一根连接左右驱动车轮的空心梁,而主减速器、差速器及车轮传动装置(由左右半轴组成)都装在它里面。
当采用独立悬架时为保证运动协调,驱动桥应为断开式。
这种驱动桥无刚性的整体外壳,主减速器及其壳体装在车架或车身上,两侧驱动车轮与车架或车身做弹性连接,并可彼此独立分别相对于车身做上下摆动,车轮传动采用万向节传动。
具有桥壳的非断开式驱动桥结构简单、制造工艺性好、成本低、工作可靠、维修调整容易,广泛应用于各种载货汽车、客车及多数的越野车和部分小轿车上。
但整个驱动桥均属于簧下质量,对于汽车平顺性和降低动载荷不利。
断开式驱动桥结构较复杂,成本较高,但它大大地增加了离地间隙;减小了簧下质量,从而改善了行驶平顺性,提高了汽车的平均速度;减小了汽车在行驶时作用于车轮与车桥上的动载荷,提高了零部件的使用寿命;由于驱动车轮与地面的接触情况及对各种地形的适应性较好,大大增加了车轮的抗侧滑能力;与之相配合的独立悬架导向机构设计得合理,可增加不足转向效应,提高汽车的操纵稳定性。
车辆工程毕业设计158轻型车主减速器设计说明书
目录摘要 (I)Abstract ................................................................................I I 第1章绪论 .. (1)1.1国内外主减速器行业现状和发展趋势 (1)1.2本设计的目的和意义 (2)1.3本次设计的主要内容 (2)第2章主减速器的设计 (3)2.1主减速器的结构型式的选择 (3)2.1.1主减速器的减速型式 (3)2.1.2主减速器齿轮的类型的选择 (4)2.1.3主减速器主动锥齿轮的支承形式 (6)2.1.4主减速器从动锥齿轮的支承形式及安置方法 (7)2.2主减速器的基本参数选择与设计计算 (8)2.2.1主减速比的确定 (8)2.2.2主减速器计算载荷的确定 (9)2.2.3主减速器基本参数的选择 (11)2.2.4主减速器双曲面齿轮的几何尺寸计算 (15)2.2.5主减速器双曲面齿轮的强度计算 (23)2.2.6主减速器齿轮的材料及热处理 (27)2.3主减速器轴承的选择 (28)2.3.1计算转矩的确定 (28)2.3.2齿宽中点处的圆周力 (28)2.3.3双曲面齿轮所受的轴向力和径向力 (29)2.3.4主减速器轴承载荷的计算及轴承的选择 (30)2.4本章小结 (34)第3章差速器设计 (35)3.1差速器结构形式的选择 (35)3.2对称式圆锥行星齿轮差速器的差速原理 (37)3.3对称式圆锥行星齿轮差速器的结构 (38)3.4对称式圆锥行星齿轮差速器的设计 (38)3.4.1差速器齿轮的基本参数的选择 (38)3.4.2差速器齿轮的几何计算 (40)3.4.3差速器齿轮的强度计算 (42)3.5本章小结 (43)第4章驱动半轴的设计 (44)4.1半轴结构形式的选择 (44)4.2全浮式半轴计算载荷的确定 (46)4.3全浮式半轴的杆部直径的初选 (47)4.4全浮式半轴的强度计算 (47)4.5半轴花键的计算 (47)4.5.1花键尺寸参数的计算 (47)4.5.2花键的校核 (49)4.6本章小结 (50)结论 (51)参考文献 (52)致谢 ·······························································错误!未定义书签。
汽车主减速器的设计与计算毕业设计论文
毕业设计说明书车型基本参数最大功率/转速:56.7kw/38004000r/min最大扭矩:175N.m/2200~2500 r/min最高车速:90km/h直接档变速器各档速比一档 6.09二档 3.09三档 1.71四档 1.00倒档 4.95轮胎规格:6.50-16驱动形式:后轮驱动(4x2)整车尺寸: 4750X1900X2130mm装载质量:2280kg汽车总质重:4280kg整车整备质量:2000kg最小离地间隙:200mm前后轮距:1728/1697mm轴距:2800mm轴荷分配:满载:前后轴荷:1498/2782空载:前后轴荷:1100/900第一章绪论1.1毕业设计选题的目的和意义随着时代的发展,汽车已经成为了人们出行的主要交通工具,汽车性能的好坏,直接影响到人们出行的心情,而主减速器又是汽车中不可或缺的重要组成部分,所以市场对主减速器的质量要求越来越高。
目前,虽然国内的减速器行业初具规模,已经能生产各种规格和型号的减速器了,但技术依然跟国外有着相当大的差距。
在信息技术时代的今天,国内减速器行业的发展依然困难重重,唯有创新,才能加快发展步伐,才能将国内的技术水平提升到一定的高度。
因此,对汽车主减速器的研究,对我国汽车工业的发展有着极大的意义。
通过对汽车主减速器的设计与计算,使我对综合运用所学的基础理论、专业知识有了更好的认识和巩固,培养了我对汽车设计的基本技能研究和处理问题的能力,为将来踏入汽车行业奠定扎实的基础。
1.2 驱动桥简介驱动桥位于汽车传动系统的末端,主要由主减速器、差速器、半轴和驱动桥壳等组成。
其功用是:①将万向传动装置传来的发动机转矩通过主减速器、差速器、半轴等传到驱动轮,实现降低转速、增大转矩;②通过主减速器锥齿轮副改变转矩的传递方向;③通过差速器实现两侧车轮的差速作用,保证内、外侧车轮以不同转速转向。
驱动桥是汽车传动系中的主要总成之一。
驱动桥的设计是否合理直接关系到汽车使用性能的好坏。
减速器毕业设计
减速器毕业设计
减速器是一种常见的机械传动装置,广泛应用于各个领域中。
