【全国百强校】江苏省盐城中学高中数学苏教版必修2立体几何知识点总结
(完整版)高中数学必修2立体几何知识点.docx
高中数学必修2知识点第一章空间几何体1.1 柱、锥、台、球的结构特征(略)棱柱:棱锥:棱台:圆柱:圆锥:圆台:球:1.2 空间几何体的三视图和直观图1三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于 y 轴的线长度变半,平行于x,z 轴的线长度不变;(3).画法要写好。
5用斜二测画法画出长方体的步骤:(1)画轴( 2)画底面( 3)画侧棱( 4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1 棱柱、棱锥的表面积:各个面面积之和2圆柱的表面积4圆台的表面积S 2 rl2r 2 3 圆锥的表面积S rlr 2 S rl r 2Rl R2 5 球的表面积S 4R26扇形的面积公式S扇形n R21lr (其中l表示弧长,r表示半径)3602(二)空间几何体的体积1柱体的体积 V S底h 2 锥体的体积1S底h V33台体的体积V1S上h4 球体的体积V4R3(下下3S上 S S )3第二章直线与平面的位置关系2.1 空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的 , 无大小,无厚薄。
2平面的画法及表示450,且横边画成邻边的(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成 2 倍长(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面 ABCD等。
3三个公理:(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内A l符号表示为B ll AB公理 1 作用:判断直线是否在平面内(2)公理 2:过不在一条直线上的三点,有且只有一个平面。
符号表示为: A、B、C 三点不共线有且只有一个平面α,使A∈α、 B∈α、 C∈α。
高中数学必修二立体几何知识点总结
第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,为斜高,l 为母线)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V= ; S=第二章 直线与平面的位置关系2.11 2 三个公理:(符号表示为A ∈LB ∈L => A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 =〉 有且只有一个平面α,使A ∈α、B ∈α、C ∈α.公理(3公理2。
1 异面直线: 不同在任何一个平面内,没有公共点。
2 符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
3 4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角.2。
1。
3 - 2。
1。
4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 -— 有无数个公共点(2)直线与平面相交 -- 有且只有一个公共点(3)直线在平面平行 —— 没有公共点L A · α C · B· A · α =>a ∥c指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质21简记为:线线平行,则线面平行。
符号表示: a αb β =〉 a∥αa∥b21符号表示:a βb βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3简记为:线面平行则线线平行。
(完整word版)高中数学必修二立体几何知识点总结
第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理(3公理 L A · α C · B · A · α2.1.2 空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
必修二立体几何知识点
高中数学必修2知识点第一章空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''EDCBAABCDE-或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EDCBAP-几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''EDCBAP-几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
苏教版高中数学知识点必修2空间几何知识讲解
(2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥 P A' B'C ' D' E '
公理 4 作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补
4 注意点:
① a'与 b'所成的角的大小只由 a、b 的相互位置来确定,与 O 的选择无关,为简便,点 O 一般取在两直
线中的一条上;
② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是2直角时,我们就说这两条异面直线互相垂直,记作 a⊥b;
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
1.2 空间几何体的三视图和直观图
1 三视图:
正视图:从前往后
侧视图:从左往右
俯视图:从上往下
2 画三视图的原则:
长对齐、高对齐、宽相等
3 直观图:斜二测画法
4 斜二测画法的步骤:
(1).平行于坐标轴的线依然平行于坐标轴;
(2).平行于 y 轴的线长度变半,平行于 x,z 轴的线长度不变;
④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系
1、直面内 —— 有无数个公共点
(2)直线与平面相交 —— 有且只有一个公共点
(完整版)高中数学必修二立体几何知识点梳理.docx
立体几何初步1、柱、锥、台、球的结构特征( 1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱ABCDE A' B' C ' D ' E '或用对角线的端点字母,如五棱柱AD '几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
( 2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P A' B' C ' D ' E '几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
( 3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P A' B' C ' D ' E '几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点( 4)圆柱:定义:以矩形的一边所在的直线为轴旋转, 其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
