大学物理学第二章课后答案

合集下载

大学物理习题答案解析第二章

大学物理习题答案解析第二章

第二章牛顿定律2 -1如图(a)所示,质量为m的物体用平行于斜面的细线联络置于圆滑的斜面上,若斜面向左方作加速运动 ,当物体刚离开斜面时,它的加快度的大小为()(A) gsin θ(B) gcos θ(C) gtan θ(D) gcot θ剖析与解当物体走开斜面瞬时 ,斜面对物体的支持力消逝为零,物体在绳索拉力 F T (其方向仍可认为平行于斜面 )和重力作用下产平生行水平面向左的加快度a,如图 (b) 所示 ,由其可解得合外力为 mgcot θ,应选 (D).求解的重点是正确剖析物体刚走开斜面瞬时的物体受力状况和状态特点.2 -2 用水平力 F N把一个物体压着靠在粗拙的竖直墙面上保持静止.当 F N渐渐增大时 ,物体所受的静摩擦力 F f的大小 ()(A)不为零 ,但保持不变(B)随 F N成正比地增大(C)开始随 F N增大 ,达到某一最大值后 ,就保持不变(D)没法确立剖析与解与滑动摩擦力不一样的是 ,静摩擦力可在零与最大值μF N范围内取值.当F N增加时,静摩擦力可取的最大值成正比增加 ,但详细大小则取决于被作用物体的运动状态.由题意知 ,物体向来保持静止状态 ,故静摩擦力与重力大小相等 ,方向相反 ,并保持不变 ,应选 (A) .2 -3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()(A)不得小于(C)不得大于μgR (B) 一定等于μgRμgR (D) 还应由汽车的质量m 决定剖析与解由题意知 ,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只好由路面与轮胎间的静摩擦力供给,能够供给的最大向心力应为μF N.由此可算得汽车转弯的最大速率应为 v=μRg.所以只需汽车转弯时的实质速率不大于此值,均能保证不侧向打滑.应选 (C) .2 -4 一物体沿固定圆弧形圆滑轨道由静止下滑,在下滑过程中 ,则 ( )(A)它的加快度方向永久指向圆心,其速率保持不变(B)它遇到的轨道的作使劲的大小不停增加(C)它遇到的合外力大小变化 ,方向永久指向圆心(D)它遇到的合外力大小不变 ,其速率不停增加剖析与解 由图可知 ,物体在下滑过程中遇到大小和方向不变的重力以实时辰指向圆轨道中心的轨 道支持力 F N 作用 ,其合外力方向并不是指向圆心 ,其大小和方向均与物体所在地点有关.重力的切向分 量 (m g cos θ) 使物体的速率将会不停增加 ( 由机械能守恒亦可判断 ),则物体作圆周运动的向心力 (又称法向力 )将不停增大 ,由轨道法向方向上的动力学方程F Nmgsin θ mv 2可判断 ,随 θ 角的不停增R大过程 ,轨道支持力 F N 也将不停增大 ,因而可知应选 (B) .2 -5 图 (a)示系统置于以 a = 1/4 g 的加快度上涨的起落机内 ,A 、B 两物体质量相同均为 m,A 所在的桌面是水平的 ,绳索和定滑轮质量均不计 ,若忽视滑轮轴上和桌面上的摩擦,其实不计空气阻力 ,则绳中张力为 ( )(A) 58 mg (B) 12 mg (C) mg (D) 2 mg剖析与解此题可考虑对 A 、B 两物体加上惯性力后 ,以电梯这个非惯性参照系进行求解. 此时 A 、B两物体受力状况如图 (b)所示 ,图中 a ′为 A 、B 两物体相对电梯的加快度 ,ma ′为惯性力. 对 A 、B 两物体 应用牛顿第二定律 ,可解得 F = 5/8 mg .应选 (A) .T议论 关于习题 2 -5 这种种类的物理问题 ,常常从非惯性参照系 (此题为电梯 )察看到的运动图像较为 明确 ,但因为牛顿定律只合用于惯性参照系,故从非惯性参照系求解力学识题时,一定对物体加上一个虚构的惯性力.如以地面为惯性参照系求解,则两物体的加快度 a A 和a B 均应付地而言 ,此题中 a A 和 a 的大小与方向均不相同.此中 aA 应斜向上.对 a A 、a 、a 和a ′之间还要用到相对运动规律 ,求解BB过程较繁.有兴趣的读者不如自己试试试看.2 -6 图示一斜面 ,倾角为 α,底边 AB 长为 l = 2.1 m,质量为 m 的物体从题 2 -6 图斜面顶端由静止开始向下滑动 ,斜面的摩擦因数为 μ= 0.14 .试问 ,当 α为何值时 ,物体在斜面上下滑的时间最短? 其数值为多少?剖析动力学识题一般分为两类:(1) 已知物体受力争其运动状况;(2) 已知物体的运动状况来剖析其所受的力.自然,在一个详细题目中,这两类问题并没有截然的界线,且都是以加快度作为中介,把动力学方程和运动学规律联系起来.此题重点在列出动力学和运动学方程后,解出倾角与时间的函数关系α= f(t),而后运用对 t 求极值的方法即可得出数值来.解取沿斜面为坐标轴Ox,原点 O 位于斜面极点,则由牛顿第二定律有mgsin α mgμcosαma(1) 又物体在斜面上作匀变速直线运动,故有l 1 at2 1g sin α μcosαt 2cosα 2 2则t2l(2) gcosαsin α μcosα为使下滑的时间最短,可令dt0 ,由式(2)有dα则可得此时sin αsin α μcosαcosαcosα μsin α0 tan 2α 1 , 49oμt 2l 0.99 sgcosαsin α μcosα2 -7 工地上有一吊车 ,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为 m 2 k g,乙块= 2.00 10×1质量为 m2= 1.00 ×102 kg.设吊车、框架和钢丝绳的质量不计.试求下述两种状况下,钢丝绳所受的张力以及乙块对甲块的作使劲:(1) 两物块以 10.0 m ·s-2的加快度上涨; (2) 两物块以 1.0 m s·-2的加快度上涨.从此题的结果,你能领会到起吊重物时一定迟缓加快的道理吗?剖析预制板、吊车框架、钢丝等可视为一组物体.办理动力学识题往常采纳“隔绝体”的方法物体所受的各样作使劲 ,在所选定的惯性系中列出它们各自的动力学方程.依据连结体中物体的多少可列出相应数量的方程式.联合各物体之间的互相作用和联系 ,可解决物体的运动或互相作使劲.,剖析解按题意 ,可分别取吊车(含甲、乙 )和乙作为隔绝体,画示力争 ,并取竖直向上为Oy 轴正方向 (如图所示 ).当框架以加快度 a 上涨时 ,有FT-(m1 + m )g =(m + m )a (1)2 1 2FN2- m g = m a (2)2 2解上述方程 ,得F = 1 2 (3)TFN2 =m (g + a) (4) 2(1)当整个装置以加快度 a = 10 m ·s-2上涨时 ,由式 (3) 可得绳所受张力的值为FT=10×3 N乙对甲的作使劲为N2 N2 2(g + a) =3F′=-F = -m 10× N(2)当整个装置以加快度 a = 1 m·s-2上涨时 ,得绳张力的值为FT=10×3 N此时 ,乙对甲的作使劲则为F′ N2=103× N由上述计算可见,在起吊相同重量的物体时,因为起吊加快度不一样 ,绳中所受张力也不一样,加快度大 ,绳中张力也大.所以,起吊重物时一定迟缓加快,以保证起吊过程的安全.2 -8 如图 (a)所示 ,已知两物体 A、 B 的质量均为 m = 3.0kg 物体 A 以加快度 a = 1.0 m ·s-2 运动 ,求物体 B 与桌面间的摩擦力. (滑轮与连结绳的质量不计)剖析该题为连结体问题 ,相同可用隔绝体法求解.剖析时应注意到绳中张力大小到处相等是有条件的 ,即一定在绳的质量和伸长可忽视、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不一样的.解分别对物体和滑轮作受力剖析[图(b)].由牛顿定律分别对物体 A 、B 及滑轮列动力学方程,有m A g -F T=m A a (1)F′1 -Ff= m B a′(2)TF′ -2FT1= 0 (3)T考虑到 mTTT1 T,a ′= 2a,可联立解得物体与桌面的摩擦力A =mB =m, F =F′ ,F = F′1F f mg m 4m a7.2 N2议论动力学识题的一般解题步骤可分为:(1) 剖析题意 ,确立研究对象,剖析受力 ,选定坐标; (2) 根据物理的定理和定律列出原始方程组; (3) 解方程组 ,得出文字结果; (4) 查对量纲 ,再代入数据 ,计算出结果来.2 -9 质量为m′的长平板 A 以速度v′在圆滑平面上作直线运动,现将质量为m 的木块 B 轻轻安稳地放在长平板上 ,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板获得共同速度?剖析当木块 B 安稳地轻轻放至运动着的平板 A 上时 ,木块的初速度可视为零,因为它与平板之间速度的差别而存在滑动摩擦力,该力将改变它们的运动状态.依据牛顿定律可获得它们各自相对地面的加快度.换以平板为参照系来剖析,此时 ,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动 ,其加快度为相对加快度,按运动学公式即可解得.该题也可应用第三章所叙述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变成木块和平板一同运动的动能,而它们的共同速度可依据动量定理求得.又因为系统内只有摩擦力作功,依据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板挪动的距离即可求出.解 1 以地面为参照系 ,在摩擦力 Ff=μmg的作用下 ,依据牛顿定律分别对木块、平板列出动力学方程F f=μ mg=ma1F ′f=-F f= m′a2a1和 a2分别是木块和木板相对地面参照系的加快度.若以木板为参照系,木块相对平板的加快度 a = a1+ a2 ,木块相对平板以初速度- v ′作匀减速运动直至最后停止.由运动学规律有2- v′= 2as由上述各式可得木块有关于平板所挪动的距离为sm v 22 μg m m解 2 以木块和平板为系统 ,它们之间一对摩擦力作的总功为W =F f(s +l ) -F fl=μ mgs式中 l 为平板相对地面挪动的距离.因为系统在水平方向上不受外力,当木块放至平板上时,依据动量守恒定律,有m′v′= (m′+ m) v″由系统的动能定理 ,有μmgs 1 m v 2 1 m m v 22 2由上述各式可得sm v 22 μg m m2 -10 如图 (a)所示 ,在一只半径为 R 的半球形碗内 ,有一粒质量为 m 的小钢球 ,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时 ,它距碗底有多高?剖析保持钢球在水平面内作匀角速度转动时,一定使钢球遇到一与向心加快度相对应的力(向心力 ), 而该力是由碗内壁对球的支持力 F N的分力来供给的 ,因为支持力 F N一直垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示 Oxy 坐标 ,列出动力学方程 ,即可求解钢球距碗底的高度.解取钢球为隔绝体 ,其受力剖析如图 (b) 所示.在图示坐标中列动力学方程F N sin θ ma n mRω2sin θ(1)F N cosθ mg (2)且有由上述各式可解得钢球距碗底的高度为R h cos θ(3)Rgh Rω2可见 ,h 随 ω的变化而变化.2 -11 火车转弯时需要较大的向心力,假如两条铁轨都在同一水平面内 (内轨、外轨等高 ),这个向心力只好由外轨供给 ,也就是说外轨会遇到车轮对它很大的向外侧压力 ,这是很危险的.所以 ,对应于火车的速率及转弯处的曲率半径,一定使外轨适合地超出内轨,称为外轨超高.现有一质量为m 的火车 ,以速率 v 沿半径为 R 的圆弧轨道转弯 ,已知路面倾角为 θ,试求: (1) 在此条件下 ,火车速率 v 0 为多大时 ,才能使车轮对铁轨内外轨的侧压力均为零?(2) 假如火车的速率 v ≠v 0 ,则车轮对铁轨的侧压力为多少?剖析如题所述 ,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平重量F N sin θ 提供 (式中 θ角为路面倾角 ).从而不会对内外轨产生挤压. 与其对应的是火车转弯时一定以规定的速率v 0行驶.当火车行驶速率 v ≠v 0 时,则会产生两种状况: 如下图 ,如 v > v 0 时 ,外轨将会对车轮产生斜向 内的侧压力 F 1 ,以赔偿原向心力的不足,如 v < v 0时 ,则内轨对车轮产生斜向外的侧压力F 2 ,以抵消剩余的向心力 ,不论哪一种状况火车都将对外轨或内轨产生挤压. 由此可知 ,铁路部门为何会在每个铁轨的转弯处规准时速 ,从而保证行车安全.解 (1) 以火车为研究对象 ,成立如下图坐标系.据剖析 ,由牛顿定律有F N sin θ mv 2(1)RF N cos θ mg 0(2)解 (1)(2) 两式可得火车转弯时规定速率为v 0gRtan θ(2) 当 v > v 0 时 ,依据剖析有F N sin θ F 1cos θ m v2(3)RF N cos θ F 1sin θ mg 0(4)解 (3)(4) 两式 ,可得外轨侧压力为F 1 m v 2cos θ gsin θR当 v < v 0 时,依据剖析有2F N sin θ F 2cos θ mv(5)RF N cos θ F 2sin θ mg(6)解 (5)(6) 两式 ,可得内轨侧压力为F 2 m gsin θ v 2cos θR2 -12 一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为 m,圆筒半径为 R,演员骑摩托车在直壁上以速率 v 作匀速圆周螺旋运动 ,每绕一周上涨距离为 h,如下图.求壁对演员和摩托车的作使劲.剖析 杂技演员 (连同摩托车 )的运动能够当作一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹睁开后,相当于如图 (b)所示的斜面. 把演员的运动速度分解为图示的 v 1 和 v 2 两个重量 ,明显 v 1是竖直向上作匀速直线运动的分速度 ,而 v 2则是绕圆筒壁作水平圆周运动的分速度,此中向心力由筒壁对演员的支持力F N 的水平重量 F N2 供给 ,而竖直重量 F N1则与重力相均衡.如图 (c) 所示 ,此中 φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力 的大小和方向解 设杂技演员连同摩托车整体为研究对象 ,据 (b)(c)两图应有FN1mg 0(1) F N 2m v 2(2)Rv 2vcos θ v2πR(3)R 2 h 22πF NF N 21 F N 2 2(4)以式 (3) 代入式 (2),得22 22 2m4π R v4π RmF N 222222v2(5)RhR 4πRh 4π将式 (1) 和式 (5)代入式 (4),可求出圆筒壁对杂技演员的作使劲( 即支承力 )大小为2222224πRF NFN1F N 2 m g2 2 v2h4πR与壁的夹角 φ为FN 222arctan4πRv2arctan2 2FN 14πRh g议论 表演飞车走壁时 , 演员一定控制好运动速度,行车路线以及摩托车的方向 ,以保证三者之间知足解题用到的各个力学规律.2 -13 一质点沿 x 轴运动 ,其受力如下图 ,设 t = 0 时 ,v 0= 5m ·s-1,x 0= 2 m, 质点质量 m = 1kg, 试求该 质点 7s末的速度和地点坐标.