本文的毕业设计目标是设计一种小型减速器,以实现高效率、低噪音和稳定的运行。
首先,需要进行减速器的结构设计。
考虑到减速器的使用需求,设计采用了螺旋伞齿轮传动结构。
该结构具有传动效率高、传动平稳等优点。
通过计算和选型,确定了减速器的减速比,并设计了减速器的齿轮尺寸和齿数。
其次,需要进行减速器的材料选择和强度计算。
在材料选择上,考虑到减速器的使用环境和传动力矩要求,选用了高强度钢材作为主要材料。
通过应力分析和强度计算,保证减速器在正常工作负载下不会发生弯曲、断裂等问题。
接下来,需要进行减速器的润滑设计。
润滑是减速器正常运行的关键,能够减少磨损和摩擦,延长使用寿命。
设计采用了油润滑方式,并选用了适当的润滑油。
通过润滑油的供给方式和润滑系统的设计,保证减速器在工作过程中能够良好的润滑。
最后,进行减速器的性能测试和分析。
通过实际搭建小型减速器样机,进行加载和负载测试。
通过测试数据的分析,评估减速器的传动效率、噪音和运行稳定性等性能指标。
综上所述,本文的毕业设计是设计一种小型减速器,通过结构设计、材料选择、强度计算、润滑设计和性能测试等环节,实
现高效率、低噪音和稳定的运行。
该设计对于提高传统减速器的性能和优化其应用具有一定的实际意义。
1.5T轻卡汽车主减速器毕业设计
本科生毕业论文(设计)开题报告书题目 1.5T轻卡汽车主减速器设计学生姓名指导教师职称研究目的意义及国内外研究状况和应用前景(附参考文献):一、研究(调查)目的意义汽车车桥是汽车的重要组成部分,它承受着汽车的满载荷重及地面经车轮、车架或承载车身经悬架传递的垂直力、纵向力及其力矩,以及冲击载荷;后桥主减速器还担负着传递传动系中最大转矩的作用,桥壳还承受着反作用力矩。
汽车车桥主减速器的型式和设计参数除对汽车的可靠性与耐久性有决定性的作用外,也对汽车的行驶性能如动力性、经济性能有直接影响。
因此,车桥的结构型式选择、设计参数选取及设计计算对汽车的整车设计极其重要。
二、国内、外研究概况和应用前景汽车问世百余年,特别是从汽车产品的大批量生产及汽车工业的大发展以来,汽车已经对世界经济大发展和人类进入现代生活产生了无法估量的巨大影响,为人类社会的进步做出了不可磨灭的巨大贡献。
我了使大家对汽车这一影响人类社会的产品有更全面、更深入的了解,以便把握住“汽车设计”技术的发展方向,通过对汽车的总体设计,汽车零部件的载荷和计算工况与计算方法,以及汽车各系统、各组成及主要零部件的结构分析和设计计算的概述,是大家对汽车的设计理论与设计技术有更好的认识与突破。
参考文献:[1] 吴光强.汽车理论(第一版)[M].北京:人民交通出版社,2007.[2] 刘惟信.汽车车桥设计[M].北京:清华大学出版社,2004[3] 王望予.汽车设计[M].北京:机械工业出版社,2007.6主要内容、研究方法和思路:主要内容:主减速器是汽车传动系中减小转速、增大扭矩的重要部件。
主要研究主减速器的结构形式,包括主减速器齿轮的类型、主从动锥齿轮的支承形式及安置方法、主减速器的减速形式和主减速器的基本参数选择和设计计算,其中包括主减速器的主减速比、主减速器齿轮计算载荷确定和各齿轮的基本参数、主减速器锥齿轮的强度校核以及锥齿轮轴承的载荷计算、主减速器锥齿轮的材料选择及热处理等。
汽车主减速器的毕业设计(可编辑)
摘要本设计是对载货汽车设计一个结构合理、工作性可靠的双级主减速器。
此双级主减速器是由两级齿轮减速组成。
与单级主减速器相比,在保证离地间隙相同时可得到很大的传动比,并且还拥有结构紧凑,噪声小,使用寿命长等优点。
本文论述了双级主减速器各个零件参数的设计和校核过程。
设计主要包括:主减速器结构的选择、主、从动锥齿轮的设计、轴承的校核。
主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。
对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。
关键词:载货汽车;双级主减速器;齿轮;校核;设计ABSTRACTThis design is designs a structure to the truck to be reasonable, work related reliable two-stage main gear box. This two-stage main gear box is composed of two level of gear reductions. Compares with the single stage main gear box, when the guarantee ground clearance is the same may obtain the very great velocity ratio, and also has the structure to be compact,the noise is small, service life long and so on merits. This article elaborated the two-stage main gear box each components parameter computation and the selection process, and through computation examination. The design mainly includes: Main