( 5)圆锥:定义:以直角三角形的一条直角边为旋转轴, 旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高中数学必修二立体几何知识点梳理
高中数学必修二立体几何知识点梳理立体几何初步1、柱、锥、台、球的结构特征1) 棱柱:定义为有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
按底面多边形的边数分类,可分为三棱柱、四棱柱、五棱柱等。
表示可用各顶点字母,如五棱柱ABCDE或用对角线的端点字母,如五棱柱AD''''。
几何特征为两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2) 棱锥:定义为有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
按底面多边形的边数分类,可分为三棱锥、四棱锥、五棱锥等。
表示可用各顶点字母,如五棱锥P-ABCDE。
几何特征为侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3) 棱台:定义为用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
按底面多边形的边数分类,可分为三棱台、四棱台、五棱台等。
表示可用各顶点字母,如五棱台P-ABCDE。
几何特征为上下底面是相似的平行多边形;侧面是梯形;侧棱交于原棱锥的顶点。
4) 圆柱:定义为以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征为底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。
5) 圆锥:定义为以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征为底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。
6) 圆台:定义为用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分。
几何特征为上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。
7) 球体:定义为以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
几何特征为球的截面是圆;球面上任意一点到球心的距离等于半径。
(完整版)高中数学必修二立体几何知识点总结
第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理(3公理 L A · α C · B · A · α2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
高中数学必修二立体几何立体几何总知识点
立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''EDCBAABCDE-或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EDCBAP-几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''EDCBAP-几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
苏版高考数学二立体几何初步知识点总结
苏版高考数学二立体几何初步知识点总结立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高, 为斜高,l 为母线)(3)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V = ; S =5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
必修二立体几何知识点
必修二立体几何知识点一、引言本文档旨在概述高中必修二课程中立体几何的核心知识点,为教师和学生提供一个清晰的学习指南。
二、立体图形的基础1. 点、线、面的关系- 点的位置关系:共面、异面- 线的位置关系:平行、相交、异面- 面的位置关系:平行、相交2. 立体图形的分类- 多面体:棱柱、棱锥、圆柱、圆锥、球体- 旋转体:球面、圆锥面、圆柱面三、多面体1. 棱柱- 棱柱的结构特征- 棱柱的体积和表面积计算2. 棱锥- 棱锥的结构特征- 棱锥的体积和表面积计算3. 棱台- 棱台的结构特征- 棱台的体积计算四、旋转体1. 圆柱和圆锥- 结构特征- 体积和表面积计算- 旋转体的方程表示2. 球体- 结构特征- 体积和表面积计算五、立体图形的截面1. 截面的概念- 截面的定义- 截面的形状分类2. 截面的性质- 截面与原图形的关系- 截面的计算方法六、空间向量1. 空间向量的定义- 空间向量的基本概念- 空间向量的加法、减法和数乘2. 空间向量的应用- 点到直线的距离- 直线到平面的距离- 立体图形的体积计算七、立体角1. 立体角的定义- 立体角的概念- 立体角的度量2. 立体角的性质- 立体角与平面角的关系- 立体角的计算方法八、结语本文档提供的知识点是理解和掌握立体几何的基础。
教师应根据学生的实际情况,适当调整教学进度和深度。
文档格式说明:- 本文档应使用Word格式编写,确保所有文本清晰可读。
- 各主要部分应使用标题和子标题进行区分,以便快速导航。
- 公式和图表应使用适当的工具插入,并确保其准确性和清晰度。
- 文档应进行适当的排版,以确保整体观感良好,易于阅读和理解。
- 应提供足够的页边距和行间距,以便于打印和复制。
- 文档应保存为.docx格式,以确保可编辑性和可修改性。
请注意,这是一个教学文档的概要结构,具体内容需要根据教学大纲和实际教学需求进行填充和调整。
高中数学必修二立体几何知识点总结
第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,为斜高,l 为母线)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V= ; S=第二章 直线与平面的位置关系2.11 平面含义2三个公理:(1符号表示为A ∈LB ∈L =〉 A ∈αB ∈α (2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A∈α、B ∈α、C ∈α。
公理(3公理2。
1 异面直线: 不同在任何一个平面内,没有公共点。
2 符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
3 4 注意点:① a ’与b ’所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2。
1.3 - 2。
1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点(3)直线在平面平行 —— 没有公共点L A · α C · B· A · α =>a ∥c指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2。
2。
直线、平面平行的判定及其性质21简记为:线线平行,则线面平行。
