第2章有限元法的直接刚度法2杆单元

合集下载

有限元分析基础(推荐完整)

有限元分析基础(推荐完整)

图1-5 驾驶室受侧向力应力云图
图1-6 接触问题结构件应力云图
10
第一章 概述
图1-7 液压管路速度场分布云图
图1-8 磨片热应力云图
图1-9 支架自由振动云图
11
第二章 结构几何构造分析
2.1 结构几何构造的必要性 2.2 结构计算基本知识 2.3 结构几何构造分析的自由度与约束 2.4 自由度计算公式
(1)结点: ① 铰结点;② 刚结点;③ 混合结点。 (2)支座: ① 活动铰支座;② 固定铰支座 ;
③ 固定支座 ;④ 定向支座
15
第二章 结构几何构造分析
2.2.2 结构的分类与基本特征
(1) 按结构在空间的位置分 结构可分为平面结构和空间结构两大类
(2) 按结构元件的几何特征分 ① 杆系结构: 梁、拱、桁架、刚架、桁构结构等 。 ② 板壳结构 ③ 实体结构实体结构的长、宽、高三个尺寸都很 大,具有同一量级。 ④ 混合结构
d. 超静定结构中的多余约束破坏后,结构仍然保持 几何不变性,因而仍有一定的承载能力, 不致整个结构 遭受破坏。
e. 超静定结构由于具有多余的约束,因而比相应的 静定结构具有较大的刚度和稳定性, 在载荷作用下,内 力分布也较均匀,且内力峰值也较静定结构为小。
18
第二章 结构几何构造分析
2.2.3 结构对称性的利用
对称结构在正对称载荷下,对称轴截面上只能产生 正对称的位移,反对称的位移为零;对称结构在反对称 载荷下,对称轴截面上只有反对称的位移,正对称的位 移为零。 (1) 具有奇数跨的刚架
① 正对称载荷作用
(a) 对称刚架
(b) 变形状态分析
(c) 对称性利用
图2-22对称性利用示意图
19

杆件结构的有限元法

杆件结构的有限元法
第一篇 有限元法
第一篇 有限元法
第二章 杆件结构的有限元法
当结构长度尺寸比两个截面方向的尺 寸大得多时,这类结构称为杆件。工程中 常见得轴、支柱、螺栓、加强肋以及各类 型钢等都属于杆件。
杆件结构可分为珩杆和梁两种。
和其他结构采用铰连接的杆称为珩杆。珩杆的连接处可以自由转动, 因此这类结构只承受拉压作用,内部应力为拉压应力。影响应力的 几何因素主要是截面面积,与截面形状无关。 和其他结构采用固定连接的杆称为梁。链的连接处不能自由转动, 因此梁不仅能够承受拉压,而且能承受弯曲和扭转作用。这类杆件 的内部应力状态比较复杂,应力大小和分布不仅与截面大小有关, 而且与截面形状和方位有很大关系。 建立有限元模型时,这两类杆件结构可用相应的杆单元和梁单元离散。
Ke 1 kkaa
ka
ka
中的元素在总刚度矩阵中应在位置第1行、第2行的第1列,第2列
k k
1 11
1 21
k
1 12
k
1 22
0
0
0 0 0
第2个单元的节点号为2和3,则单元刚度矩阵叠加到总刚度矩阵 的第2行、第3行的第2列、第3列元素上
0 0 0
0
k
2 22
k
2 23
0
k
2-3 杆件系统的有限元法
一、铰支杆系统的有限元计算格式 上面求解弹簧系统的有限元方法可以直接用力求解受轴向力的杆件系统。 均质等截面铰支杆,刚度值可由材料力学中力与变形的关系中获得
AE F1 L u1
k AE L
均质等截面铰支杆的力-位移方程可写为
F F12ALE11 11uu12
坐标变换
由杆件组成的机构体系称为杆系,如起重机、桥梁等。 由珩杆组成的杆系称为珩架,由梁组成的杆系称为刚架。