剖析 第一应由题图求得两个时间段的 F(t)函数 ,从而求得相应的加快度函数,运用积分方法求解题目所问 ,积分时应注意积分上下限的取值应与两时间段相应的时辰相对应. 解 由题图得F t2t, 0 t 5s 35 5t,5s t 7s由牛顿定律可得两时间段质点的加快度分别为a 2t , 0 t 5sa 35 5t , 5s t 7s对 0 < t < 5s 时间段 ,由 adv 得dtvd tv 0 adtv积分后得 v 5 t 2再由 vdx 得dtxt dxvdtx 0积分后得 x 2 5t1 t 33将 t = 5s 代入 ,得 v 5= 30 m ·s-1 和 x 5 = 68.7 m 对 5s< t <7s 时间段 ,用相同方法有vtdva 2dtv 0 5 s得v 35t2xt再由dx vdtx5 5 s得x =23 -82.5t +将 t =7s代入分别得 v 7= 40 m ·s -1 和 x 7 = 142 m2 -14 一质量为 10 kg 的质点在力 F 的作用下沿 x 轴作直线运动 ,已知 F =120t + 40,式中 F 的单位为 N, t 的单位的s.在 t = 0 时 ,质点位于 x =5.0 m 处 ,其速度 v 0 =6.0 m ·s-1 .求质点在随意时辰的速度和地点.剖析 这是在变力作用下的动力学识题. 因为力是时间的函数 ,而加快度 a = dv/dt,这时 ,动力学方程就成为速度对时间的一阶微分方程 ,解此微分方程可得质点的速度v (t);由速度的定义 v =dx /d t,用积分的方法可求出质点的地点.解 因加快度 a = dv/dt,在直线运动中 ,依据牛顿运动定律有120t40m dvdt依照质点运动的初始条件 ,即t 0 = 0 时 v 0 = 6.0 m s·-1 ,运用分别变量法对上式积分,得vt4.0 dtdv 0 vv =2又因 v = dx /dt,并由质点运动的初始条件: t 0 = 0 时 x 0 = 5.0 m,对上式分别变量后积分 ,有xt6.0t 2dtdxx 0x =2 +2.0 t 32 -15 轻型飞机连同驾驶员总质量为10×3 kg .飞机以 55.0 m s·-1 的速率在水平跑道上着陆后,驾驶员开始制动 ,若阻力与时间成正比 ,比率系数 α= 5.0 ×102 N ·s -1,空气对飞机升力不计 ,求: (1) 10 s后飞机的速率; (2) 飞机着陆后 10s内滑行的距离.剖析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动. 其水平方向所受制动力 F 为变力 ,且是时间的函数.在求速率和距离时,可依据动力学方程和运动学规律,采纳分别变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有 Fma mdvαtαt dtdtvdt vmv 0得v v 0α t 22m所以 ,飞机着陆 10s后的速率为v = 30 m s· -1xt α t 2 dt又dxv 0x02m故飞机着陆后 10s内所滑行的距离s x x 0 v 0tα t 3 467 m6m2 -16 质量为 m 的跳水运动员 ,从 10.0 m 高台上由静止跳下落入水中.高台距水面距离为 h .把跳水运动员视为质点 ,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为 bv 2 ,此中 b 为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求: (1)运动员在水中的速率v 与 y的函数关系;(2) 如 b/m=-1 , 跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0的1 /10?(假设跳水运动员在水中的浮力与所受的重力大小恰巧相等)剖析该题能够分为两个过程,入水前是自由落体运动,入水后 ,物体受重力 P、浮力 F 和水的阻力 F f的作用 ,其协力是一变力 ,所以 ,物体作变加快运动.固然物体的受力剖析比较简单 ,可是 ,因为变力是速度的函数(在有些问题中变力是时间、地点的函数 ),对这种问题列出动力学方程其实不复杂 ,但要从它计算出物体运动的地点和速度就比较困难了.往常需要采纳积分的方法去解所列出的微分方程.这也成认识题过程中的难点.在解方程的过程中 ,特别需要注意到积分变量的一致和初始条件确实定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P -F f-F =ma由题意 P = F、 F f= bv2 ,而a = dv /dt = v (d v /dy),代入上式后得-bv2= mv (d v /dy)考虑到初始条件 y0=0 时 , v0 2gh ,对上式积分,有mv dvtdy0b v0 vv v0e by / m 2ghe by / m(2) 将已知条件 b/m = 0.4 m -1 ,v =0 代入上式 ,则得y m ln v 5.76 mb v0*2 -17 直升飞机的螺旋桨由两个对称的叶片构成.每一叶片的质量m= 136 kg,长 l = 3.66 m.求当它的转速 n= 320 r/min 时 ,两个叶片根部的张力.(设叶片是宽度必定、厚度平均的薄片)剖析 螺旋桨旋转时 ,叶片上各点的加快度不一样,在其各部分双侧的张力也不一样;因为叶片的质量是连续散布的 ,在求叶片根部的张力时 ,可选用叶片上一小段 ,剖析其受力 ,列出动力学方程 ,而后采纳积分的方法求解.解 设叶片根部为原点 O,沿叶片背叛原点 O 的方向为正向 ,距原点 O 为 r 处的长为 dr 一小段叶片 ,其 双侧对它的拉力分别为 F T(r) 与 F T (r + dr ).叶片转动时 ,该小段叶片作圆周运动 ,由牛顿定律有dF T F T rF T r drmω2 rdrl因为 r =l 时外侧 F T = 0,所以有t dF Tlm ω2F T rl r drrF T m ω2 2r 22πmn 22r 2rll2ll上式中取 r =0,即得叶片根部的张力F T 0 =10×5 N负号表示张力方向与坐标方向相反.2 -18 一质量为 m 的小球最先位于如图 (a)所示的 A 点 ,而后沿半径为 r 的圆滑圆轨道 ADCB 下滑.试求小球抵达点 C 时的角速度和对圆轨道的作使劲.剖析 该题可由牛顿第二定律求解. 在取自然坐标的状况下 ,沿圆弧方向的加快度就是切向加快度a ,t与其相对应的外力 F 是重力的切向重量 mgsin α,而与法向加快度 a n 相对应的外力是支持力 F N 和重力t的法向重量 mgcos α.由此 ,可分别列出切向和法向的动力学方程F = mdv/dt 和F n =ma n .因为小球在t滑动过程中加快度不是恒定的 ,所以 ,需应用积分求解 ,为使运算简易 ,可变换积分变量. 倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度 ,方法比较简易.但它不可以直接给出小球与圆弧表面之间的作使劲.解 小球在运动过程中遇到重力 P 和圆轨道对它的支持力 F N .取图 (b) 所示的自然坐标系,由牛顿定律得F tmgsin α mdv(1)dtF n F Nmgcos α mmv 2(2)R由 vdsr α r α运动到点 C 的始末条件 ,进行积分 ,有d ,得 dtd ,代入式 (1),并依据小球从点 Adtdtvvαv 0d90org sin αd αv v得v2rgcos α则小球在点 C 的角速度为ωv2 cos α/rr g由式 (2)得F Nm mv 2 mgcos α 3mgcos αr由此可得小球对圆轨道的作使劲为F NF N 3mgcos α负号表示 F ′N 与 e n 反向.2 -19 圆滑的水平桌面上搁置一半径为 R 的固定圆环 ,物体紧贴环的内侧作圆周运动 ,其摩擦因数为μ,开始时物体的速率为 v 0 ,求: (1) t 时辰物体的速率; (2) 当物体速率从 v 0减少到 12 v 0时 ,物体所经历的时间及经过的行程.剖析运动学与动力学之间的联系是以加快度为桥梁的,因此 ,可先剖析动力学识题.物体在作圆周运动的过程中,促进其运动状态发生变化的是圆环内侧对物体的支持力 F N和环与物体之间的摩擦力 F f,而摩擦力大小与正压力 F N′成正比 ,且F N与F N′又是作使劲与反作使劲 ,这样 ,便可经过它们把切向和法向两个加快度联系起来了 ,从而可用运动学的积分关系式求解速率和行程.解 (1) 设物体质量为 m,取图中所示的自然坐标 ,按牛顿定律 ,有mv2F N ma nRdvF f ma tdt由剖析中可知,摩擦力的大小 Ff=μF ,由上述各式可得N2μv dvR dt取初始条件 t =0 时 v =v 0 ,并对上式进行积分,有t R v dvdt20 μ v0 vv Rv0R v0μt(2)当物体的速率从 v 0减少到 1/2v 0时 ,由上式可得所需的时间为tRμv0物体在这段时间内所经过的行程t stRv0dt vdtv0μt0 RsRln 2μ2 -20 质量为 45.0 kg 的物体 ,由地面以初速 60.0 m·s-1 竖直向上发射 ,物体遇到空气的阻力为 F r=kv, 且 k = 0.03 N/( m-1最大高度为多少?s· ). (1) 求物体发射到最大高度所需的时间.(2)剖析物体在发射过程中 ,同时遇到重力和空气阻力的作用,其协力是速率v 的一次函数 ,动力学方程是速率的一阶微分方程,求解时 ,只需采纳分别变量的数学方法即可.可是,在求解高度时 ,则一定将时间变量经过速度定义式变换为地点变量后求解 ,并注意到物体上涨至最大高度时 ,速率应为零.解 (1) 物体在空中受重力 mg 和空气阻力 F r = kv 作用而减速.由牛顿定律得mg k mdv(1)vdt依据始末条件对上式积分,有t vddtmvvv 0mg kvtmln 1 kv 06.11 skmgdv dv(2) 利用v 的关系代入式 (1),可得dtdydvmg kv mv分别变量后积分y 0dyv 0mvdvmgkv故m mg ln 1kv 0 v 0183 mykmgkv 0 和 y 2议论 如不考虑空气阻力 ,则物体向上作匀减速运动.由公式tv 0 分别算得 t ≈s和g2gy ≈184 m,均比实质值略大一些.2 -21 一物体自地球表面以速率 v 0 竖直上抛.假设空气对物体阻力的值为F r = kmv 2 ,此中 m 为物体的质量 ,k 为常量.试求: (1) 该物体能上涨的高度; (2)物体返回地面时速度的值. (设重力加快度为常量. )剖析因为空气对物体的阻力一直与物体运动的方向相反 ,所以 ,物体在上抛过程中所受重力 P 和阻力 F r 的方向相同;而下落过程中 ,所受重力 P 和阻力 Fr 的方向则相反.又因阻力是变力 ,在解动力学方程时 ,需用积分的方法.解 分别对物体上抛、 下落时作受力剖析 ,以地面为原点 ,竖直向上为 y 轴 (如下图 ) .(1) 物体在上抛过程中 ,依据牛顿定律有mg km 2 m dv m vdvv dt dy 依照初始条件对上式积分,有y 0 v ddy v2v0 g kvy 1ln g kv 2 2k g kv02物体抵达最高处时, v = 0,故有hymax 1 ln g kv 022k g (2)物体下落过程中 ,有2vdvmg kmv m对上式积分 ,有ydy 0vdv0 v0 g k2vkv 2 1/ 2v则v0 1g2 -22 质量为 m 的摩托车 ,在恒定的牵引力 F 的作用下工作 ,它所受的阻力与其速率的平方成正比,它能达到的最大速率是 v m.试计算从静止加快到mv /2所需的时间以及所走过的行程.剖析该题依旧是运用动力学方程求解变力作用下的速度和地点的问题,求解方法与前两题相像,只是在解题过程中一定想法求出阻力系数k.因为阻力 Fr = kv2 ,且 F r又与恒力 F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加快度为零 ,此时速度达到最大.所以,依据速度最大值可求出阻力系数来.但在求摩托车所走行程时,需对变量作变换.解设摩托车沿 x 轴正方向运动 ,在牵引力 F 和阻力 F r同时作用下 ,由牛顿定律有F k 2 m dv(1)v dt当加快度 a = dv/dt = 0 时,摩托车的速率最大,所以可得k=F/v m2 (2) 由式 (1) 和式 (2)可得依据始末条件对式(3)积分 ,有t mdtFF 1 v 2 m dv (3)v m2 dt1v m v2 12 dv1 2v m则tmv m ln3 dvmvdv 2F(3)积分 ,有又因式 (3) 中 m,再利用始末条件对式dtdxxmdxF 1v m v212 dv0 12v m则xmv m2ln40.144 mv m 22F3F*2 -23 飞机下降时 ,以 v 0 的水平速度下落伍自由滑行,滑行时期飞机遇到的空气阻力 F 1= -k 1 v 2, 升力F 2= k 2 v 2, 此中 v 为飞机的滑行速度 ,两个系数之比 k 1/ k 2 称为飞机的升阻比.实验表示,物体在流体中运动时 ,所受阻力与速度的关系与多种要素有关 ,如速度大小、流体性质、物体形状等.在速度较小或流体密度较小时有 F ∝ v,而在速度较大或流体密度较大的有 F ∝ v 2 ,需要精准计算时则应由实验测定.此题中因为飞机速率较大,故取 F ∝v 2 作为计算依照.设飞机与跑道间的滑动摩擦因数为μ,试求飞机从触地到静止所滑行的距离.以上计算实质上已成为飞机跑道长度设计的依照之一.剖析 如下图 ,飞机触地后滑行时期遇到 5 个力作用 ,此中 F 1 为空气阻力 , F 2 为空气升力 , F 3 为跑道作用于飞机的摩擦力 , 很明显飞机是在合外力为变力的状况下作减速运动 ,列出牛顿第二定律方程 后 ,用运动学第二类问题的有关规律解题.因为作用于飞机的合外力为速度 v 的函数 ,所求的又是飞机 滑行距离 x,所以比较简易方法是直接对牛顿第二定律方程中的积分变量dt 进行代换 ,将 dt 用dx取代 ,获得一个有关 v 和 x 的微分方程 ,分别变量后再作积分.v解 取飞机滑行方向为 x 的正方向 ,着陆点为坐标原点,如下图 ,依据牛顿第二定律有F N k 1v 2m dv(1)k 2v 2dtF Nmg 0(2)将式 (2)代入式 (1),并整理得μmg k μkv 2m dvm dv12dt v dx分别变量并积分 ,有vm dvv2dxμmgk 1 μk 2v 0v得飞机滑行距离xm ln μmg k 1 μk 2 v 2(3)2 k 1 μk 2 μmg考虑飞机着陆瞬时有 F N = 0 和v = v 0 ,应有 k 2v 02= mg,将其代入 (3)式 ,可得飞机滑行距离 x 的另一表达。