符号表示: a αb β =〉 a∥αa∥b21符号表示:a βb βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3简记为:线面平行则线线平行。
苏教版高中数学必修2-1.1知识汇总:空间几何体的结构
空间几何体的结构1.棱柱的结构特征(1)定义: 有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.(2)各部分名称:①底面:棱柱中两个互相平行的面叫做棱柱的底面,简称底;②侧面:其余各面叫做棱柱的侧面;③棱:两个面的公共边叫做棱柱的棱.④侧棱:相邻侧面的公共边叫做棱柱的侧棱;⑤顶点:侧面与底面的公共点叫做棱柱的顶点.⑥对角线:不在同一面上的两个顶点的连线叫做棱柱的(体)对角线.⑦对角面:不相邻的两条侧棱确定的平面叫棱柱的对角面.⑧高:两个底面的距离叫做棱柱的高.我们用表示底面各顶点的字母表示棱柱如图的棱柱表示为:棱柱ABCDE—A’B’C’D’E’(3)棱柱的性质①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形(4)棱柱的分类:①按底面多边形的边数分类:三棱柱,四棱柱…..n棱柱②按侧棱与底面的位置关系分类:(5)特殊的四棱柱为了便于理解与掌握,我们把四棱柱与平行六面体及特殊的平行六面体之间的关系图示如下:2.棱锥的结构特征(1)定义: 有一个面是多边形,其余各面都是有一个公共顶点的三角形.由这些面所围成的几何体叫做棱锥.这个多边形的面叫做棱锥的底面(或底).有公共顶点的各个三角形面叫做棱锥的侧面;各个侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.由顶点到底面的垂线段(SO)叫做棱锥的高.如图的棱锥可表示为S—ABC D.(2)特殊的棱锥—正棱锥①如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心,这样的棱锥叫正棱锥②特殊的正三棱锥:底面和侧面全等的正三棱锥为正四面体.(3)一般棱锥的性质如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比,等于截得的棱锥的高与已知棱锥的高的平方比.(4)正棱锥的性质①各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等,它叫做正棱锥的斜高②棱锥的高斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形(5)棱锥的分类:①按底面多边形的边数可分为:三棱锥、四棱锥、……n棱锥….。
高中数学必修二立体几何知识点总结
第一章立体几何初步特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V= ;S=第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系1 平面含义:平面是无限延展的2 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.符号表示为A∈LB∈L =>A∈αB∈α公理1作用:判断直线是否在平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C三点不共线=> 有且只有一个平面α,使A∈α、B∈α、C∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β =>α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据.空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线a∥bc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;②两条异面直线所成的角θ∈(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
— 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
高中数学必修二立体几何知识点总结(供参考)
第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈α B ∈α(2符号表示为:A 、B 、C 三点不共线=> 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。
公理(3公理1 异面直线: 不同在任何一个平面内,没有公共点。
2 符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
3 4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点L A · α C · B· A · α =>a ∥c2π(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
江苏省盐城中学高中数学立体几何知识点总结
高一立体几何知识梳理盐城中学高一数学组一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱面的中心,这样的棱锥叫做正棱锥.2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征ABC D POH4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体. 7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2Srl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法I,则l∥α (用于判断);⑴利用定义(反证法):lα=∅⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o o o (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的
几何体称为球体.
7-2 球的结构特征
⑴ 球心与截面圆心的连线垂直于截面;
⑵ 截面半径等于球半径与截面和球心的距离的平方差:r2 = R2 – d2
⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线;
球外切正方体,球直径等于正方体的边长.
对棱间的距离为 2 a (正方体的边长) 2
正四面体的高
6 3
a
(
=
2 3
l正方体体对角线 )
正四面体的体积为
2 12
a 3 (V正方体
− 4V小三棱锥
=
1 3
V正方体
)
正四面体的中心到底面与顶点的距离之比为1: 3( =
1 6
l正方体体对角线:12
l正方体体对角线
)
3 、棱台的结构特征
3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的
部分称为棱台.
3.2 正棱台的结构特征
(1)各侧棱相等,各侧面都是全等的等腰梯形;
(2)正棱台的两个底面和平行于底面的截面都是正多边形;
(3)正棱台的对角面也是等腰梯形;
(4)各侧棱的延长线交于一点.
4 、圆柱的结构特征
4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲
面所围成的几何体叫圆柱.
