新东方线性代数笔记--第五讲_特征值与特征向量--李永乐

新东方线性代数笔记--第五讲_特征值与特征向量--李永乐
新东方线性代数笔记--第五讲_特征值与特征向量--李永乐

新东方线性代数笔记(主讲:李永乐)

第五章 特征值与特征向量

第五章 特征值与特征向量

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

(完整版)线性代数第五章特征值、特征向量试题及答案

第五章 特征值和特征向量 一、特征值与特征向量 定义1:设A 是n 阶矩阵,λ为一个数,若存在非零向量α,使λαα=A ,则称数λ为矩阵A 的特征值,非零向量α为矩阵A 的对应于特征值λ的特征向量。 定义2:()E A f λλ-=,称为矩阵A 的特征多项式, )(λf =0E A λ-=, 称为矩阵A 的特征方程,特征方程的根称为矩阵A 的特征根 矩阵E A λ-称为矩阵A 的特征矩阵 齐次方程组(0)=-X E A λ称为矩阵A 的特征方程组。 性质1:对等式λαα=A 作恒等变形,得(0)=-αλE A ,于是特征向量α 是齐次方程组(0)=-X E A λ的非零解向量,由齐次线性方程组有非零解的充要条件知其系数行列式为零,即0=-E A λ,说明A 的特征值λ为 0E A λ-=的 根。 由此得到对特征向量和特征值的另一种认识: (1)λ是A 的特征值?0=-E A λ,即(λE -A )不可逆.(2)α是属于λ的特征向量?α是齐次方程组(0)=-X E A λ的非零解. 计算特征值和特征向量的具体步骤为: (1)计算A 的特征多项式, ()E A f λλ-=(2)求特征方程)(λf =0E A λ-=的全部根,他们就是A 的全 部特征值;(3)然后对每个特征值λ,求齐次方程组(0)=-X E A λ的非零解,即属于λ的特征向量. 性质2:n 阶矩阵A 的相异特征值m λλλΛΛ21,所对应的特征向量 21,ξξ……ξ线性无关 性质3:设λ1,λ2,…,λn 是A 的全体特征值,则从特征多项式的结构可得到: (1)λ1+λ2+…+λ n =tr(A )( A 的迹数,即主对角线上元素之和). (2)λ1λ2…λn =|A |. 性质4:如果λ是A 的特征值,则 (1)f(λ)是A 的多项式f(A )的特征值. (2)如果A 可逆,则1/λ是A -1的特征值; |A |/λ是A *的特征值. 即: 如果A 的特征值是λ1,λ2,…,λn ,则 (1)f(A )的特征值是f(λ1),f(λ2),…,f(λn ). (2)如果A 可逆,则A -1的特征值是1/λ1,1/λ2,…,1/λn ; 因为A AA =*, A *的特征值是|A |/λ1,|A |/λ2,…,|A |/λn . 性质5:如果α是A 的特征向量,特征值为λ,即λαα=A 则 (1)α也是A 的任何多项式f(A )的特征向量,特征值为f(λ); (2)如果A 可逆,则α也是A -1的特征向量,特征值为1/λ;α也是A *的特征向量,特征值为|A |/λ 。 1122 ,.m m A k kA a b aA bE A A A A A λλλλλλ-*??++????? ????是的特征值则:分别有特征值 α是A 关于λ的特征向量,则α也是上述多项式的特征向量。 推论:(1)对于数量矩阵λE ,任何非零向量都是它的特征向量,特征值都是λ. (2)上三角、下三角、对角矩阵的特征值即对角线上的各元素. (3)n 阶矩阵A 与他的转置矩阵T A 有相同的特征多项式,从而有相同的特征值,但是它们的特征向量可能不相同.