大学物理课后习题答案第二章

大学物理课后习题答案第二章
[解答]物体A受到重力和细绳的拉力,可列方程
Mg – T = Ma,
物体B在没有拉物体C之前在拉力T作用下做加速运动,
加速度大小为a,可列方程:T = Ma,
联立方程可得:a = g/2 = 5(m·s-2).
根据运动学公式:s =v0t+at2/2,
可得B拉C之前的运动时间; = 0.4(s).
此时B的速度大小为:v = at= 2(m·s-1).
可以证明k =mω2,因此I = -kA/ω.
2.13一个质量m=50g,以速率的v=20m·s-1作匀速圆周运动的小球,在1/4周期内向心力给予小 球的冲量等于多少?
[解答]小球动量的大小为p = mv,
但是末动量与初动量互相垂直,根据动量的增量的定义
得: ,
由此可作矢量三角形,可得: .
因此向心力给予小球的的冲量大小为 = 1.41(N·s).
(1)当n= 1时,可得
利用初始条件x=x0时,v= 0,所以C= lnx0,因此 ,
即 .
(2)如果n≠1,可得 .利用初始条件x=x0时,v= 0,所以 ,
因此 ,
即 .当n= 2时,即证明了本题的结果.
2.9一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:
tanθ=ma/mg,所以θ= arctan(a/g);
绳子张力等于摆所受的拉力: .
(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力,
合力沿斜面向下,所以θ = φ;
T = mgcosφ.
(4)根据题意作力的对边
是mbcosφ,邻边是mg + mbsinφ,由此可得:
[证明]当物体在直线上运动时,根据牛顿第二定律得方程