4.2 圆柱的性质
(1)上、下底及平行于底面的截面都是等圆;
(2)过轴的截面(轴截面)是全等的矩形.
4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩
形.
4.4 圆柱的面积和体积公式
S 圆柱侧面 = 2π·r·h (r 为底面半径,h 为圆柱的高)
V 圆柱 = S 底 h = πr2h 5、圆锥的结构特征
高一立体几何知识梳理
盐城中学高一数学组
一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的
面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其
2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距 离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的 平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的 高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;
Ⅲ、两个特征三角形:(1)POH (包含棱锥的高、斜高和底面内切圆半径);(2)POB
(包含棱锥的高、侧棱和底面外接圆半径)
正棱锥侧面积:
S正棱椎
=
1 2
ch'
(
c
为底周长,
h'
为斜高)
P
体积:V棱椎
=
1 3
Sh
(
S
为底面积,
h
为高)
D
C
O
H
A
B
正四面体:各条棱长都相等的三棱锥叫正四面体
对于棱长为 a 正四面体的问题可将它补成一个边长为 2 a 的正方体问题. 2
l2 = r2 + h2
5.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径
的扇形.
6、圆台的结构特征
6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间
的部分称为圆台.
6.2 圆台的结构特征
⑴ 圆台的上下底面和平行于底面的截面都是圆;
⑵ 圆台的截面是等腰梯形;
5.1 圆锥的定义:以直角三角形的一直角边所在的直
线为旋转轴,其余各边旋转而形成的曲面所围成的几
何体叫做圆锥.
5.2 圆锥的结构特征
(1) 平行于底面的截面都是圆,截面直径与底面
直径之比等于顶点到截面的距离与顶点到底面的距
离之比;
(2)轴截面是等腰三角形;
(3)母线的平方等于底面半径与高的平方和:
图 1-5 圆锥
⑶ 圆台经常补成圆锥,然后利用相似三角形进行研究.
6.3 圆台的面积和体积公式
S 圆台侧 = π·(R + r)·l (r、R 为上下底面半径) V 圆台 = 1/3 (π r2 + π R2 + π r R) h (h 为圆台的高) 7 球的结构特征
7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转
二 、点、直线、平面之间的关系
(一)、立体几何网络图:
⑹
⑴ 公理 4
⑺ *三垂线定理 *三垂线逆定理 ⑻
⑵ 线线平行
⑶
⑾ ⑿
⑼ 线线垂直
⑽
⑷ 线面平行
⑸
面面平行
线面垂直
⒀ ⒁
⒂ 面面垂直
⒃
1、线线平行的判断: (1)平行于同一直线的两直线平行.
(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行.
球的表面积: S = 4 R2
空间几何体的体积
柱体的体积
:V
= S底 h ;锥体的体积
:V
=
1 3
S底
h
台体的体积 :V = 13(S上 +
S上 S下
+ S下 ) h
;球体的体积:V
=
4 R3 3
斜二测画法: (1)平行于坐标轴的线依然平行于坐标轴;(2)平行于 y 轴的线长度变半,
平行于 x,z 轴的线长度不变;
7-3 球的面积和体积公式
S 球面 = 4 π R2 (R 为球半径); (三)空间几何体的表面积与体积 空间几何体的表面积 棱柱、棱锥的表面积:各个面面积之和
V 球 = 4/3 π R3
圆柱的表面积 : S = 2 rl + 2 r2
圆锥的表面积: S = rl + r2
圆台的表面积: S = rl + r2 + Rl + R2
正四棱柱
正方体
性质:
Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等;
Ⅱ、两底面是全等多边形且互相平行; 棱柱的面积和体积公式
S直棱柱侧 = ch ( c 是底周长, h 是高)
S 直棱柱表面 = c·h+ 2S 底
V 棱柱 = S 底 ·h
2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥. (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底 面的中心,这样的棱锥叫做正棱锥.
中,这条直线称为旋转体的轴.
(二) 几种空间几何体的结构特征 1 、棱柱的结构特征
1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成 的空间几何体叫做棱柱.
1.2 棱柱的分类
图 1-1 棱柱
底面是四边形
棱柱
底面是平行四边形
侧棱垂直于底面
四棱柱
平行六面体
直平行
底面是矩形
底面是正方形
六面体
长方体
棱长都相等