有限元方法

有限元方法
的系数矩阵 K是对称正定的三对角矩阵,因此可采用追赶法 求出 u在节点上的近似值 u1,u2,,un.
§7. 两点边值问题的有限元方法
本节以两点边值问题为例,并从Ritz法和Galerkin法两 种观点出发来叙述有限元法的基本思想及解题过程.
7.1 基于Ritz法的有限元方程 7.2 基于Galerkin法的有限元方程
这样,我们就得到了单元有限元特征式的一般表示形式:
K(i)u(i) F(i)
第二步:总体合成.总体合成就是将单元上的有限元特征 式进行累加,合成为总体有限元方程. 这一过程实际上是将 单元有限元特征式中的系数矩阵(称为单元刚度矩阵)逐个 累加,合成为总体系数矩阵(称为总刚度矩阵);同时将右 端单元荷载向量逐个累加,合成为总荷载向量,从而得到关 于的线性代数方程组.为此,记
于是有 u(i) (ui1,ui)TB (i)u
从而式(7.16)右端第一个和式为
1 nu iT K iu i 1 nu T [ ( B i) T K iB i] u 1 u T K u ,
2 i 1
2 i 1
2
其中
(未标明的元素均为0)这就是总刚度矩阵. 对式(7.16)右端第二个和式,有
其中,p x C 1 a , b , p 0 , q C a , b , q 0 , f C a , b
精选版课件ppt
3
1. 写出Ritz形式的变分问题
与边值问题(7.1)、(7.2)等价的变分问题是:

u*
H
1,使
E
其中,
Ju*m uH in1 EJu J u 1 a u ,u f,u
u j
便得到确定 u1,u2,
,un的线性代数方程组

有限元法

有限元法

李中秋20111323 热能一班第一章有限元法简介有限元法是求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要基础性原理。

将它用于在科学研究中,可成为探究物质客观规律的先进手段。

将它应用于工程技术中,可成为工程设计和分析的可靠工具。

1.1 有限元法发展简史早在1870年,英国科学家Rayleigh就采用假想的“试函数”来求解复杂的微分方程,1909年Ritz将其发展成为完善的数值近似方法,为现代有限元方法打下坚实基础。

20世纪40年代,由于航空事业的飞速发展,设计师需要对飞机结构进行精确的设计和计算,便逐渐在工程中产生了的矩阵力学分析方法;1943年,Courant 发表了第一篇使用三角形区域的多项式函数来求解扭转问题的论文;1956年波音公司的Turner,Clough,Martin和Topp在分析飞机结构时系统研究了离散杆、梁、三角形的单元刚度表达式;1960年Clough在处理平面弹性问题,第一次提出并使用“有限元方法”(finite element met hod)的名称;1955年德国的Argyris出版了第一本关于结构分析中的能量原理和矩阵方法的书,为后续的有限元研究奠定了重要的基础,1967年Zienkiewicz和Cheung出版了第一本有关有限元分析的专著;1970年以后,有限元方法开始应用于处理非线性和大变形问题;我国的一些学者也在有限元领域做出了重要的贡献,如胡海昌于1954提出了广义变分原理[8],钱伟长最先研究了拉格朗日乘子法与广义变分原理之间关系,钱令希在20世纪五十年代就研究了力学分析的余能原理,冯康在20世纪六十年代就独立地、并先于西方奠定了有限元分析收敛性的理论基础。