大学物理答案第二章牛顿定律-习题解答

大学物理答案第二章牛顿定律-习题解答
牛顿运动定律与实际问题的综合应用
将牛顿运动定律应用于各种实际问题中,如天体运动、弹性碰撞、摩擦力问题等,通过建立物理模型和 运用数学工具解决实际问题。
解决复杂问题的思路与方法
01
02
03
04
建立物理模型
根据问题的实际情况,抽象出 具体的物理模型,如质点、刚 体、弹性碰撞等,为解决问题 提供清晰的思路。
定律的应用场景与实例
总结词
牛顿第一定律在日常生活和科学研究中有着广泛的应用。例如,汽车安全带的设计、投掷物体的轨迹、行星的运 动等都遵循这一规律。
详细描述
汽车安全带的设计依据了惯性定律,通过限制乘客在急刹车或碰撞时的运动,减少伤害风险。投掷物体时,出手 的角度和力量会影响物体的运动轨迹,这也符合惯性定律。行星的运动规律是牛顿第一定律的重要应用之一,行 星绕太阳的椭圆轨道运动可以由惯性定律推导出来。
05
习题解答
常见错误解析与纠正
01 02 03
错误1
混淆了牛顿第二定律中的力和加速度概念,将力误认为是 加速度的原因,而实际上力是产生加速度的原因。纠正: 正确理解力和加速度的关系,力是产生加速度的原因,加 速度的大小和方向由力的三要素决定。
错误2
在分析多力作用下物体的运动时,未能正确分析合力和加 速度的关系。纠正:在分析多力作用下物体的运动时,应 先求出合力,再根据牛顿第二定律求出加速度,最后根据 运动学公式求解速度和位移。
导出牛顿第三定律。
定律的应用场景与实例
要点一
总结词
牛顿第三定律在现实生活中有着广泛的应用,例如火箭发 射、车辆行驶、体育运动等。
要点二
详细描述
在火箭发射中,火箭向下喷射高温高压气体,产生一个向 上的反作用力,使火箭升空。在车辆行驶中,车辆发动机 产生的力推动车辆前进,同时车辆也会给地面一个向后的 反作用力,使地面产生磨损。在体育运动中,例如篮球投 篮时,投篮的力量和手受到的反作用力大小相等、方向相 反。

大学物理第2章课后答案

大学物理第2章课后答案

大学物理第2章课后答案(总34页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章 质点动力学四、习题选解2-1 光滑的水平桌面上放有三个相互接触的物体,它们的质量分别为.4,2,1321kg m kg m kg m ===(1)如图a 所示,如果用一个大小等于N 98的水平力作用于1m 的左方,求此时2m 和3m 的左边所受的力各等于多少?(2)如图b 所示,如果用同样大小的力作用于3m 的右方。

求此时2m 和3m 的左边所受的力各等于多少?(3)如图c 所示,施力情况如(1),但3m 的右方紧靠墙壁(不能动)。

求此时2m 和3m 左边所受的力各等 于多少?解:(1)三个物体受到一个水平力的作用,产生的加速度为a()a m m m F321++=232114-⋅=++=s m m m m Fa用隔离法分别画出32,m m 在水平方向的受力图(a ),题2-1(a )图由a m F =a m f f23212=- a m f323= 2332f f =N f 5623= N f 8412=(2)由()a m m m F321++=232114-⋅=++=s m m m m Fa用隔离法画出321m m m 、、在水平方向的受力图(b )由a m F = 得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧====-=-3223122112121232323f f f f am f a m f f a m f F解得: N f 1412= N f 4223=题2-1(b )图(3)由于321m m m 、、都不运动,加速度0=a ,三个物体彼此的作用力都相等,都等于FN f f 982312==2-2 如图所示,一轻质弹簧连接着1m 和2m 两个物体,1m 由细线拉着在外力作用下以加速a 竖直上升。

问作用在细线上的张力是多大?在加速上升的过程中,若将线剪断,该瞬时1m 、2m 的加速度各是多大?解:(1)分别画出1m 、2m 受力的隔离体如图(a ),题2-2(a )图取向上为正方向,由牛顿第二定律⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f T 2211故 ()()a g m m g m g m a m a m T ++=+++=212121 (2)将线剪断,画出21m m 、的隔离体图,如图(b )题2-2(b )图取竖直向上为正方向,由牛顿第二定律得⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f 222111 得⎪⎩⎪⎨⎧+--==-=)(/)'(121222a g m m g a a m g m f a1a 的方向向下,2a的方向向上。

大学物理第二章习题答案

大学物理第二章习题答案

大学物理第二章习题答案大学物理第二章习题答案大学物理是大多数理工科学生必修的一门课程,其中第二章是关于向量和运动学的内容。

本文将为大家提供一些大学物理第二章习题的答案,希望能够帮助大家更好地理解和掌握这一章节的知识。

1. 问题:一个物体以5 m/s的速度从斜坡上滑下来,斜坡的倾角为30°。

求物体滑下斜坡所需的时间。

解答:首先,我们需要将斜坡的倾角转换为弧度。

倾角为30°,转换为弧度的公式为弧度 = 角度× π / 180。

所以,30°转换为弧度为30 × π / 180 = π / 6。

然后,我们可以利用运动学中的公式来求解。

物体在斜坡上滑动,可以将其分解为水平和竖直方向上的运动。

在水平方向上,物体的速度不变,为5 m/s。

在竖直方向上,物体受到重力的作用,加速度为g = 9.8 m/s²。

根据运动学的公式,竖直方向上的位移可以表示为h = (1/2) × g × t²,其中 h 为位移,g 为加速度,t 为时间。

由于物体滑下斜坡的竖直位移为 0,所以我们可以得到以下方程:0 = (1/2) × g × t²解方程得到 t = 0 或t = 2 × 0 / g = 0。

因此,物体滑下斜坡所需的时间为0秒。

2. 问题:一个物体从斜坡上滑下来,滑下斜坡后继续在水平地面上滑行。

已知物体从斜坡上滑下所需的时间为2秒,滑下斜坡后在水平地面上滑行的距离为6米。

求物体在斜坡上的滑动距离。

解答:首先,我们可以利用已知条件求解物体在水平地面上的速度。

根据物体在斜坡上滑行的时间和水平距离,我们可以得到以下方程:6 = 2 × v解方程得到 v = 6 / 2 = 3 m/s。

然后,我们可以利用运动学中的公式来求解物体在斜坡上的滑动距离。

物体在斜坡上滑行的时间为2秒,速度为3 m/s。

大学物理课后习题2第二章答案

大学物理课后习题2第二章答案

(B) aA>0 , aB<0.
(C) aA<0 , aB>0.
(D) aA<0 , aB=0. F
B
A
x
答案:(D)。
题 2.1(5)图
2.2 填空题 (1) 质量为 m 的小球,用轻绳 AB、BC 连接,如图所示,其中 AB 水平.剪断绳 AB 前后的瞬间,绳 BC 中的张力比 T : T′=____________.




()
(A)①、②是正确的。
(B)②、③是正确的。
(C)只有②是正确的。
(D)只有③是正确的。
答案:(C)。
(4) 一质量为 M 的斜面原来静止于水平光滑平面上,将一质量为 m 的木块轻
轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将
()
(A) 保持静止.
(B) 向右加速运动.
(C) 向右匀速运动. (D) 向左加速运动.
受的合力为 F =( a bt )N( a,b 为常数),其中 t 以秒为单位:(1)假设子弹运行
到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的
冲量;(3)求子弹的质量.
解: (1)由题意,子弹到枪口时,有
F (a bt) 0 ,得 t a b
(2)子弹所受的冲量

物体与水平面间的摩擦系数为

答案: v2 ; 2s
v2 . 2gs
(5) 在光滑的水平面内有两个物体 A 和 B,已知 mA=2mB。(a)物体 A 以一定的动
能 Ek 与 静 止 的 物 体 B 发 生 完 全 弹 性 碰 撞 , 则 碰 撞 后 两 物 体 的 总 动 能

大学物理习题答案解答第二章牛顿运动定律

大学物理习题答案解答第二章牛顿运动定律

第二章 牛顿运动定律一、填空题1、考察直线运动,设加速度为()a t ,初速度为00v =,则由dv a dv adt dt =⇒= 两边定积分,即 00v t v dv adt =⎰⎰ 得质点在任意时刻t 的速度为 110()()t v t a t dt =⎰ (2-1)再由ds v ds vdt dt =⇒= 两边定积分,即 00s t s ds vdt =⎰⎰ 得质点在任意时刻t 的路程为 0220()t s s s v t dt ∆=-=⎰ 把(2-1)式代入上式,得211200()tt s a t dt dt ∆=⎰⎰依题设可知两物体必做直线运动,设某时刻两物体间作用力为F ,则两物体的加速度分别为11F a m = 和 22F a m = 所以两物体在相同时间内发生的路程分别为:2221111121211200000011()1()()tt tt t t F t s a t dt dt dt dt F t dt dt m m ∆===⎰⎰⎰⎰⎰⎰ 2221221121211200000022()1()()t t t t t t F t s a t dt dt dt dt F t dt dt m m ∆===⎰⎰⎰⎰⎰⎰所以 11222111s m m s m m ∆==∆ 此即为所求。

2、箱子在最大静摩擦力的作用下,相对地面具有的最大加速度为2max 0max 00.49.8 3.92()F mg a g m s m mμμ-====⨯=⋅ (1)若设箱子相对卡车静止,即物体相对地面的加速度2max 2a m s a -=⋅<表明箱子与卡车底板间是静摩擦,摩擦力的大小为40280()F ma N ==⨯=(2)依然设箱子相对卡车静止,即物体相对地面的加速度2max 4.5a m s a -=⋅>表明箱子与卡车底板间是滑动摩擦,摩擦力的大小为0.25409.898()F mg N μ==⨯⨯=3、如图2-1(a)所示建立直角坐标系,再分析滑块的受力情况,如图2-1(b)所示,滑块受到三个力的作用,分别是地球施加的重力mg ,斜面对它的支持力1N 和滑动摩擦力1f ,并设其加速度为a 。

大学普通物理学-二-牛顿运动定律

大学普通物理学-二-牛顿运动定律

第二章牛顿运动定律一、选择题1.关于惯性有下面四种说法,正确的为()。

A.物体静止或作匀速运动时才具有惯性B.物体受力作变速运动时才具有惯性C.物体受力作变速运动时才没有惯性D.惯性是物体的一种固有属性,在任何情况下物体均有惯性1.【答案】D。