看我是怎么整理考研数学笔记的

得数学者得天下,数学的重要性不言自明,一定要好好准备,我高中,大学数学底子还不错,自己也努力了,感觉数学里面最容易的还是线性代数和概率论和数理统计,因为题型有限,变化不大,对比历年真题就会发现。真正难的是高数,因为花样太多了,虽然考点有限,但是怎么个综合法,你就不知道了,所以高数题目要多见识,今年考研高数证明题我就看过很类似的,所以很快就做出来了,没见过的同学都不知道怎么下手。我今年数学考得不太好的 原因是我线性代数和概率论各算错一道题目,后悔死了,所以大家在准备考研时,别忘记提 醒自己时刻细心做题。数学的辅导书我很反感陈文登的,比较支持李永乐的,蔡遂林的也不错。 我数学资料做了一大批。要不我把做过的辅导书点评下,仅供参考! 2008数学大纲解析:由于2009没出版,只能用2008的,这是本好书,都是真题,分析透彻,建议买。 轻轻松松考高分线代概率历年真题分类解析——李永乐,这本书对历年真题对比分析, 让你知道考研真正考什么?该准备什么。强烈推荐。 2006考研数学历年真题解析与指导--高教,图书馆借的,现在不出版了,也是分析真题, 像大纲解析,如果图书馆有的话,可以看看。 2009数学考试分析--高教,近3年的试题分析,数一到数四都包括,花2天时间琢磨出题的变化,觉得不错,你会发现一些规律。 武钟祥的历年真题分析,这是我认为真题分析最全面最好的书,里面涵盖了所以年份的试题,数一到数四的都有,大家要知道,数学题目经常是今年数学一考了,明年后年可能数学三考,只是变换出题的方式,大家不要只看数学一的题目。强烈推荐。其实上面这么多 书我觉得最好的还是这本,有一本就够了。 线性代数辅导讲义--李永乐,这本书要多看几遍,越看越好,越看越懂,然后做真题。强烈推荐。 概率论与数理统计辅导讲义--龚兆仁,还可以,有些地方有些繁琐,有些根本不会考的也作了详细介绍。 数学基础过关660题--李永乐。不是很必要买,做了没什么感觉。 陈文登的复习指南,我不推荐买,原因就不说了,你们在网上搜搜看评价,本人用过,的确不怎么样。 李永乐的全书,贴合实际,但是稍显繁琐,很多同学到了11月底才看完,根本没时间去想,思 考。感觉知识点是全,是细,但是你记起来就不容易了。数学的记不像政治,数学 要练习,多思考才能有体会,才能记得深刻,最后才能灵活用。如果买全书的话,要注意时

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

线性代数教案-矩阵的特征值与特征向量

线性代数教学教案 第5章 矩阵的特征值与特征向量 授课序号01 教 学 基 本 指 标 教学课题 第5章 第1节 特征值与特征向量 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合 教学重点 理解矩阵的特征值和特征向量的概念及性质以及矩阵的特征值和特征向量的求法 教学难点 矩阵的特征值和特征向量的求 法 参考教材 同济版《线性代数》 作业布置 课后习题 大纲要求 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。 教 学 基 本 内 容 一.特征值与特征向量的概念 1.设是n 阶方阵,如果存在数和n 维非零列向量x ,使关系式=成立,那么,称为方阵的特征值,非零列向量称为的对应于特征值的特征向量. 2.特征方程:称,即=为方阵A 的特征方程. 3.特征多项式与特征矩阵:是关于的n 次多项式,称为方阵的特征多项式,记作. 称为的特征矩阵. 二.特征值与特征向量的性质 1.设矩阵A 的特征值为,则 (1) ; (2) . 2.矩阵的迹:设矩阵,称为的迹,记为tr . A λAx x λλA x A λ0-=A E λ111212122212n n n n nn a a a a a a a a a λ λλ --- 0||λ-A E λA ()A f λλ-A E A ()n n ij a ?=n ,,λλλ 21121122n nn a a a λλλ+++=+++ 12n A λλλ= A ()n n ij a ?=1122nn a a a +++ A A

3.矩阵和有相同的特征值. 4.设是n 阶可逆矩阵,则 (1) 的特征值都不为零; (2) 若是的特征值,则是的特征值. 5.设是关于的多项式,是n 阶方阵,此时,若是的特征值,则是的特征值,此时称为的特征多项式. 6.定理:设是n 阶方阵的m 个特征值, 依次是与之对应的特征向量. 如果互不相等,则线性无关. 三.例题讲解 例1.求A 的特征值和特征向量. 例2.求矩阵A 的特征值和特征向量. 例3.求矩阵 的特征值和特征向量. 例4.设是n 阶方阵的特征值, 证明:的特征值. 例5.已知3阶方阵的特征值为,1,2,求. 例6.已知为n 阶方阵,是A 的两个不同的特征值,是的分别对应于的特征向量,证明:不是A 的特征向量. 例7.设分别为某地区目前的环境污染水平与经济发展水平. 分别为该地区t 年后的环境污染水平和经济发展水平,有关系式如下:,试预测该地区t 年后的环境污染水平和经济 发展水平之间的关系. A T A A A λA 1-λ1-A 10()m m f x a x a x a =+++ x A 10()m m f a a a =+++ A A A E λA ()f λ()f A ()f A A 12,,,m λλλ A 12,,,m x x x 12,,,m λλλ 12,,,m x x x ?? ????=2134???? ??????-=100031111211020413A -????=????-?? λA 22λ是A A 1-325A A -A 12,λλ12,x x A 12,λλ12+x x 00,x y ,t t x y ()-1-1-1-1=3+=1,2,,=2+2t t t t t t x x y t k y x y ?? ?