1.2基本概念1.2.1 有限单元数值计算的思路是将复杂问题简单化,求近似解。

即将复杂的结构分解成若干相对简单的构件或部件,分别分析,然后求解。

而且这种近似解可以收敛于问题的精确解。

有限元杆单元讲解

有限元杆单元讲解
应力: E
第 2 章 杆单元与梁单元
§2.1.1 一维等截面杆单元
轴向拉压变形模式下,该杆单元的行为与弹簧单元相同,因 此杆单元的刚度矩阵为:
EA k L
比照弹簧元的刚度方程,写出杆单元的刚度方程为:
f i k k ui EA 1 1 ui f j k k u j L 1 1 u j
( x) ——杆单元应变 ( x)——杆单元应力
du 应变—位移关系: dx 应力—应变关系: E
第 2 章
杆单元与梁单元
§2.1.1 一维等截面杆单元
(一)直接法导出单元特性 杆单元伸长量: u j ui
应变: L
E L EA EA 杆内力:F A k L L EA 杆的轴向刚度: k L
第2章 杆单元与梁单元
第 2 章
杆单元与梁单元
§ 2.1 等截面杆单元
杆单元
2.1.1 一维等截面杆单元
2.1.2 二维空间杆单元
•如何用直接法求杆单元特性? •如何用公式法导出杆单元特性? •什么是虚功原理? •杆单元刚度矩阵的特点?
第 2 章 杆单元与梁单元
•什么叫坐标变换? •如何对节点位移向量进行坐标变换? •如何对刚度矩阵进行坐标变换? •应用举例
上述方程组中删除第1,3个方程,得到:
2 2 0 0 F1 EA 2 3 1 u 2 P L 0 F 0 1 1 3
解得:
u1 0 PL 位移解: u 2 1 u 3EA 0 3
对于杆单元,定义虚位移如下:

第二章 有限元分析基本理论

第二章  有限元分析基本理论

第二章 有限元分析基本理论有限元法的基本思路是将一个连续求解区域分割成有限个不重叠且按一定方式相互连接在一起的子域(单元),利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场函数。

单元内的场函数通常由未知场函数或其导数在单元各个节点的数值和其插值函数来近似表示。

这样,未知场函数或其导数在各个节点上的数值即成为未知量(自由度)。

根据单元在边界处相互之间的连续性,将各单元的关系式集合成方程组,求出这些未知量,并通过插值函数计算出各个单元内场函数的近似值,从而得到全求解域上的近似解。

有限元将一个连续的无限自由度问题变成离散的有限自由度问题进行求解。

如果将区域划分成很细的网格,也即单元的尺寸变得越来越小,或随着单元自由度的增加及插值函数精度的提高,解的近似程度将不断被改进。

如果单元是满足收敛要求的,近似解最后可收敛于精确解。

2.1 有限元分析的基本概念和计算步骤首先以求解连续梁为例,引出结构有限元分析的一些基本概念和计算步骤。

如图2-1,连续梁承受集中力矩作用。

将结构离散为三个节点,两个单元。

结构中的节点编号为1、2、32.1.1单元分析在有限元分析过程中,第一步是进行结构离散,并对离散单元进行分析,分析的目的是得到单元节点的力与位移的关系。

单元分析的方法有直接法和能量法,本节采用直接法。

从连续梁中取出一个典型单元e ,左边为节点i ,右边为节点j 。

将节点选择在支承点处,单元两端只产生转角位移e i θ、ej θ,顺时针转动为正。

独立的单元杆端内力为弯矩i m 、j m ,顺时针为正。

记:{}e j i eu ⎭⎬⎫⎩⎨⎧=θθ为单元e 的节点位移向量;{}ej i em m f ⎭⎬⎫⎩⎨⎧=为单元e 的杆端力向量。

根据结构力学位移法可得如下平衡方程:⎪⎭⎪⎬⎫+=+=e j e e i e e j ej e e i e e i k k m k k m θθθθ22211211 (2-1)式中:ee e e ee i k k i k k 2412212211====,lEIi e =,EI 、l 分别为单元e 的抗弯刚度和长度。

有限元分析ppt

有限元分析ppt

分 片 近 似位
移 函 数
m(xm ym ) Fmy
vm um
vi i(xi yi )
Fmx ui
vj
y
Fix x
Fiy
uj
j(xj yj)
单 元 平 衡单
刚 方 程
整 体 平 衡总
刚 方 程