gear box structure choice, host, driven bevel gear's design, bearing's examination. The main reducer in the transmission lines used to reduce vehicle speed, increased the torque , it is less dependent on the bevel of more gear drive of less bevel gearPurchase of the longitudinal engine automobiles, the main bevel gear reducer also used to change the driving force for the direction of transmission.Key words: Truck;Two-stage Main Reduction Gear;Gear;Check 目录摘要 IAbstract II第1章绪论 11.1 概述 11.1.1 主减速器的概述 11.1.2 主减速器设计的要求 11.2 主减速器的结构方案分析 21.2.1 主减速器的减速形式 21.2.2 主减速器的齿轮类型 21.2.3 主减速器主、从动锥齿轮的支承方案 31.3 主要涉及内容及方案 4第2章主减速器的结构设计与校核 52.1 主减速器传动比的计算 52.1.1 轮胎外直径的确定 52.1.2 主减速比的确定 62.1.3 双级主减速器传动比分配72.2 主减速齿轮计算载荷的确定 82.3 主减速器齿轮参数的选择102.4 主减速器螺旋锥齿轮的几何尺寸计算与强度计算 12 2.4.1 主减速器螺旋锥齿轮的几何尺寸计算 122.4.2 主减速器螺旋锥齿轮的强度校核132.5第二级齿轮模数的确定172.6双级主减速器的圆柱齿轮基本参数的选择182.7齿轮的校核192.8主减速器齿轮的材料及热处理202.9本章小结21第3章轴承的选择和校核223.1主减速器锥齿轮上作用力的计算223.2轴和轴承的设计计算243.3主减速器齿轮轴承的校核263.4本章小结29第4章轴的设计304.1 一级主动齿轮轴的机构设计 304.2 中间轴的结构设计314.3 本章小结32第5章轴的校核335.1 主动锥齿轮轴的校核 335.2中间轴的校核355.3本章小结37结论 38致谢 39参考文献40附录 41第1章绪论1.1 概述1.1.1 主减速器的概述主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。
(完整版)减速机设计毕业设计
摘要传统的摆线针轮减速机精确度不够,不能应用于精密传动的场合,本课题旨在改进传统的行星针轮摆线减速机,提高精度和效率。
通过改进齿轮啮合副以及使用精度更高的等速输出机构来实现。
本设计通过对基本机构的分析来确定本设计机构的可能性,然后通过接触强度的计算进行摆线轮尺寸的确定,摆线齿轮的尺寸确定后就可以确定针轮的尺寸,通过摆线齿轮的尺寸来初步确定十字盘的尺寸,通过对十字盘的校核来验算尺寸是否合格,不合格继续修改参数,进行下一轮计算,直到算出合格的参数为止。
然后通过选取联轴器来确定轴的最小尺寸,在根据轴上零件尺寸来确定各轴段尺寸,最后确定整个减速器的尺寸。
通过查阅公式进行了一系列计算后,各零部件的强度都符合要求,确定了本设计的改进方案在理论上的合理性和可行性。
关键词:行星传动摆线齿轮十字钢球等速输出机构变齿厚AbstractTraditional cycloidal reducer precision is not enough, can not be applied to precision transmission occasions, this subject aims to improve the traditional needle wheel planetary cycloid reducer, improve accuracy and efficiency. By improving the gear meshing pair and use higher precision constant output mechanism.This design through the analysis of basic mechanism to determine the possibility of the design organization, and then through the calculation of contact strength for determination of cycloid gear size, the size of the cycloidal gear is determined can determine the size of needle wheel, through the size of the cycloidal gear to preliminarily determine the dimensions of the cross plate, plate through the cross checking to check the size whether qualified, unqualified continue to modify