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

第五章 矩阵的特征值与特征向量 习题

第五章 矩阵的特征值与特征向量 习题 1. 试用施密特法把下列向量组正交化: (1)???? ? ??=931421111) , ,(321a a a ; (2)?????? ? ??---=011101110111) , ,(321a a a . 2. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 3. 求下列矩阵的特征值和特征向量: (1)???? ? ??----20133 5212; (2)???? ? ??633312321. 4. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 5. 设λ≠0是m 阶矩阵A m ?n B n ?m 的特征值, 证明λ也是n 阶矩阵BA 的特征值. 6. 已知3阶矩阵A 的特征值为1, 2, 3, 求|A 3-5A 2+7A |. 7. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 8. 设矩阵???? ? ??=50413102x A 可相似对角化, 求x . 9. 已知p =(1, 1, -1)T 是矩阵???? ? ??---=2135 212b a A 的一个特征向量.

(1)求参数a , b 及特征向量p 所对应的特征值; (2)问A 能不能相似对角化?并说明理由. 10. 试求一个正交的相似变换矩阵, 将对称阵???? ? ??----020212022化为对角阵. 11. 设矩阵????? ??------=12422421x A 与???? ? ??-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ. 12. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A . 13. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A . 14. 设???? ? ??-=340430241A , 求A 100.

线性代数中关于特征值和特征向量的方法(刘妍原创)

线性代数中关于特征值和特征向量的方法 万学教育 海文考研 考研教学与研究中心 刘妍 基础阶段的复习我们一般在进入4月份以后,很多同学都开始启动线性代数的复习了。有些同学对于线代总是感觉知识点很散,对于一些解题的方法感觉学起来不容易记。其实线性代数是方法性比较强的一门学科,如果能把各个章节串联的去学习,那么对于线性代数的学习可能会更加的游刃有余一些。下面我就特征值,特征向量这一部分给大家说几种结题方法: 一、方法一: (1) 取定数域P 上的线性空间n V 的一个基, 写出线性变换T 在该基下的矩阵A ; (2) 求出A 的特征多项式?λ()在数域P 上的全部根, 它们就是T 的全部特征值; (3) 把求出的特征值逐个代入方程组, 解出矩阵A 的属于每个特征值的全部线性 无关的特征向量; (4) 以A 的属于每个特征值的特征向量为n V 中取定基下的坐标, 即得T 的相应特征 向量. 例1 求矩阵 ?? ??? ?????=A 122212221, 的特征值与特征向量. 解 容易算出A 的多项式 )(det A -I λ= 12 2 2 1 22 21 ---------λλλ) 5()1(2-+=λλ, 所以T 的特征值是11-=λ(二重)和.52=λ 特征方程0)(=-I x A λ的一个基础解系为T -)1,0,1(, T -)1,1,0(. T 的属于1λ的两个线性无关的特征向量为,311x x y -= 322x x y -=. 所以T 的属于1λ的全部特征向量为2211y k y k + (其中k k k ∈21,且不同时为零). 特征方 程的一个基础解系为T )1,1,1(. 记3213 λλλ++=y , 则T 的属于2λ 的全体特征向量为33y k (k k ∈3且不为零).

经验|数一138分!高分学姐教你拿下数学!