求 解
节 点 位



阶梯轴(梁)
A E (1)
(1)
A E (2) (2)
F
1
2
3
3
Φ1
Φ2
Φ3
l(1)
ui
vi
u
v
j j
um
vm
Fxi
Fyi
F
Fxj Fyj
Fxm Fym
y
vm
m
um vj
vi
j uj
i
ui
Fym
m
Fyi
i
Fxm Fyj
j Fxj Fxi
x
平面应变板单元
1.2.3 .1 单元刚度的概念 单元分析的主要工作是:通过研究单元力和单元位移
之间关系,建立单元刚度矩阵。 对任意单元而言,描述单元力和单元位移之间关系的
l(2)
F1
F2
F3
分为两个单元,共有三个节点。整体结构中,节点 载荷F及节点位移Φ都用大写。其脚标为节点在总体 结构中的编码,简称为总码。
1.1 有限元法概述
二.一个简单的应用实例
1. 离散化
① 局部码:各单元内,节点的编码; ② 各节点的位移分量及载荷分量分别用小写φ及f标记 ③ 所有节点位移的集合为该单元节点位移矢量{φ},节

第二章-杆和梁结构的有限元法案例

第二章-杆和梁结构的有限元法案例

第二章
杆和梁结构的有限元法
§2.1.2 弹簧系统分析
注意: 上述弹簧系统的分析求解原理和过程就是有限元 法求解连续体力学问题时对离散后系统的分析求 解原理和过程。
第二章
杆和梁结构的有限元法
§2.1.2 弹簧系统分析
例题1:弹簧系统
已知条件:
求:(a) 系统总刚度矩阵 (b) 节点2,3的位移
单元特性
系统平衡方程
第二章 杆和梁结构的有限元法
KD F
2)单元方程扩大相加法 单元特性
F1 f11
相加
F2 f 21 f12 F3 f 22
系统节点 平衡条件
引入系统节点平衡条件
KD F
系统节点平衡方程
第二章 杆和梁结构的有限元法
2.2 杆单元和平面桁架
杆单元
2.2.1 一维等截面 杆单元
fi k f j k
第二章
k ui k u j
f kd
杆和梁结构的有限元法
2、弹簧系统的集成 1)列节点平衡方程法
F1 f11 F2 f 21 f12 F3 f 22
系统节点 平衡条件
F1 k1u1 k1u2 F2 k1u1 ( k1 k2 )u2 k2u3 F3 k2u2 k2u3
第二章 杆和梁结构的有限元法
k k k
k k
fi k f j k
k ui k u j
kii k k ji
kij k jj
§2.1.2 弹簧系统分析
求解一个弹簧系统:
1)各单元的特性分别为:
第二章 杆和梁结构的有限元法

有限元 2-弹性力学平面问题有限单元法(2.6四结点四边形等参元,2.7八结点曲线四边形等参元,2.8问题补充)

有限元 2-弹性力学平面问题有限单元法(2.6四结点四边形等参元,2.7八结点曲线四边形等参元,2.8问题补充)

存在的。换句话说,为了使上述等参元能保持较好的精度,整体坐标系下所划分的任意四边形单元必须是
凸四边形,即任意内角都不能大于180°。四边形也不能太歪斜,否则会影响其精度。
利用雅可比的逆矩阵,即可求出整体坐标系下形函数的偏导数:
⎧∂Ni ⎫
⎧∂Ni ⎫
⎪ ⎪ ⎨
∂x