parameters,calculation of the next round until work out qualified parameters. Then select coupling to determine the minimum size of shaft, in according to the size of shaft parts to determine the various shaft section size, finally determine the size of the whole reducer.By looking at in a series of calculation formula, the strength of the parts meet the requirements, determine the improvement scheme of the design in theory the rationality and feasibility.Keywords:Planetary-transmission; Cycloid ; Cross steel ball uniform output mechanism; Variable tooth thickness目录第1章绪论 (1)1.1 目的和意义 (1)1.2 摆线针轮与钢球等速输出机构的国内外研究概况 (1)1.2.1 摆线针轮减速器的国内外研究概况 (2)1.2.2 无隙钢球等速输出机构的研究现状 (3)1.3 主要研究内容 (4)第2章传动总体设计 (5)2.1 传动机构设计 (5)2.1.1 机构的改进方案 (5)2.2.1 总体的结构设计 (8)2.2 计算负载以及电机的选择 (9)第3章摆线齿轮的设计及校核 (10)3.1 摆线齿轮的受力分析 (10)3.2 摆线轮及针轮的校核计算 (13)3.2.1 齿面接触强度计算 (13)3.2.2 针齿抗弯曲强度计算及刚度计算 (14)3.3 摆线针轮的计算和校核过程 (14)3.4转臂轴承的选择 (19)第4章十字钢球等速输出机构的计算及校核 (20)4.1 结构组成及工作原理 (20)4.2 无回差特性分析 (21)4.3 力学性能分析 (23)4.3.1 钢球滚道槽啮合副的受力分析 (23)4.3.2 强度分析 (26)4.4 十字钢球等速输出机构的计算和校核 (27)第5章轴的设计计算及校核和键的校核 (30)5.1 轴的设计及校核过程 (30)5.1.1 输入轴的设计与校核 (30)5.1.2 输出轴的设计与校核 (35)5.2 键的校核 (41)结论 (41)致谢 (42)参考文献 (42)第1章绪论减速器是各种机械设备中最常见的部件,它的作用是将电动机转速减少或增加到机械设备所需要的转速,摆线针轮行星减速器由于具有减速比大、体积小、重量轻、效率高等优点,在许多情况下可代替二级、三级的普通齿轮减速器和涡轮减速器,所以使用越来越普及,为世界各国所重视。
汽车减速器毕业设计
汽车减速器毕业设计嘿,朋友们!今天咱来聊聊汽车减速器毕业设计这档子事儿。
你说这汽车减速器啊,就好比是汽车的“贴心小棉袄”。
它能让汽车跑起来更稳,就像咱走路稳当当的,不会磕磕绊绊。
要是没有它,那汽车就跟脱缰的野马似的,可不得乱套啦!咱做毕业设计的时候,可得好好琢磨琢磨。
首先得搞清楚它的原理吧,这就像是了解一个人的脾气性格一样。
你得知道它是怎么工作的,怎么让汽车减速的,这可不是随随便便就能糊弄过去的。
然后呢,设计的结构也很重要啊!就跟盖房子似的,你得把框架搭好,得结实,不能摇摇晃晃的。
这结构要是不合理,那减速器能好用吗?肯定不行啊!在选材上也不能马虎呀!你想想,要是用了质量不咋地的材料,那不是给自己找麻烦嘛。
就跟你穿衣服似的,得挑质量好的,穿着舒服还耐穿。
还有啊,装配的时候也得细心细心再细心。
每个零件都得放对地方,就跟拼图似的,一块都不能错。
要是装错了,那可就出大乱子啦!咱做这个毕业设计,不就是为了以后能真的在汽车行业里大展拳脚嘛。
你说要是连个减速器都搞不定,那还怎么混呀!所以啊,咱得下功夫,别怕麻烦。
设计的时候遇到难题了,别着急上火,这很正常呀!谁还没有个卡壳的时候呢。
多去查查资料,多和同学讨论讨论,说不定灵感就来了呢。
咱就把这个毕业设计当成一次挑战,一次让自己变得更厉害的机会。
等咱把它完成了,那得多有成就感啊!到时候看着自己设计的减速器,心里肯定美滋滋的。
反正啊,汽车减速器毕业设计可不是闹着玩的,得认真对待。
咱得让这个“小棉袄”发挥出它最大的作用,让汽车跑得又稳又快。
加油吧,朋友们!咱一定能行!。
减速器的设计-毕业论文
减速器的设计-毕业论文引言:减速器是机械传动系统的核心组成部分,广泛应用于各种工业自动化设备、机器人、汽车、船舶等领域。
减速器的设计是实现机械传动系统稳定、高效、可靠运行的关键。
本篇论文将探讨减速器的设计,包括减速器的基本原理、设计流程、优化方法和应用实例。
主体:1. 减速器的基本原理减速器通过齿轮传动实现输出轴的低速高扭矩旋转。
齿轮传动的减速比由齿轮的齿数比决定。
减速器由输入轴、输出轴和中间的齿轮传动系统组成。
输入轴与电机相连,输出轴与负载相连。
减速器的设计需要根据负载的要求和电机的特性来确定齿轮的齿数比和减速比。
2. 减速器的设计流程减速器的设计流程包括以下步骤:(1)确定负载要求:首先需要确定负载的转矩、转速和工作环境等要求。