经验|数一138分!高分学姐教你拿下数学! 学姐在2020年的研究生考试中,数学一得到了138分。其实能得到这个分数,学姐也是喜出望外的,毕竟走出考场的时候都不想考下午的专业课了。下面学姐把复习时听过的视频课、用过的习题、做过的模拟卷和时间安排整理一下,给学弟学妹们参考。 先来说一下学姐的数学基础——高考135分,不高不低。大学期间高数、线代、概率都在90~95之间,基础不差,但是到复习考研数学的时候也都忘光光了。 一、时间安排及资料推荐 2019年5月初,学姐就开始复习数学啦。毕竟中学时代数学的阴影太恐怖,余威震于殊俗啊!学姐花了46天的时间看完了李永乐老师的线性代数强化课、张宇老师的高数和概率论强化课(如果没出就看前一年的),并跟着老师的节奏记了N多的笔记(然而记完了并没有再看过)。 高数是保证每天都要听课+做题的,线代和概率可以今天听线代的课、做概率的题, 明天听概率的课、做线代的题。这样可以把精力分散开来,不至于太松懈,也不至于太紧张。 1线性代数 线性代数用李永乐老师讲课配套的讲义来复习事半功倍,有一些补充的、讲义上没有的题,可以用便利贴粘在书上。这本辅导讲义非常精

彩!刚开始做可能有点蒙,因为线代的题目比较综合,经常要用到还没有学过的后面的知识,所以听李永乐老师的课程就尤为重要! 李永乐老师不仅讲得好,师德也很棒,他经常在微信公众号和微博答疑,还挑选高质量的题目给同学们练手。给李永乐老师点赞! 2概率论 概率论没有用辅导讲义,跟着张宇老师记笔记就可以了(概率论的笔记后期经常翻看)。张宇老师的概率论课程足够用了,但这里再推荐另一位数学老师——方浩。方浩老师概率论课程的卷积公式部分讲得很好,个人觉得强过张宇老师(张宇老师比较推崇用定义法来解)。 个人认为两种方法都要会做,一方面防止考场上一种算法算不出来;另一方面,用定义法算出来的题可以用卷积公式重新做一遍对照对照,如果得数一致,那么心里自然更加有底啦。 3高等数学 高等数学部分,学姐没有看视频课,但是刷了很多题。全书类用的是李正元范培华全书的高数部分,这本书的高数部分非常精彩经典,配套的练习册也非常棒。不仅很有考研的风格,难度也把握得好。 刷过这本书的高数部分再刷李王全书的高数部分,就能游刃有余啦,这对心态的稳定是个莫大的支撑。第二遍可以把二重积分、三重积分、两种曲线曲面积分放在一起刷,泰勒公式和级数放在一起刷,这样既有利于后期做综合题,也不至于复习一章忘记了另一章。

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

线性代数第五章特征值与特征向量自测题

第五章《特征值与特征向量》自测题(100分钟) 一、填空题:(共18分,每小题3分) 1、设三阶矩阵A 的特征值为-1,1,2,则A -1的特征值为( );A *的特征值为 ( );(3E +A )的特征值为( )。 2、设三阶矩阵A =0,则A 的全部特征向量为( )。 3、若A ~E ,则A =( )。 4、已知A =??????????x 10100002与=B ???? ??????-10000002y 相似,则x =( ),y =( )。 5、设三阶实对称矩阵A 的特征值是1,2,3,矩阵A 的属于特征值1,2的特征向量分别是 1(1,1,1)T α=-,T )1,2,1(2---=α,则A 的属于特征值3的特征向量是( )。 6、设n 阶方阵A 有n 个特征值分别为2,3,4,…,n ,n +1,且方阵B 与A 相似,则 |B-E |=______________ 二、选择题(共18分,每小题3分) 1、已知三阶矩阵A 的特征值是0,-2,2,则下列结论中不正确的是 (A ) 矩阵A 是不可逆矩阵 (B ) 矩阵A 的主对角线元素之和为0 (C ) 特征值2和-2所对应的特征向量是正交的 (D ) AX =0的基础解系由一个向量组成 2、矩阵A ??????????=300 030000与矩阵( )相似。 (A )??????????000030300; (B )??????????300130010; (C )??????????300000003; (D )???? ??????310031000 3、下述结论正确的有( )。 (A )n 阶矩阵A 可对角化的充分必要条件是A 有n 个互不相同的特征值; (B )n 阶矩阵A 可对角化的必要条件是A 有n 个互不相同的特征值; (C )有相同特征值的两个矩阵一定相似; (D )相似的矩阵一定有相同的特征值。 4、下述结论正确的有( ),其中A 为n 阶矩阵。 (A )方程0)(0=-x A E λ的每一个解向量都是对应于特征值0λ的特征向量; (B )若21,αα为方程0)(0=-x A E λ的一个基础解系,则2211ααC C +(21,C C 为非 零常数)是A 的属于特征值0λ的全部的特征向量;

