初中数学函数压轴题:将军饮马问题---- 最短路径最小值问题专题训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

--------- 最短路径最小值问题专题训练

“将军饮马”这个问题早在古罗马时代就有了,传说古希腊亚历山大里亚城有一位久负盛名的学者,名叫海伦。有一天,有位罗马将军前来向他求教一个百思不得其解的问题:如图,将军从A 地出发到河边饮马,然后再到B 地军营视察,显然有很多走法。问走什么样的路线最短呢?精通数理的海伦稍加思考,便作了完善的回答。这个问题后来被人们称作“将军饮马”问题广为流传。

事实上,不仅将军有这样的烦恼,运动着的车、船、飞机,

包括人们每天走路都要遇到这样的问题。古今中外的任何旅行者总希望寻求最佳的旅行路线,尽量走近道,少走冤枉路。我们把这类求近道的问题统称“最短路线问题”。另外,从某种意义上说,一笔画问题也属于这类问题。看来最短路线问题在生产、科研和日常生活中确实重要且应用广泛。这个问题在我们中考中也是常考的热点问题,因此,我们要掌握其分析解决的方法。下面我就几个例题来具体分析解决。

【典例探究】

(•梧州)如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.

(1)求此抛物线的解析式;

(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;

(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.

【分析】(1)利用待定系数法求出抛物线解析式;

(2)先判断出周长最小时BE⊥AC,即作点B关于直线AC的对称点F,连接DF,交AC于点E,联立方程组即可;

(3)三角形BDE是直角三角形时,由于BD>BG,因此只有∠DBE=90°或∠BDE=90°,两种情况,利用直线垂直求出点E坐标.

【解答】解:(1)∵抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,

∴,

∴,

∴抛物线解析式为y=x2﹣3x﹣4,

(2)如图1,

作点B关于直线AC的对称点F,连接DF交AC于点E,由(1)得,抛物线解析式为y=x2﹣3x﹣4①,

∴D(0,﹣4),

∵点C是直线y=﹣x+4②与抛物线的交点,

∴联立①②解得,(舍)或,

∴C(﹣2,6),

∵A(4,0),

∴直线AC解析式为y=﹣x+4,

∵直线BF⊥AC,且B(﹣1,0),

∴直线BF解析式为y=x+1,

设点F(m,m+1),

∴G(,),

∵点G在直线AC上,

∴﹣,

∴m=4,

∴F(4,5),

∵D(0,﹣4),

∴直线DF解析式为y=x﹣4,

∵直线AC解析式为y=﹣x+4,

∴直线DF和直线AC的交点E(,),

(3)∵BD=,

由(2)有,点B到线段AC的距离为BG=BF=×5=>BD,∴∠BED不可能是直角,

∵B(﹣1,0),D(0,﹣4),

∴直线BD解析式为y=﹣4x+4,

∵△BDE为直角三角形,

∴①∠BDE=90°,

∴BE⊥BD交AC于B,

∴直线BE解析式为y=x+,

∵点E在直线AC:y=﹣x+4的图象上,

∴E(3,1),

②∠BDE=90°,

∴BE⊥BD交AC于D,

∴直线BE的解析式为y=x﹣4,

∵点E在抛物线y=x2﹣3x﹣4上,

∴直线BE与抛物线的交点为(0,﹣4)和(,﹣),

∴E(,﹣),

即:满足条件的点E的坐标为E(3,1)或(,﹣).

【学以致用】

1.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC 的最小值是________.

2.如图,牧童在A处放牛,他的家在B处,l为河流所在直线,晚上回家时要到河边让牛饮一饮水,饮水的地点选在何处,牧童所走的路程最短?

3.如图,点P为马厩,AB为草地边缘(下方为草地),CD为一河流.牧人欲从马厩牵马先去草地吃草,然后到河边饮水,最后回到马厩.请帮他确定一条最短行走路线.

4.(•贺州)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线

y=ax2+bx+c经过O、A、E三点.

(1)求此抛物线的解析式;

(2)求AD的长;

(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.

【分析】(1)利用矩形的性质和B点的坐标可求出A点的坐标,再利用待定系数法可求得抛物线的解析式;

(2)设AD=x,利用折叠的性质可知DE=AD,在Rt△BDE中,利用勾股定理可得到关于x 的方程,可求得AD的长;

(3)由于O、A两点关于对称轴对称,所以连接OD,与对称轴的交点即为满足条件的点P,利用待定系数法可求得直线OD的解析式,再由抛物线解析式可求得对称轴方程,从而可求得P点坐标.

【解答】解:

(1)∵四边形ABCD是矩形,B(10,8),

∴A(10,0),

又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得

,解得,

∴抛物线的解析式为y=﹣x2+x;

(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,

设AD=x,则ED=x,BD=AB﹣AD=8﹣x,

在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,

∴AD=5;

相关文档
最新文档