(2)选择减速比:根据负载要求和电机特性,选择合适的减速比。
(3)选择齿轮类型:选择合适的齿轮类型,例如圆柱齿轮、蜗杆齿轮、行星齿轮等。
(4)计算齿轮参数:计算齿轮参数,包括齿轮模数、齿数、压力角、齿宽等。
(5)确定减速器结构:根据计算结果确定减速器的结构,包括轴承、密封、润滑等。
(6)进行模拟分析:通过模拟分析验证设计的可行性和优化方案。
(7)制造和测试:制造减速器并进行测试,验证设计的性能和可靠性。
3. 减速器的优化方法减速器的优化方法包括以下几个方面:(1)优化齿轮传动:通过优化齿轮的齿形、齿轮间隙、表面质量等参数,提高齿轮传动的效率和寿命。
(2)优化轴承:选择合适的轴承类型和材料,提高轴承的承载能力和寿命。
(3)优化润滑系统:选择合适的润滑方式和润滑油,减少磨损和摩擦,提高减速器的寿命和效率。
(4)优化结构设计:通过优化减速器的结构设计,减少噪音和振动,提高减速器的稳定性和可靠性。
结论:减速器的设计是机械传动系统中的核心问题,需要综合考虑多种因素。
减速器的设计流程包括负载要求、减速比选择、齿轮参数计算、减速器结构确定、模拟分析、制造和测试等步骤。
减速器的优化方法包括优化齿轮传动、轴承、润滑系统和结构设计等方面。
减速器毕业设计说明书
减速器毕业设计说明书
一、设计背景
减速器是一种重要的机械传动装置,广泛应用于工业生产中,具有降
低转速、增加扭矩的作用。
本次毕业设计的目标是设计一款高效稳定、功率大、体积小的减速器。
二、产品设计要求
1. 转速范围:500-3000 rpm
2. 扭矩范围:10-100 Nm
3. 传动比:10:1-50:1
4. 高效率:大于90%
5. 低噪音:小于70 dB
6. 易于维护
三、产品设计方案
1. 采用行星齿轮,能够满足高效率、大扭矩的要求。
2. 采用等分滑动齿轮,能够保证低噪音、平滑运行。
3. 使用优质材料,提高产品使用寿命。
4. 采用模块化设计,易于维护、升级。
四、产品设计流程
1. 研究市场需求和竞争环境,确定产品定位和设计方向。
2. 进行产品规划和概念设计,确定产品形态和功能。
3. 开展技术方案研究,选择合适的材料、传动轴和齿轮。
4. 设计外观和结构,进行3D建模并进行仿真实验。
5. 制作样品,进行实验评测,测试性能和稳定性。
6. 进行样品的改进和完善,进行量产设计。
五、设计成果及展望
本次毕业设计设计出符合要求的减速器样品,并获得了较好的性能表现。
在实验测试过程中,减速器稳定性高、噪声低、寿命长,能够满足市场的需求。
同时,本设计采用模块化设计,易于维护和升级,未来有望在市场上获得更好的用户口碑和商业利润。
减速器毕业设计(内附有图纸)
摘要齿轮传动是现代机械中应用最广的一种传动形式。
它的主要优点是:①瞬时传动比恒定、工作平稳、传动准确可靠,可传递空间任意两轴之间的运动和动力;②适用的功率和速度范围广;③传动效率高,η=0.92-0.98;④工作可靠、使用寿命长;⑤外轮廓尺寸小、结构紧凑。
由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。
国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。
另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。
国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。
但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。
当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。
减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。
近十几年来,由于近代计算机技术与数控技术的发展,使得机械加工精度,加工效率大大提高,从而推动了机械传动产品的多样化,整机配套的模块化,标准化,以及造型设计艺术化,使产品更加精致,美观化。
在21世纪成套机械装备中,齿轮仍然是机械传动的基本部件。
CNC机床和工艺技术的发展,推动了机械传动结构的飞速发展。
在传动系统设计中的电子控制、液压传动、齿轮、带链的混合传动,将成为变速箱设计中优化传动组合的方向。
在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势。
关键字:减速器;轴承;齿轮;机械传动。
目录摘要 (I)目录................................................. I II 第1章减速箱传动方案的拟定及说明 . (1)1.1、工作机器特征的分析 (1)1.2、传动方案的拟定及说明 (1)第2章运动参数计算 (3)2.1电机的选择 (3)2.2传动比的分配 (5)2.3 运动参数的计算 (7)第3章各传动零件的设计计算 (9)3.1皮带轮的设计计算. (9)3.2皮带轮结构设计 (15)3.3齿轮的设计 (18)3.4各轴的设计 (34)3.5 轴承的选择及校核 (62)3.6 键的选择与校核 (71)第4章减速器的箱体(箱盖)设计 (77)4.1 箱体(箱盖)的分析 (77)4.2 箱体(盖)的材料 (77)4.3 箱体的设计计算(参照【4】*P15) (77)第5章减速器的润滑 (81)5.1 润滑方式的确定 (81)5.2 油池中油量的确定 (81)5.3 轴承润滑 (81)5.4 润滑剂的选择 (82)5.5 油的密封及防止脂的稀释 (82)参考文献 (84)第1章减速箱传动方案的拟定及说明1.1、工作机器特征的分析由设计任务书可知:该减速箱用于螺旋运输机,工作速度不高(V=0.8m/s),圆周力不大(P=4000N),因而传递的功率也不会太大.由于工作运输机工作平稳,转向不变,使用寿命不长(5年),故减速箱应尽量设计成闭式,箱体内用油液润滑,轴承用脂润滑.要尽可能使减速箱外形及体内零部件尺寸小,结构简单紧凑,造价低廉,生产周期短,效率高。