解析:本题考查对惯性的正确理解。

物体的惯性是物体的自然固有属性,与物理的运动状态和地理位置没有关系,只要有质量的物体都有惯性,质量是一个物体惯性大小的量度,所以本题答案为D。

2.下列四种说法中,正确的为()。

A.物体在恒力作用下,不可能作曲线运动B.物体在变力作用下,不可能作曲线运动C.物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动D.物体在不垂直于速度方向的力作用下,不可能作圆周运动2.【答案】C。

解析:本题考查的是物体运动与受力的关系物体的运动受初始条件和受力共同影响,物体受恒力作用但仍然可以作曲线运动,比如平抛运动.对于圆周运动需要有向心力,向心力是改变物体速度方向,当一个物体只受向心力作用时则作匀速圆周运动,所以C选项是正确的。

3.一质点从t=0时刻开始,在力F1=3i+2j(SI单位)和F2=-2i-t j(SI单位)的共同作用下在Oxy平面上运动,则在t=2s时,质点的加速度方向沿()。

A.x轴正向B.x轴负向C.y轴正向D.y轴负向3.【答案】A。

解析:合力F=F1+F2=i+(2-t)j,在t=2s时,力F=i,沿x轴正方向,加速度也沿同一方向。

4.一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为()。

A.0B.P/4C.PD.P/24.【答案】A。

解析:米袋和人具有相同的加速度,因此米袋作用在他肩上的力应为0。

5.质量分别为m1、和m2的两滑块A和B通过一轻弹簧水平连接后置于水平桌面上,滑块与桌面间的滑动摩擦因数均为μ,系统在水平拉力F作用下匀速运动,如图2-1所示。

如突然撤销拉力,则撤销后瞬间,二者的加速度a A和a B,分别为()。

大学物理第二章习题答案

大学物理第二章习题答案

大学物理第二章习题答案# 大学物理第二章习题答案开始部分在解答大学物理的习题之前,我们需要对第二章的物理概念和公式有一个清晰的理解。

本章通常涵盖了经典力学的基础知识,包括牛顿运动定律、功和能量等概念。

习题1:牛顿运动定律的应用问题描述:一个物体在水平面上受到一个恒定的力F=10N,求物体的加速度a。

解答:根据牛顿第二定律,\[ F = ma \],其中m是物体的质量。

设物体的质量为m,我们可以解出加速度a:\[ a = \frac{F}{m} = \frac{10}{m} \, \text{m/s}^2 \]注意,这里我们假设物体的质量m是已知的。

习题2:斜面上的物体问题描述:一个质量为m=5kg的物体放在一个倾斜角度为30°的斜面上,求物体受到的重力分量。

解答:物体受到的重力分量可以分解为两个方向的力:平行于斜面的分量和垂直于斜面的分量。

垂直分量为:\[ F_{垂直} = mg \sin(30°) = 5 \times 9.8 \times 0.5 = 24.5 \, \text{N} \]平行分量为:\[ F_{平行} = mg \cos(30°) = 5 \times 9.8 \times\frac{\sqrt{3}}{2} \approx 49.04 \, \text{N} \]习题3:功和能量问题描述:一个物体从高度h=10m的平台上自由落体,求物体落地时的动能。

解答:首先,我们需要计算物体在自由落体过程中重力做的功W,它等于物体的重力势能变化:\[ W = mgh = 5 \times 9.8 \times 10 \]根据能量守恒定律,这个功将转化为物体的动能:\[ KE = W = 5 \times 9.8 \times 10 = 490 \, \text{J} \]结束部分在解答物理习题时,重要的是理解每个物理量的含义以及它们之间的关系。

通过逐步分析问题,应用适当的物理定律和公式,我们可以找到正确的答案。

大学物理_第2章_质点动力学_习题答案

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。

解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-o20(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。

解:小球在运动的过程中受到重力G r 和轨道对它的支持力T r.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=r r r由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,习题2-2图Ao B rCT902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr v g rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰o r得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。

解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

大学物理教程第2章习题答案

大学物理教程第2章习题答案

⼤学物理教程第2章习题答案思考题2.1 从运动学的⾓度看,什么是简谐振动?从动⼒学的⾓度看,什么是简谐振动?答:从运动学的⾓度看,弹簧振⼦相对平衡位置的位移随时间按余弦函数的规律变化,所作的运动就是简谐振动。

从动⼒学的⾓度看,如果物体受到的⼒的⼤⼩总是与物体对其平衡位置的位移成正⽐,⽽⽅向相反,那么该物体的运动就是简谐振动。

2.2 弹簧振⼦的振幅增⼤到2倍时,其振动周期、振动能量、最⼤速度和最⼤加速度等物理量将如何变化?答:弹簧振⼦的运动⽅程为0cos()x A t ω?=+,速度为0sin()v A t ωω?=-+,加速度的为)cos(02?ωω+-=t A a ,振动周期2T =221kA E =。

所以,弹簧振⼦的振幅A 增⼤到2倍时,其振动周期不变,振动能量为原来的4倍,最⼤速度为原来的2倍,最⼤加速度为原来的2倍。

2.3 下列运动是否为简谐振动?(1)⼩球在地⾯上作完全弹性的上下跳动;(2)⼩球在半径很⼤的光滑凹球⾯底部作⼩幅度的摆动;(3)曲柄连杆机构使活塞作往复运动;(4)⼩磁针在地磁的南北⽅向附近摆动。

答:(2)、(4)为简谐振动,(1)、(3)、不是简谐振动。

2.4 三只相同的弹簧(质量忽略不计)都⼀端固定,另⼀端连接质量为m 的物体,它们放置情况不同,其中⼀个平放,⼀个斜放,另⼀个竖直放。

如果它们振动起来,则三者是否均为简谐振动,它们振动的周期是否相同?答:三者均为简谐振动,它们振动的周期也相同。

2.5 当谐振⼦作简谐振动的振幅增⼤为原来的2倍时,谐振⼦的什么量也增⼤为原来的2倍?答:最⼤速度和最⼤加速度。

2.6 ⼀弹簧振⼦作简谐振动,其振动的总能量为E 1。

如果我们将弹簧振⼦的振动振幅增加为原来的2倍,⽽将重物的质量增加为原来的4倍,则新的振⼦系统的总能量是否发⽣变化?答:弹簧振⼦212E kA = ,所以新的振⼦系统的总能量增加为原来的4倍。

2.7 ⼀质点作简谐振动,振动频率为n,则该质点动能的变化频率是多少?答:该质点动能的变化频率是2n。

大学物理第二章练习答案

大学物理第二章练习答案

第二章 运动的守恒量和守恒定律练 习 一一. 选择题1. 关于质心,有以下几种说法,你认为正确的应该是( C )(A) 质心与重心总是重合的; (B) 任何物体的质心都在该物体内部; (C) 物体一定有质心,但不一定有重心; (D) 质心是质量集中之处,质心处一定有质量分布。

2. 任何一个质点系,其质心的运动只决定于( D )(A)该质点系所受到的内力和外力; (B) 该质点系所受到的外力;(C) 该质点系所受到的内力及初始条件; (D) 该质点系所受到的外力及初始条件。

3.从一个质量均匀分布的半径为R 的圆盘中挖出一个半径为2R 的小圆盘,两圆盘中心的距离恰好也为2R 。

如以两圆盘中心的连线为x 轴,以大圆盘中心为坐标原点,则该圆盘质心位置的x 坐标应为( B ) (A)R 4; (B) R 6; (C) R 8; (D R12。

4. 质量为10 kg 的物体,开始的速度为2m/s ,由于受到外力作用,经一段时间后速度变为6 m/s ,而且方向转过90度,则该物体在此段时间内受到的冲量大小为 ( B ) (A)s N ⋅820; (B) s N ⋅1020; (C) s N ⋅620; (D) s N ⋅520。

二、 填空题1. 有一人造地球卫星,质量为m ,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示,则卫星的动量大小为RGM m3。

2.三艘质量相等的小船在水平湖面上鱼贯而行,速度均等于0v ,如果从中间小船上同时以相对于地球的速度v 将两个质量均为m 的物体分别抛到前后两船上,设速度v 和0v 的方向在同一直线上,问中间小船在抛出物体前后的速度大小有什么变化:大小不变。

3. 如图1所示,两块并排的木块A 和B ,质量分别为m 1和m 2,静止地放在光滑的水平面上,一子弹水平地穿过两木块。

设子弹穿过两木块所用的时间分别为t 1和t 2,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为 1A BF t m m ⋅∆+,木块B 的速度大小为12F t A BBF t m m m ⋅∆⋅∆++。