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数学习指导第五章矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 一.内容提要 1 . 特征值和特征向量 定义1 设() ij n n A a ?=是数域P 上的n 阶矩阵,若对于数域P 中的数λ,存在数域P 上 的非零n 维列向量X ,使得 X AX λ= 则称λ为矩阵A 的特征值,称X 为矩阵A 属于(或对应于)特征值λ的特征向量 注意:1)() ij n n A a ?=是方阵; 2)特征向量 X 是非零列向量; 3)方阵 () ij n n A a ?= 与特征值 λ 对应的特征向量不唯一 4)一个特征向量只能属于一个特征值. 2.特征值和特征向量的计算 计算矩阵A 的特征值与特征向量的步骤为: (1) 计算n 阶矩阵A 的特征多项式|λE -A |; (2) 求出特征方程|λE -A |=0的全部根,它们就是矩阵A 的全部特征值; (3) 设λ1 ,λ2 ,… ,λs 是A 的全部互异特征值。 对于每一个λi ,解齐次线性方程组()i E A X λ-=0,求出它的一个基础解系,该基础解系的向量就是A 属于特征值λi 的线性无关的特征向量,方程组的全体非零解向量就是A 属于特征值λi 的全体特征向量. 3. 特征值和特征向量的性质 性质1 (1)若X 是矩阵A 属于特征值λ的特征向量,则kX (0k ≠)也是A 属于λ的特 征向量; (2)若12,, ,s X X X 是矩阵A 属于特征值λ的特征向量,则它们的非零线性组合 1122s s k X k X k X +++也是A 属于λ的特征向量; (3)若A 是可逆矩阵,λ是A 的一个特征值,则 λ 1是A — 1的一个特征值,λ||A 是 A *的一个特征值; (4)设λ是n 阶矩阵A 的一个特征值,f (x )= a m x m + a m-1x m -1 + … + a 1x + a 0 为一个多项式,则()f λ是f (A )的一个特征值。 性质2(1) nn n a a a +???++=+???++221121λλλ (2) || 21A n =???λλλ

线性代数空间向量和特征值特征向量

线性代数空间向量和特征值特征向量1、空间向量

2、特征值特征向量 凯程教育: 凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观口号:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业;

服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。 对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。 建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。 有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。此外,最好还要看一下他们的营业执照。

线性代数第五章习题答案

思考题5-1 1. 1123123100,000=?+?+?=?+?+?a a a a 0a a a . 2.不一定。例如,对于123101,,012?????? ===???????????? a a a ,它们中的任两个都线性无关,但 是123,,a a a 是线性相关的。 3. 不一定。也可能是2a 能由13,a a 线性表示,还可能是3a 能由12,a a 线性表示。 4. 不一定。例如,对于12121100,;,0012-???????? ====???????????????? a a b b 。12,a a 和12,b b 这两个 向量组都线性相关,但1122,++a b a b 却是线性无关的。 5. 向量组121,,,,n n +a a a a 线性无关。根据定理5-4用反证法可以证明这一结论。 习题5-1 1.提示:用行列式做。 (1)线性无关。 (2)线性相关。. 2. 0k ≠且1k ≠。 3.证:1212,,,1,,,,n n ==∴e e e E e e e 线性无关。 设[]12,,,,T n b b b =b 则1122.n n b b b =+++b e e e 4. 证法1:因为A 可逆,所以方程组=Ax b 有解。根据定理5-1,向量b 能由A 的列向量组12,,,n a a a 线性表示,所以向量组12,,,,n a a a b 线性相关. 证法2:通过秩或根据m n >时m 个n 元向量一定线性相关也可马上证明。 5. .证: (1)因为A 的列向量组线性相关,所以齐次线性方程组=Ax 0有非零解,设≠u 0是它的非零解,则.=Au 0 由=B PA ,得.=Bu 0可见=Bx 0有非零解,所以B 的列向量组线性相关。 (2)若P 可逆,则1-=A P B 。由(1)的结论可知,B 的列向量组线性相关时,A 的列向量组也线性相关,所以A 和B 的列向量组具有相同的线性相关性。 注:该题也可根据性质5-6和性质5-3来证明。 6. 证:由A 可逆知,A 的列向量组线性无关。根据定理5-6,增加两行后得到的矩阵B 的列向量组也线性无关.