汽车轮边减速器的设计
任务书开题报告一、综述本课题国内外研究动态,说明选题的依据和意义轮边减速器一般为双极减速驱动桥中安装在轮毂中间或附近的第二级减速器。
在一些矿山水利及其他大型工程等所用的重型汽车,工程和军事上用的重型牵引汽车及大型公共汽车等,要求有较高的动力性,而汽车车速相对较低,因而其传动系的低档总传动比很大,为了使变速器分动器传动轴等总成不致因承受过大尺寸及质量过大,应将传动系的传动比以尽可能大的比率分配给驱动桥。
这就导致一些重型汽车大型汽车的主减速比必须很大,还有一些越野汽车要求在坏路上和无路地区具有良好的通过性,即要求汽车在满载情况下能以平均车速通过各种坏路及无路地带时有足够离地间隙(如松软的土壤、沙漠、山地、雪地沼泽等),因此在设计上述重型汽车、大型公共汽车、越野汽车时,需要在车轮旁附加轮边减速器。
我国研制汽车轮边减速器始于20世纪70年代中期,由于各种原因,至今发展不快,只有几个厂家从事生产,技术水平只相当国外20世纪80年代末的水平,数量和质量也远远满足不了国内运输业发展的需要。
进入21世纪以来,我国经济形势发生了很大的变化。
公路运输得到了很快的发展,为了降低运输成本,缓解铁路压力,促使了汽车的运输能力和载货量逐渐加大。
因此,重型汽车轮边减速器在我国的应用前景十分广阔。
自从我国加入WTO之后,减速器行业面临极大的压力与挑战,为了应对这一严峻形势,一方面要引进更多更好的国外产品与相关技术,另一方面必须迅速发展民族工业。
国外的汽车减速器应用得比较好,技术也比较先进,但价格比较高。
一般情况是:国外的整机的价格是国内价格的2~3倍,而易损件、备件的价格却是5~8倍,因此,发展我国的轮边减速器产品是非常必要的。
轮边减速器属于汽车减速零部件的关键总成,是为了提高汽车的驱动力,以满足或修正整个传动系统力的匹配。
本论文就是对轮边减速器进行研究,找出合适的方法,为自主研发出具有结构简单,高精度和高可靠性的减速器提供理论支持。
汽车减速器毕业设计
毕业设计(论文)题目名称:院系名称:班级:学号:学生姓名:指导教师:2010年06月前言汽车自上个世纪末诞生以来,已经走过了风风雨雨的一百多年。
从卡尔.本茨造出的第一辆三轮汽车以每小时18公里的速度,跑到现在,竟然诞生了从速度为零到加速到100公里/小时只需要三秒钟多一点的超级跑车。
这一百年,汽车发展的速度是如此惊人!同时,汽车工业也造就了多位巨人,他们一手创建了通用、福特、丰田、本田这样一些在各国经济中举足轻重的著名公司。
让我们一起来回望这段历史,品味其中的辛酸与喜悦,体会汽车给我们带来的种种欢乐与梦想……在我国随着长春第一生产汽车厂的建成投产。
1955年生产了61辆汽车,才结束了我国一直不能生产汽车的历史。
经过几十年的努力,目前我国建立了自己的汽车工业。
全国汽车由建国时的5万辆上升到现在的上千万辆。
改革开放以来,我国引进了许多国家汽车的先进技术,使得我国汽车工业的产量和质量都得到了巨大的发展和提高。
但是由于我国是发展中国家,与发达国家相比,我国汽车工业无论是产量还是质量都有相当大的差距。
要使我国实现四个现代化,我国汽车工业必须坚持不懈地有更大的发展。
基于以上事实,我选择了“轻型载货汽车减速器和差速器设计”这一课题。
在本次设计中得到了史建茹老师的精心指导才使得我得以按时完成任务。
在此向史建茹老师表示感谢。
摘要汽车主减速器及差速器是汽车传动中的最重要的部件之一。
它能够将万向传动装置产来的发动机转矩传给驱动车轮,以实现降速增扭。
本次设计的是有关轻型载货汽车的主减速器和差速器总成。
并要使其具有通过性。
本次设计的内容包括有:方案选择,结构的优化与改进。
齿轮与齿轮轴的设计与校核,以及轴承的选用与校核。
并且在设计过程中,描述了主减速器的组成和差速器的差速原理和差速过程。
方案确定主要依据原始设计参数,对比同类型的减速器及差速器,确定此轮的传动比,并对其中重要的齿轮进行齿面接触和齿轮弯曲疲劳强度的校核。
而对轴的设计过程中着重齿轮的布置,并对其受最大载荷的危险截面进行强度校核,轴承的选用力求结构简单且满足要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要随着工业和国防现代化的发展,无论对公路运输还是非公路运输的车辆都提出更高的要求。
主减速器是汽车传动部分的重要部件之一,是汽车传动系最主的部件之一。
主要作用是依靠齿数少的锥齿轮带动齿数多的锥齿轮降速增矩,对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。
为满足不同的使用要求,主减速器的结构形式也是不一样的。
本文设计的是轻型卡车主减速器的设计,设计主要包括:主减速器结构的选择、主、从动锥齿轮的设计、轴承的设计与校核,轴的设计与校核等。
主减速器对提高汽车形式平稳性和其通过性有着独特的作用,是汽车设计的重点之一。