《大学物理》第二章答案.docx

《大学物理》第二章答案.docx

习题二1 一个质量为P 的质点,在光滑的固定斜面(倾角为 :■)上以初速度V o 运动,V o 的方向与 斜面底边的水平线 AB Tr ⅛∣∣l ⅛lbi-<j ;, ∕∙R ⅛'..∣⅛.⅛ Tl 注史粒道. mg ,斜面支持力 N.建立坐标:取v 0方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.2A 题2-2图BX 方向:F χ = 0X = v °tY 方向:F y = mg Sin : = ma y t = 0时y = 0v y = 0由①、②式消去t ,得y = 1 g sin : t 2y^gSin : X 2 2V 02质量为16 kg 的质点在Xoy 平面内运动,受一恒力作用,力的分量为-1N,当 t = 0 时,x=y=0, V X = -2 m ∙ S , V y = 0 .求 当t = 2 S 盯质点勺(1)位矢;(2)述度. 解:a x =6 3m s 2 m 168 fy— 7-2a y =m m 16S(1)235V X = V χ°a χdt =-2 _ 2 二m S0 842—7 7 .4Vy =Vy0 + J La y dt2 ——m S16 8于是质点在 2s 时的速度解:物体置于斜面上受到重力f χ = 6 N, f y = -7-5- 7 - V i j4 81 3- 1-7 - =(-2 24)^-( ) 4J 2 8 2 16 13 7i J m 48(4)当t= m 时,其速度为kk m _ -m kV= v 0e即速度减至V 0的1.e4一质量为m 的质点以与地的仰角=30°的初速V 0从地面抛出,若忽略空气阻力,求质点Λ ms~r =(v o t 1a χt 2)i - 2 2 丄2 -a y t J3质点在流体中作直线运动,受与速度成正比的阻力 k4 )tm;度为V o ,证明(1) t 时刻的速度为V = V o e kv ( k 为常数)作用,t =0时质点的速由0到t 的时间内经过的距离为(3)停止运动前经过的距离为v °(m ) ; (4)证明当t =^ m k 时速 k答:(1) ••• 分离变量,得-kv dvm _ dt dv - -kdt V m dv t -kdV - 0 mVIn In e V 0V= v 0e.k ∙tm(3)质点停止运动时速度为零, 故有t JktVdt = j v 0e 肓 dt即 t →∞, X=0 V0e^m^4dtmv 0Jktmv 0斗 二 v °e=V OeV 0kt m落地时相对抛射时的动量的增量.解:依题意作出示意图如题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下而抛物线具有对y轴对称性,故末速度与X轴夹角亦为30o,则动量的增量为二p = mv - mv05作用在质量为10 kg的物体上的力为F = (10 ∙ 2t)i N,式中t的单位是S, (1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量. (2)为了使这力的冲量为200 N ∙s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度-6j m∙ s-1的物体,回答这两个问题.解:(1)若物体原来静止,则- t 4 IP=OFdt=O (10 2t)idt =56 kg m S i ,沿X 轴正向,L v1 = —p1 = 5.6 m S J imI1= p1= 56 kg m S i若物体原来具有「6 m S J初速,则- -- - t F - tp0 = -mv0, p =m(-v0dt) = -mv0亠∣Fdt于是0 m '0_ _ _ t ■■:P2 = P - P0 = .0 Fdt = P ,同理,Z2= w1,12=I1这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.⑵ 同上理,两种情况中的作用时间相同,即由矢量图知,动量增量大小为mv0,方向竖直向下.t 2I=o(10 2t)dt =10t t2亦即t210t - 200 = 0解得t =10 s, (V=20 s舍去)6—颗子弹由枪口射出时速率为V o m S J,当子弹在枪筒内被加速时,它所受的合力为F =(a -bt)N( a, b为常数),其中t以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解:(1)由题意,子弹到枪口时,有F =(a—∙bt)=0,得t= —b(2)子弹所受的冲量t 1 2I =』(a - bt)dt = at -三bt2—将t 代入,得b22b(3)由动量定理可求得子弹的质量I a2mV o 2bv o证毕.7设F合=7i -6jN . (1)当一质点从原点运动到= -3i 4j 16km时,求F所作的功.(2)如果质点到r处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,F合为恒力,A合=Fr =(7i -6j) (-3i 4j 16k)--21 -24 - -45 JA 45⑵P 75w∆t 0.6⑶由动能定理,E^=^- -45 J18如题2-18图所示,一物体质量为2kg,以初速度V0= 3m∙s从斜面A点处下滑,它与斜面的摩擦力为8N,到达B点后压缩弹簧20cm后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度. 解:取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。

大学物理学第二章课后答案

大学物理学第二章课后答案

选择题(1) 一质点作匀速率圆周运动时,(A)它的动量不变,对圆心的角动量也不变。

(B)它的动量不变,对圆心的角动量不断改变。

(C)它的动量不断改变,对圆心的角动量不变。

(D)它的动量不断改变,对圆心的角动量也不断改变。

[答案:C](2) 质点系的内力可以改变(A)系统的总质量。

(B)系统的总动量。

(C)系统的总动能。

(D)系统的总角动量。

[答案:C](3) 对功的概念有以下几种说法:①保守力作正功时,系统内相应的势能增加。

②质点运动经一闭合路径,保守力对质点作的功为零。

③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

在上述说法中:(A)①、②是正确的。

(B)②、③是正确的。

(C)只有②是正确的。

(D)只有③是正确的。

[答案:C]填空题(1) 某质点在力i x F)54( (SI )的作用下沿x 轴作直线运动。

在从x=0移动到x=10m的过程中,力F所做功为 。

[答案:290J ](2) 质量为m 的物体在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始作匀减速运动,经过距离s 后速度减为零。

则物体加速度的大小为 ,物体与水平面间的摩擦系数为 。

[答案:22;22v v s gs](3) 在光滑的水平面内有两个物体A 和B ,已知m A =2m B 。

(a )物体A 以一定的动能E k 与静止的物体B 发生完全弹性碰撞,则碰撞后两物体的总动能为 ;(b )物体A 以一定的动能E k 与静止的物体B 发生完全非弹性碰撞,则碰撞后两物体的总动能为 。

[答案:2;3k k E E ]在下列情况下,说明质点所受合力的特点:(1)质点作匀速直线运动; (2)质点作匀减速直线运动; (3)质点作匀速圆周运动; (4)质点作匀加速圆周运动。

解:(1)所受合力为零;(2)所受合力为大小、方向均保持不变的力,其方向与运动方向相反; (3)所受合力为大小保持不变、方向不断改变总是指向圆心的力;(4)所受合力为大小和方向均不断变化的力,其切向力的方向与运动方向相同,大小恒定;法向力方向指向圆心。

大学物理参考答案(白少民)第2章 力学中的守恒定律

大学物理参考答案(白少民)第2章 力学中的守恒定律
f = mg ( 4 + 0) = 4mg 与(1)中结果相同。 , 2 (3)因为只有当 H 有足够的值,才能保证在圈顶时,物体具有一定的速度(动能),使得 所需向心力大于物体的重力,而不致使物体掉下来。 2.15 如图 2.22 所示,一质量为 m = 0.10kg 的小球,系在绳的一端,放在倾角 α = 30o 的 光滑斜面上,绳的另一端固定在斜面上的 O 点,绳长 0.2m,当小球在最低点 A 处,若在垂直于
向心力
F心 = m
2 υc = mg sin α(3 + 2 cos θ) l
它由重力分力和绳子的张力共同提供 F心 = −mg sin αcos θ + Tc
∴T
c
= F心 + mg sin αcos θ = 3mg sin α + 2mg sin αcos θ + mg sin αcos θ
(1 + cos θ) =1.47(1 + cos θ)N = 3mg sin α
第二章 力学中的守恒定律 2.1 在下面两种情况中,合外力对物体作的功是否相同 ?(1)使物体匀速铅直地升高 h 。(2) 使 物体匀速地在水平面上移动 h。如果物体是在人的作用下运动的,问在两种情况中对物体作的功 是否相同? 答:合外力对物体做功不同。 2.2 A 和 B 是两个质量相同的小球,以相同的初速度分别沿着摩擦系数不同的平面滚动。 其中 A 球先停止下来,B 球再过了一些时间才停止下来,并且走过的路程也较长,问摩擦力对这两个 球所作的功是否相同? 答:摩檫力对两球做功相同。 2.3 有两个大小形状相同的弹簧:一个是铁做成的,另一个是铜做成的,已知铁制弹簧的倔 强系数比铜大。 (1) 把它们拉长同样的距离,拉哪一个做功较大? (2) 用同样的力来拉,拉哪一个做功较大? 答:(1)拉铁的所做功较大; (2)拉铜的做功较大。 2.4 当你用双手去接住对方猛掷过来的球时,你用什么方法缓和球的冲力。 答:手往回收,延长接球时间。 2.5 要把钉子钉在木板上,用手挥动铁锤对钉打击,钉就容易打进去。如果用铁锤紧压着钉 , 钉就很难被压进去,这现象如何解释? 答:前者动量变化大,从而冲量大,平均冲力也大。 2.6 "有两个球相向运动,碰撞后两球变为静止,在碰撞前两球各以一定的速度运动,即各 具有一定的动量。由此可知,由这两个球组成的系统,在碰撞前的总动量不为零,但在碰撞后, 两球的动量都为零,整个系统的总动量也为零。这样的结果不是和动量守恒相矛盾吗?" 指出上述讨论中的错误。 答:上述说法是错误的,动能守恒是成立的。虽然碰前各自以一定的速度不为零,相应的动 量也不为零,但动量是矢量,系统的总动量在碰前为 0,满足动量守恒定律。 2.7 试问:(1) 一个质点的动量等于零,其角动量是否一定等于零 ?一个质点的角动量等于零, 其动量是否一定等于零? (2) 一个系统对某惯性系来说动量守恒,这是否意味着其角动量也守恒? 答:(1)一个质点的动量等于零,其角动量也一定为零;一个质点的角动量等于零,其动 量不一定为零。 (2)一个系统对某惯性系来说动量守恒,这并不意味其角动量也守恒。 * * * * * * 2 2.8 一蓄水池,面积为 S = 50m ,所蓄的水面比地面低 5.0m,水深 d=1.5m。用抽水机把这 池里的水全部抽到地面上,问至少要作多少功? 解:池中水的重力为 F = mg = ρsdg =1.0 ×10 3 ×50 ×1.5 ×10 = 7.5 ×10 5