精心整理线性代数公式大全

1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1 (1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2 D ,则(1)2 2 (1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3 D ,则3 D D =; 将D 主副角线翻转后,所得行列式为4 D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式 : A O A C A B C B O B = =、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子 式; 7. 证明0A =的方法: ①、A A =-; ②、反证法;

线性代数行列式基本概念

目录 一、行列式 (2) 二、矩阵特征值 (2) 三、正定矩阵 (2) 四、幺模矩阵 (3) 五、顺序主子阵 (4) 六、正定二次型 (6) 七、矩阵的秩 (6) 八、初等变换(elementary transformation) (7)

一、行列式 见ppt。 二、矩阵特征值 设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。 求矩阵特征值的方法 Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。 |mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。 如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn 如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以从解方程g(m)=0求得。 三、正定矩阵 设M是n阶实系数对称矩阵,如果对任何非零向量 X=(x_1,...x_n),都有XMX′>0(X'为X的转置矩阵 ),就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型,即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。 判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。 判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。 正定矩阵的性质: 1.正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即|A|≠0,则称A为非奇异矩 2.正定矩阵的任一主子矩阵也是正定矩阵。

居于马线性代数第五章答案

第五章 特征值和特征向量 矩阵的对角化答案 1.求下列矩阵的特征值和特征向量: (1) 2331-?? ?-?? (2) 311201112-?? ? ? ?-?? (3) 200111113?? ? ? ?-?? (4) 1234012300120001?? ? ? ? ??? (5) 452221111-?? ?-- ? ?--?? (6) 220212020-?? ?-- ? ?-?? 【解析】(1) 令2331A -??= ?-?? ,则矩阵A 的特征方程为 故A 的特征值为123322λλ+= =。 当132 λ+=时,由1()0I A x λ-=,即 得其基础解系为(16,1T x =-,因此,11k x (1k 为非零任意常数)是A 的对应 于132 λ=的全部特征向量。 当2λ=时,由2()0I A x λ-=,即 得其基础解系为(26,1T x =,因此,22k x (2k 为非零任意常数)是A 的对应于2λ=的全部特征向量。 (2) 令3112 01112A -?? ?= ? ?-?? ,则矩阵A 的特征方程为 故A 的特征值为121,2λλ==(二重特征值)。 当11λ=时,由1()0I A x λ-=,即 得其基础解系为()10,1,1T x =,因此,11k x (1k 为非零任意常数)是A 的对应于11λ=的全部

特征向量。 当22λ=时,由2()0I A x λ-=,即 得其基础解系为()21,1,0T x =,因此,22k x (2k 为非零任意常数)是A 的对应于22λ=的全部特征向量。 (3) 令200111113A ?? ?= ? ?-?? ,则矩阵A 的特征方程为 故A 的特征值为2λ=(三重特征值)。 当2λ=时,由()0I A x λ-=,即 得其基础解系为()()121,1,0,0,1,1T T x x ==,因此,A 的对应于2λ=的全部特征向量为1122k x k x +(其中12,k k 为不全为零的任意常数)。 (4) 令1234012300120001A ?? ? ?= ? ??? ,则矩阵A 的特征方程为 故A 的特征值为1λ=(四重特征值)。 当1λ=时,由()0I A x λ-=,即 得其基础解系为()1,0,0,0T x =,因此,kx (k 为非零任意常数)是A 的对应于1λ=的全部特征向量。 (5) 令45222 1111A -?? ?=-- ? ?--?? ,则矩阵A 的特征方程为 故A 的特征值为1λ=(三重特征值)。 当1λ=时,由()0I A x λ-=,即 得其基础解系为()1,1,1T x =-,因此,kx (k 为非零任意常数)是A 的对应于1λ=的全部特征向量。 (6) 令2202 12020A -?? ?=-- ? ?-?? ,则矩阵A 的特征方程为 按沙路法(课本P2),得 故A 的特征值为1231,4,2λλλ===-。

相关文档
最新文档