关键词:主减速器齿轮轴承设计校核AbstractWith the development of industry and national defense modernization "regardless of the highway transportation or non - road transport vehicles are put forward higher requirements. Automobile main reducer is automotive drive axle of the main assembly structure is one of the main transmission components, automotive transmission system.Automobile main reducer in the transmission lines use to vehicle speed,increased the torque ,it is less dependent on the bevel of more gear drive of less bevelgear.Purchase of the longitudinal engine automobiles,the main bevel gear reducer also used to change the driving force for the direction of transmission. Automobile main reduce has different strcture to fit different requirement.The design mainly includes:main gear box structures choice.host、driven bevel gear’s design,bearing’s design and check,axis’s design and check.Automobile main reducer to reducer the car driving and differential stability and its though sex has a unique function,is one of the focal points of automotive design. Key word: Automobile main reduce Gear Bearing Design Check.第一章绪论1.1.1主减速器概述主减速器功用是在传动系中降低转速,增大转矩并改变转矩旋转方向(90°).另外它布置在动力向驱动轮分流之前的位置。
这样,有利于减小前面传动部件(如变速器、传动轴等)所传递的转矩,从而可以减小这些部件的尺寸和质量。
在现代汽车驱动桥上,主减速器种类很多,包括单级减速、双级减速、双速减速、单级贯通、双级贯通、主减速及轮边减速等。
其中应用得最广泛的是采用螺旋锥齿轮和双曲面齿轮的单级主减速器。
在双级主减速器中,通常还要加一对圆柱齿轮(多采用斜齿圆柱齿轮),或一组行星齿轮。
在轮边减速器中则常采用普通平行轴式布置的斜齿圆柱齿轮传动或行星齿轮传动。
在某些公共汽车、无轨电车和超重型汽车的主减速器上,有时也采用蜗轮传动。
目前随着物价的上涨,人们日益关注汽车经济性,这不仅仅只对乘用车,对于轻型载货汽车,轻型载货汽车所采用的发动机都是大功率,大转矩的。
因此提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的传动系便成了有效节油的措施之一。
所以设计新型的主减速器已成为了新的课题1.1.2设计主减速器时应满足的如下基本要求:1)选取适当的主减速器,以保证汽车在给定的条件下有最佳动力性和燃油经济性;2)外廓尺寸小,保证汽车足够的离地间隙,以满足通过性要求;3)齿轮及其他传动件工作工作平稳,噪声小;4)在各种载荷和工况下有较高的传动效率;5)具有足够的刚度和强度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能的降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的行驶平顺性;6)与悬架的导向机构运动协调;7)结构简单,加工工艺性好,制造容易、维修、调整方便。
第二章减速器设计的主要内容2.1主减速器的结构型式的选择主减速器的结构型式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而异2.1.1主减速器的齿轮类型主减速器的齿轮有弧齿锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。
在现代汽车驱动桥上,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。
圆柱齿轮传动应用于发动机横置的前置前驱动乘用车和双级主减速器驱动桥。
在某些公共汽车、无轨电车和超重型汽车的主减速器上,有时也采用蜗轮传动。
(a) 螺旋锥齿轮(b)双曲面齿轮传动 (c) 圆柱齿轮传动(d)蜗杆传动图2.3 主减速器的几种齿轮类型弧齿锥齿轮传动特点是主从动齿轮的轴线垂直交于一点。