大学物理课后习题答案 第二章

大学物理课后习题答案 第二章

大学物理教程课后习题答案 第二章 2.1 两根轻弹簧与物体连接方式如题图 2.1,物体质量为m ,弹簧劲度系数为1k 和2k ,水平面光滑.证明系统可作简谐振动,并求振动的固有频率. 题图2.1 解 以物体m 的平衡位置为原点,建立坐标轴Ox 水平向右.设m 位于x 时,两弹簧分别伸长1x 和2x ,则12x x x =+.因两弹簧弹性力相等,所以物体m 所受合力1122F k x k x ==.设由两弹簧组合而成的“组合弹簧”的劲度系数为k ,于是12121212()()k k F F F kx k x x k kF k k k k +==+=+= 由此求得“组合弹簧”的劲度系数1212k k k k k =+为常量,可见物体m 所受合力为线性回复力,所以系统作简谐振动,振动的固有频率12121122()k k k m m k k νππ==+ 2.2 两根轻弹簧与物体连接方式如题图2.2,物体质量为m ,弹簧劲度系数为1k 和2k ,水平面光滑,物体静止时两弹簧均处于自由伸张状态.证明系统可作简谐振动,并求振动的圆频率和周期. 题图2.2 解 以物体m 的平衡位置为原点,建立坐标轴Ox 水平向右.m 位于x 时,弹簧1被拉长,弹簧2被压缩,m 所受合力1212()F kx k x k x k k x ==+=+由此求得“组合弹簧”的劲度系数12k k k =+为常量,可见物体m 所受合力为线性回复力,所以系统作简谐振动,振动的圆频率和周期分别为120k k m ω+= , 122m T k k π=+ 2.3 弹簧振子的质点质量为42.510kg -⨯,运动学方程为0.06cos(5)(m)x t π=+.求:(1)振幅和周期;(2)质点的初始位置;(3)质点位于初始位置时所受合力;(4)质点在s t π=时的位置、速度和加速度.解 (1)由运动学方程可见,振幅006m A .=,05ω=,周期0204(s)126(s)T ..ππω===(2)由运动学方程可见,0t =时,质点的初始位置0006cos 006(m)x ..π==-.(3)对运动学方程求时间导数可得d 0.3sin(5)d x x v t tπ==-+ d 1.5cos(5)d x x v a t t π==-+ 0t =时0 1.5cos 1.5x a π=-=,根据牛顿第二定律可知质点位于初始位置时所受合力440025101537510(N)x F ma ...--==⨯⨯=⨯(4)把t π=代入运动学方程和(3)中求得的x v 、x a 表达式,即可求得质点在t π=时的位置、速度和加速度分别为006cos(5+)006(m)x ..ππ==03sin(5)0(m )x v .ππ=-+=215cos(5) 1.5(m )x a .ππ=-+=-2.4 一质点作简谐振动,振幅为0.02m ,速度幅为0.03m s ,取速度为最大值时为0t =.求:(1)周期;(2)加速度幅;(3)运动学方程. 解 设运动学方程为00cos()002cos()x A t .t ωϕωϕ=+=+,则00002sin()x v .t ωωϕ=-+200002cos()x a .t ωωϕ=-+(1)由m 0002003v ..ω==,可知000315002...ω==,所以周期为 022419(s)15T ..ππω=== (2) 222m 0002002150045(m s )a ....ω==⨯=(3)由已知条件0t =时00x =、0m x v v =,可知0002cos .ϕ=、m m sin v v ϕ=-,即cos =0ϕ ,sin =1ϕ- 由以上二式求出2πϕ=-,所以运动学方程为002cos(15)2x ..t π=-2.5 一水平放置的弹簧振子,质点质量为0.1kg ,振幅为0.01m ,质点运动的最大加速度为20.04m s .求:(1)系统的机械能;(2)质点通过平衡位置时的动能;(3)以0.01m x =时为0t =,动能与势能相等的时刻.解 根据001m A .=和22m 0004m s a A .ω==,可以求出00040012..ω==. 由0k m ω=,可知2001404k m ..ω==⨯=.(1)系统的机械能2251104001210(J)22E kA ..-==⨯⨯=⨯ (2)通过平衡位置时0x =,势能p 0E =,所以动能5k 210(J)E E -==⨯.(3)由已知条件0t =时0001m x .=、00x v =,可知cos 1ϕ= , sin 0ϕ=由以上二式求出0ϕ=.于是2252k 01sin ()210sin 22E kA t t ωϕ-=+=⨯ 2252p 01cos ()210cos 22E kA t t ωϕ-=+=⨯ 动能与势能相等的时刻,k p E E =,即22sin 2cos 2t t =可求出2(21)244t kk πππ=+=+ , 0123k ,,,...= 所以(21)8t k π=+,0123k ,,,...=2.6 题图2.6所示为振幅与频率相同的两个简谐振动的x t -图.求:(1)两个简谐振动的运动学方程;(2)哪个简谐振动的相位超前?超前多少? 题图2.6解 由x t -图可见01m A .=、4s T =,可知0205.Tπωπ==. 对振动(1),1101cos (05)x ..t πϕ=+,当0t =时101005201cos x ..ϕ== , 101005sin 0x v .πϕ=-<可知14πϕ=.运动学方程为 101cos(05)4x ..t ππ=+ 振动(2),2201cos (05)x ..t πϕ=+,当0t =时 202005201cos x ..ϕ== , 202005sin 0x v .πϕ=->可知24πϕ=-.运动学方程为101cos(05)4x ..t ππ=- 两个简谐振动的的相位差 122πϕϕϕ∆=-=说明振动(1)比振动(2)超前2π. 2.7 有两个同方向同频率的简谐振动,它们的运动学方程分别为130.05cos(10)4x t π=+和210.05cos(10)4x t π=+(国际制单位).求:(1)合振动的振幅和初相位;(2)若另有一振动30.08cos(10)x t ϕ=+,ϕ为何值13x x +的振幅最大?ϕ为何值13x x +的振幅最小?(利用旋转矢量图解题)解 (1)分别作与0t =时刻的1x 和2x 对应的旋转矢量1A 和2A ,如题解图2.7.由旋转矢量图可见合矢量12A A +的长度为0.052,与Ox 轴夹角为90ο.于是可知合振动的振幅0.052m A =,初相位12ϕπ=合. 题解图2.7(2)1x 和3x 同相,即34ϕπ=时,13x x +的振幅最大;1x 和3x 反相,即14ϕπ=-时,13x x +的振幅最小.2.8 有两个同方向同频率的简谐振动,其合振动的振幅为0.02m ,合振动与第一个分振动的相位差为30ο,第一个分振动的振幅为0.013m .求:(1)第二个分振动的振幅;(2)两个分振动的相位差.(利用旋转矢量图解题)解 根据已知条件作旋转矢量图,如题解图2.8.(1)由图可见,第二个分振动的振幅20.01m A =.(2)由图可见,两个分振动的相位差2190ϕϕο-=. 题解图2.82.9 现在力学的学习暂时告一段落,请读者总结一下有何收获和体会?(牛顿质点力学的理论结构、数学和物理的关系、学习了哪些方法……)*2.10 某阻尼振动(弱阻尼状态)的振幅经一“周期”后变为原来的13,求振动的“周期”为振动系统固有周期的几倍.解 弱阻尼振动()e cos t x A 't βωϕ-=+,由题意()e 1e 3e et T 't T'T'A A ββββ--+-=== lne ln3T'T 'ββ==所以22ln 3'T 'ππβω==根据'ω=0ω== 于是0022T ''T 'ωπωπωω===1015.= *2.11 质量为3310kg m -=⨯的质点,挂在劲度系数21.210N m k -=⨯的弹簧下端,沿Ox 轴运动.质点除线性回复力外,还受策动力0cos 2t(N)x F F =和阻力rx x F v γ=-作用.求当阻力系数γ增为原来的3倍时,质点稳态振幅减为原来的几分之几?解 根据已知条件,22312104310k .m ω--⨯===⨯,2ω=.故弱阻尼受迫振动的稳态振幅004f A β== 由于00F f m =和2mγβ=,所以 002F A γ=当3'γγ=,00001263F F A A γγ'===',因此当阻力系数γ增为原来的3倍时,质点稳态振幅减为原来的三分之一.*2.12 为什么说牛顿力学是“确定性”的?混沌的基本特征是什么?。

大学物理第二章练习答案

大学物理第二章练习答案

第二章 运动的守恒量和守恒定律练 习 一一. 选择题1。

关于质心,有以下几种说法,你认为正确的应该是( C )(A ) 质心与重心总是重合的; (B ) 任何物体的质心都在该物体内部; (C ) 物体一定有质心,但不一定有重心; (D ) 质心是质量集中之处,质心处一定有质量分布。

2。

任何一个质点系,其质心的运动只决定于( D )(A )该质点系所受到的内力和外力; (B ) 该质点系所受到的外力;(C ) 该质点系所受到的内力及初始条件; (D ) 该质点系所受到的外力及初始条件。

3。

从一个质量均匀分布的半径为R 的圆盘中挖出一个半径为2R 的小圆盘,两圆盘中心的距离恰好也为2R 。

如以两圆盘中心的连线为x 轴,以大圆盘中心为坐标原点,则该圆盘质心位置的x 坐标应为( B ) (A )R 4; (B) R 6; (C ) R 8; (D R12。

4. 质量为10 kg 的物体,开始的速度为2m/s ,由于受到外力作用,经一段时间后速度变为6 m/s,而且方向转过90度,则该物体在此段时间内受到的冲量大小为 ( B )(A )s N ⋅820; (B) s N ⋅1020; (C ) s N ⋅620; (D) s N ⋅520。

二、 填空题1. 有一人造地球卫星,质量为m ,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示,则卫星的动量大小为RGM m3。

2.三艘质量相等的小船在水平湖面上鱼贯而行,速度均等于0v ,如果从中间小船上同时以相对于地球的速度v 将两个质量均为m 的物体分别抛到前后两船上,设速度v 和0v 的方向在同一直线上,问中间小船在抛出物体前后的速度大小有什么变化:大小不变。

3. 如图1所示,两块并排的木块A 和B ,质量分别为m 1和m 2,静止地放在光滑的水平面上,一子弹水平地穿过两木块。

设子弹穿过两木块所用的时间分别为∆t 1和∆t 2,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为 1A BF t m m ⋅∆+,木块B 的速度大小为12F t A BBF t m m m ⋅∆⋅∆++.三、计算题1. 一质量为m 、半径为R 的薄半圆盘,设质量均匀分布,试求薄半圆盘的质心位置。

大学物理第二章质点动力学课后答案

大学物理第二章质点动力学课后答案

势能零点在 z = 0处。
1 2 弹性势能:E p kx 势能零点在弹簧原长处。 2 Mm 引力势能:E p G0 势能零点在 r 处。 r
五、功能原理与机械能守恒定律
W W E2 E1 功能原理
ex in 非
Ek 2 Ep 2 Ek1 Ep1 机械能守恒定律
4 105 t 0.003s F 400 t0 3 t t 4 105 I Fdt [400 t ]dt 0.6 N s 0 0 3 I 0.6 0.002kg m I mv 0 v 300
2-7 两块并排的木块A和B,质量分别为m1和m2,静 止地放置在光滑的水平面上。一子弹水平地穿过两木 块,设子弹穿过两木块所用的时间分别为t1和t2,木 块对子的阻力为恒力F,则子弹穿出后,木块A的速度 大小为 ,木块B的速度大小为 。
1 1 2 W mv2 mv12 2 2
质点的动能定理:在一个过程中,作用在质点上 合外力的功,等于质点动能的增量。
四、保守力的功 F保 dr 0
l
势能
E p F保 dr (b为势能零点) a
b
W保 ( Epb Epa ) Ep
重力势能:Ep mgz
l
dx v 2ct dt
l
W 0 fdx 0 4kcxdx 2kcl 2
2-28 水平方向动量守恒
( P Q)v0 cos Pv Q(v u)
Qu ( P Q) v0 cos Qu v0 cos v PQ PQ
Δx vt v0 cos t