由于齿轮端面重叠的影响,至少有两对以上的齿轮同时啮合,因此可以承受较大的负荷,加之其齿轮不是在齿的全长上同时啮合,而是逐渐地由齿的一端连续而平稳地转向另一端,所以工作平稳,噪声和震动小,但弧齿锥齿轮对啮合精度很敏感,齿轮副锥顶稍不吻合就会使工作条件急剧变坏,并加剧齿轮的磨损和使噪声增大。
双曲面齿轮特点是主、从动齿轮的轴线相互垂直而不相交,且主动齿轮轴线相对从动齿轮轴线向上或向下偏移一距离E,称为偏移距,偏移距的存在可以改善齿轮的磨合过程,使其具有更高的运转平稳性,有利于实现汽车的总体布置。
较弧齿锥齿轮相比,当双曲面齿轮于弧齿锥齿轮尺寸相同时,它具有更大的传动比;传动比一定,从动齿轮齿轮相同时,双曲面齿轮比相应的弧齿锥齿轮有更大的直径和较高的轮齿强度及较大的主动齿轮轴和轴承刚度;传动比一定,主动齿轮齿轮相同时,双曲面齿轮比相应的弧齿锥齿轮的尺寸要小,从而可以获得更大的离地间隙;双曲面齿轮的主动齿轮的螺旋角增大,同时啮合的齿数较多,重合度更大,即可提高传动的平稳性,又可以使齿轮的弯曲强度提高约30%,降低齿面间的接触力。
但是双曲面齿轮沿齿长的纵向滑动会使摩擦损失增加,降低传动效率而且它的压力和摩擦功较大,可能导致油膜破坏和齿面烧结咬死,抗胶合能力较低。
因此,需要选用可改善油膜强度和带有防刮伤添加剂的双曲面齿轮油来润滑。
圆柱齿轮传动 广泛用于发动机横置的前置前驱动乘用车驱动桥和双击主减速器驱动桥以及轮边减速器。
蜗杆传动 轮廓尺寸小及质量小,并可获得较大的传动比(通常=8~4);工作平稳,无噪声;其主要缺点使涡轮齿圈要求使用昂贵的有色金属合金(青铜)制造,材料成本高;此外,传动效率较低。
由于本车的主减速器传动比大于5,且采用双曲面齿轮可以增大离地间隙,所以不采用螺旋锥齿。
综上所述各种齿轮类型的优缺点,本文设计的轻型商用车主减速器采用双曲面齿轮2.1.2主减速器的减速形式影响减速形式选择的因素有汽车类型、使用条件、驱动桥处的离地间隙、驱动桥数和布置形式以及主传动比。
其中,的大小影响汽车的动力性和经济性。
单级主减速器具有结构简单、质量小、尺寸紧凑及制造成本低的优点,广泛用在主减速比≤7.0的汽车中。
例如,乘用车(一般=3~4.5)、总质量较小的商用车都采用单级主减速器。
单级主减速器多采用一对弧齿锥齿轮或双曲面齿轮传动,也有采用一对圆柱齿轮传动或蜗杆传动的。
2.1.3主减速器主、从动锥齿轮的支承方案主减速器中心必须保证主从动齿轮具有良好的啮合状况,才能使它们很好地工作。
齿轮的正确啮合,除了与齿轮的加工质量装配调整及轴承主减速器壳体的刚度有关以外,还与齿轮的支承刚度密切相主动锥齿轮的支承形式的支撑形式可分为悬臂式支撑和跨置式支撑两种。
悬臂式支撑支撑结构简单,支撑刚度较差,用于传递转矩较小的主减速器上。
跨置式支撑的结构特点是锥齿轮两端的轴上均有轴承,这样可大大增加支撑刚度,又使轴承符合减小,齿轮啮合条件改善,因此齿轮的承载能力高于悬臂式。
从动齿轮的支撑形式多用圆锥滚子轴承支撑。
为了增加支承刚度,支承间的距离应尽可能缩小。
两端支承多采用圆锥滚子轴承,安装时应使他们的圆锥滚子的大端相向朝内,小端相背朝外。
为了防止从动齿轮在轴向载荷作用下的偏移,圆锥滚子轴承也应预紧。
但为了增加支承刚度,应当减小尺寸c +d ;为了使载荷均匀分配,应尽量使尺寸c 等于或大于尺寸d 。
2.2主减速器的基本参数的计算2.2.1主减速器传动比的计算0i 0i 0i 0i 0i对于具有很大功率储备的轿车、客车、长途公共汽车,尤其是对竞赛汽车来说,在给定发动机最大功率的情况下,所选择的i0值应能保证这些汽车有尽可能高的最高车速。
这时值应按下式来确定:=0.377 =6.7 (2.1)式中:——车轮的滚动半径 ,在此选用轮胎型号为7.00-16 8PR ,滚动半径为0.368m ;——最大功率时发动机转速,3600 ;——汽车的最高车速,95 ;——变速器最高档传动比,通常为0.784。
所求的值应与同类汽车的主减速比比较,并考虑到主、从动主减速齿轮有可能的齿数,对值予以校正并最终确定=6.72.2.2主减速器计算载荷的确定(1)按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩= 7964.2 (2-2) 式中:——变速器一挡传动比,在此取4.717——主减速器传动比在此取6.7;——发动机的输出的最大转矩,在此取280,——由于猛结合离合器而产生冲击载荷时的超载系数,对于一般的载货汽车,矿用汽车和越野汽车以及液力传动及自动变速器的各类汽车取=1.0,当性能系数>0时可取=2.0;——该汽车的驱动桥数目在此取1;——传动系上传动部分的传动效率,在此取0.9。
(2)按驱动轮打滑转矩确定从动锥齿轮的计算转矩max a v 0i 0i max r pa gH r n v i r r p n min r max a v km h gH i 0i 0i ce T max 100/ce e T T T i i k n η=⋅⋅⋅⋅m N ⋅1i 0i max e T m N ⋅0k 0k p f 0k n T ηcs T=(2.3)式中:——汽车满载时一个驱动桥给水平地面的最大负荷,在此取30772N ——轮胎对路面的附着系数,对于安装一般轮胎的公路用汽车,可以取=0.85;r ——车轮的滚动半径,在此选用轮胎型号为7.00-16 8PR ,则有其滚动半径为0.368m ;——分别为所计算的主减速器从动锥齿轮到驱动车轮之间的传动效率和传动比,取0.9,由于没有轮边减速器取1.0。