一、动量定理和动量守恒定律 t2 Fdt mv2 mv1

大学物理学(课后答案解析)第2章

大学物理学(课后答案解析)第2章

第2章牛顿运动定律习题一选择题2-1 关于惯性有下面四种表述,正确的为[ ](A)物体静止或作匀速运动时才具有惯性(B)物体受力作变速运动才具有惯性(C)物体受力作变速运动时才没有惯性(D)物体在任何情况下均有惯性解析:惯性是物体具有的固有特性,因此物体在任何情况下均有惯性,答案选D。

2-2 下列表述中正确的是[ ](A)质点运动的方向和它所受的合外力方向相同(B)质点的速度为零,它所受的合外力一定为零(C)质点作匀速率圆周运动,它所受的合外力必定与运动方向垂直(D)摩擦力总是阻碍物体间的相对运动,它的方向总是与物体的运动方向相向解析:根据牛顿第二定律,质点所受的合外力等于动量随时间的变化率,因此A、B错误。

质点作匀速率圆周运动,合外力指向圆心,运动方向沿切线方向,二者垂直,因此选项C正确。

摩擦力总是阻碍物体间的相对运动或相对运动趋势,它的方向沿着物体运动或运动趋势的切线方向,但并不是总与物体的运动方向相向,因此选项D错误。

2-3 一质点在力5(52)()F m t SI =-的作用下,0t =时从静止开始作直线运动,式中,m 为质点质量,t 为时间。

则当5t s =,质点的速率为[ ](A )25m s (B )50m s - (C )0 (D )50m s 解析:根据牛顿第二定律dv F ma mdt ==可得,5(52)dv Ft dt m==-,所以5(52)dv t dt =-,两边积分可得2255v t t =-,即得50v =。

答案选C 。

2-4 如图2-4(A )所示,A B m m μ>时,算出B m 向右的加速度为a ,今去掉Am 而代之以拉力A T m g =,如图2-4(B)所示,算出B m 的加速度a ',则[ ](A )a a '> (B )a a '< (C )a a '= (D )无法判断解析:去掉A m 前,{A A B Bm g T m a T m g m a μ-=-=,联立求得ABA B m m a g m m μ-=+; 去掉A m 后,B A B B T m g m g m g m a μμ'-=-=,求得A BBm m a g a m μ-'=>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题2选择题(1) 一质点作匀速率圆周运动时,(A)它的动量不变,对圆心的角动量也不变。

(B)它的动量不变,对圆心的角动量不断改变。

(C)它的动量不断改变,对圆心的角动量不变。

(D)它的动量不断改变,对圆心的角动量也不断改变。

[答案:C](2) 质点系的内力可以改变(A)系统的总质量。

(B)系统的总动量。

(C)系统的总动能。

(D)系统的总角动量。

[答案:C](3) 对功的概念有以下几种说法:①保守力作正功时,系统内相应的势能增加。

②质点运动经一闭合路径,保守力对质点作的功为零。

③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

在上述说法中:(A)①、②是正确的。

(B)②、③是正确的。

(C)只有②是正确的。

(D)只有③是正确的。

[答案:C]填空题(1) 某质点在力i x F)54( (SI )的作用下沿x 轴作直线运动。

在从x=0移动到x=10m的过程中,力F所做功为 。

[答案:290J ](2) 质量为m 的物体在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始作匀减速运动,经过距离s 后速度减为零。

则物体加速度的大小为 ,物体与水平面间的摩擦系数为 。

[答案:22;22v v s gs](3) 在光滑的水平面内有两个物体A 和B ,已知m A =2m B 。

(a )物体A 以一定的动能E k 与静止的物体B 发生完全弹性碰撞,则碰撞后两物体的总动能为 ;(b )物体A 以一定的动能E k 与静止的物体B 发生完全非弹性碰撞,则碰撞后两物体的总动能为 。

[答案:2;3k k E E ]在下列情况下,说明质点所受合力的特点:(1)质点作匀速直线运动; (2)质点作匀减速直线运动; (3)质点作匀速圆周运动; (4)质点作匀加速圆周运动。

解:(1)所受合力为零;(2)所受合力为大小、方向均保持不变的力,其方向与运动方向相反; (3)所受合力为大小保持不变、方向不断改变总是指向圆心的力;(4)所受合力为大小和方向均不断变化的力,其切向力的方向与运动方向相同,大小恒定;法向力方向指向圆心。

举例说明以下两种说法是不正确的:(1)物体受到的摩擦力的方向总是与物体的运动方向相反; (2)摩擦力总是阻碍物体运动的。

解:(1)人走路时,所受地面的摩擦力与人的运动方向相同;(2)车作加速运动时,放在车上的物体受到车子对它的摩擦力,该摩擦力是引起物体相对地面运动的原因。

质点系动量守恒的条件是什么?在什么情况下,即使外力不为零,也可用动量守恒定律近似求解?解:质点系动量守恒的条件是质点系所受合外力为零。

当系统只受有限大小的外力作用,且作用时间很短时,有限大小外力的冲量可忽略,故也可用动量守恒定律近似求解。

在经典力学中,下列哪些物理量与参考系的选取有关:质量、动量、冲量、动能、势能、功? 解:在经典力学中,动量、动能、势能、功与参考系的选取有关。

一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a 下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ,故2m 对地加速度,题图由图(b)可知,为 a a a 12 ① 又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有111a m T g m ②222a m g m T ③ 联立①、②、③式,得2121211212212211)2()()(m m a gm m T f m m a m g m m a m m a m g m m a讨论 (1)若0 a ,则21a a 表示柱体与绳之间无相对滑动.(2)若g a 2 ,则0 f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.一个质量为P 的质点,在光滑的固定斜面(倾角为 )上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如题图.题图X 方向: 0 x F t v x 0 ① Y 方向: y y ma mg F sin ② 0 t 时 0 y 0 y v2sin 21t g y由①、②式消去t ,得220sin 21x g v y质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时, y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的(1)位矢;(2)速度.解: 2s m 83166m f a x x 2s m 167m f a y y (1)21021035'22m s 8477'2m s 168x x x y y y v v a dt v v a dt于是质点在s 2时的速度1s m 8745 ji v(2)2211()221317(224)()428216137m48x x y r v t a t i a t ji j i j v v vv v v v质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mkev )(0 ;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )( ];(3)停止运动前经过的距离为)(0kmv ;(4)当k m t 时速度减至0v 的e1,式中m 为质点的质量. 答: (1)∵ tvm kv a d d 分离变量,得m tk v v d d即 v v t mtk v v 00d d m kte v v ln ln∴ tm k e v v 0(2)tttm k m ke kmv t ev t v x 000)1(d d (3)质点停止运动时速度为零,即t →∞, 故有0d kmv t ev x tm k (4)当t=km时,其速度为 ev e v ev v km m k 0100即速度减至0v 的e1.一质量为m 的质点以与地的仰角 =30°的初速0v从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量. 解: 依题意作出示意图如题图题图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o30,则动量的增量为0v m v m p由矢量图知,动量增量大小为0v m,方向竖直向下.一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s后,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒? 解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01 ,小球上跳速度的大小亦为g v 5.02 .设向上为y 轴正向,则动量的增量12v m v m p方向竖直向上,大小 mg mv mv p )(12碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒.作用在质量为10 kg 的物体上的力为i t F)210( N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6 m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d ,沿x 轴正向,ip I imp v111111s m kg 56s m 6.5 若物体原来具有6 1s m 初速,则t tt F v m t m F v m p v m p 000000d )d (,于是t p t F p p p 0102d ,同理, 12v v ,12I I这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即tt t t t I 0210d )210(亦即 0200102t t解得s 10 t ,(s 20 t 舍去)一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rsin cos求质点的动量及t =0 到2 t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m p将0 t 和2t 分别代入上式,得 j b m p1,i a m p 2 ,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I一颗子弹由枪口射出时速率为10s m v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a )N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)( bt a F ,得ba t(2)子弹所受的冲量tbt at t bt a I 0221d )(将bat代入,得 ba I 22(3)由动量定理可求得子弹的质量202bv a v I m一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v +m kT 2, v -kmT2证明: 设一块为1m ,则另一块为2m ,21km m 及m m m 21于是得 1,121k mm k km m ① 又设1m 的速度为1v , 2m 的速度为2v ,则有2222211212121mv v m v m T② 2211v m v m mv ③ 联立①、③解得12)1(kv v k v ④将④代入②,并整理得21)(2v v kmT于是有 kmT v v 21 将其代入④式,有mkTv v 22又,题述爆炸后,两弹片仍沿原方向飞行,故只能取12v v v v 证毕.设N 67j i F 合.(1) 当一质点从原点运动到m 1643k j i r时,求F 所作的功.(2)如果质点到r 处时需,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,合F为恒力,∴ )1643()67(k j i j i r F A合J 452421 (2) w 756.045t A P (3)由动能定理,J 45 A E k以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.题图解: 以木板上界面为坐标原点,向内为y 坐标正向,如题图,则铁钉所受阻力为ky f第一锤外力的功为1Assky ky y f y f A 112d d d ① 式中f 是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d t 时,f f . 设第二锤外力的功为2A ,则同理,有21222221d y kky y ky A ② 由题意,有2)21(212kmv A A ③即 222122kk ky所以, 22 y于是钉子第二次能进入的深度为cm 414.01212 y y y设已知一质点(质量为m )在其保守力场中位矢为r v点的势能为()/nP E r k r , 试求质点所受保守力的大小和方向. 解: 1d ()()d p n E r nk F r rr方向与位矢r的方向相反,方向指向力心.一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端又挂一重物C ,C 的质量为M ,如题图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.题图解: 弹簧B A 、及重物C 受力如题图所示平衡时,有Mg F F B A又 11x k F A22x k F B所以静止时两弹簧伸长量之比为1221k k x x 弹性势能之比为12222211121212k kx k x k E E p p(1)试计算月球和地球对m 物体的引力相抵消的一点P ,距月球表面的距离是多少?地球质量×1024kg ,地球中心到月球中心的距离×108m ,月球质量×1022kg ,月球半径×106m .(2)如果一个1kg 的物体在距月球和地球均为无限远处的势能为零,那么它在P 点的势能为多少?解: (1)设在距月球中心为r 处地引月引F F ,由万有引力定律,有22r R mM Gr mM G地月经整理,得R M M M r 月地月=2224221035.71098.51035.7 81048.3 m 1032.386则P 点处至月球表面的距离为m 1066.310)74.132.38(76 月r r h(2)质量为kg 1的物体在P 点的引力势能为r R M G r M G E P 地月72411722111083.34.381098.51067.61083.31035.71067.6 J 1028.16如题图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.题图解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。

相关文档
最新文档