⎪ ⎬
=
[J
]−1
⎪ ⎨
∂ξ
⎪ ⎪ ⎬
i=i,j,m,p
为了实现上述结点坐标之间的变换,可利用母元的形函数,得出(ξ,η)和(x,y)之间的坐标变换式。
图形变换具有如下性质: 1. 母元中的坐标线对应于等参元的直线; 2. 四结点正方形母元对应于四个结点可以任意布置的直边四边形等参元; 3. 变换式(2-6-1)能保证相邻等参元的边界位移彼此协调。
《有限元》讲义
2.6 四结点四边形单元
(The four-node quadrilateral element)
前面介绍了四结点的矩形单元 其位移函数:
U = α1 + α 2 x + α3 y + α 4 xy V = α5 + α 6 x + α 7 y + α8 xy
为双线性函数,应力,应变在单元内呈线性变化, 比常应力三角形单元精度高。但它对边界要求严格。本 节介绍的四结点四边形等参元,它不但具有较高的精度,而且其网格划分也不受边界的影响。
对任意四边形单元(图见下面)若仍直接采用前面矩形单元的位移函数,在边界上它便不再是线性 的(因边界不与x,y轴一致),这样会使得相邻两单元在公共边界上的位移可能会出现不连续现象(非协 调元),而使收敛性受到影响。可以验证,利用坐标变换就能解决这个问题,即可以通过坐标变换将整体 坐标中的四边形(图a)变换成在局部坐标系中与四边形方向无关的边长为2的正方形。

第二章 有限元法的直接刚度法

第二章 有限元法的直接刚度法


p22 p32


EI l3

K
2 22
K322
K
2 23
K323

23

(2-26)
a13 a23 a33 a43
12EI
a14 a24 a34 a44



l3
6EI
l2

12EI
l3

6EI
6EI l2 4EI
l 6EI l2 2EI

12 l
EI
3

6EI l2
12EI
l3
6EI
6EI
l2

2EI
l

6EI
单元自由度:W e rwi 此值决定了单刚矩阵的阶数ke
结构自由度: Ws nwi 此值决定了求解问题规 模即:k 的阶数
杆件结构的节点可按以下原则选取:
– 杆件的交点一定要选为节点。 – 阶梯形杆截面变化处一定要取为节点。 – 支承点和自由端要取为节点。 – 集中载荷作用处要取为节点。 – 欲求位移的点要取为节点。 – 单元长度不要相差太多。
• 单元:即原始结构离散后,满足一定几何特 性和物理特性的最小结构域。简言之,将连 续体用假想的线或面分割成有限个部分,各 部分之间用有限个点相连。本书中,两个节 点之间的杆件构成一个单元。
• 节点:单元与单元间的连接点。 • 节点位移:结构在受力变形过程中节点位置
的改变。分为线位移与角位移,单元类型不 同,节点位移不同。 • 节点力:单元与单元间通过节点的相互作用 力。 • 节点载荷:作用于节点上的外载。节点载荷 包括直接作用在节点上的外载荷和等效移置 到节点上的载荷。

第2章杆件结构的有限元法_直接刚度法

第2章杆件结构的有限元法_直接刚度法

对于弹簧2-3(2单元)
F2( 2) 1800 − 1800 u 2 ( 2) = u F3 − 1800 1800 3
对于弹簧3-4(3单元)
F3( 3) 1500 − 1500 u 2 ( 3) = u F4 − 1500 1500 3
上式可以简写为 {F} = [K ]{δ } 上述过程可以用节点力平衡来完成。 为此,先写出单元的节点位移和节点力向 量的关系式: F1( e1 ) k1 − k1 u1 ( e1 ) = u F2 − k1 k1 2 F2( e2 ) k 2 − k 2 u2 ( e2 ) = u F3 − k 2 k 2 3
F 2 = 10 kN
F 3 = 20 kN
F1
F4
1
k1
2
k2
3
k3
4
三弹簧受力系统
解: (1)单元分划 一个弹簧为一个单元,一共3个单元,4个节点。 (2)形成每个单元的刚度矩阵 对于弹簧1-2(1单元)
F1(1) 1200 − 1200 u1 (1) = u F2 − 1200 1200 2
用下,发生与杆长垂直方向的位移。
(3) 局部坐标系和总体坐标系的关系 为了根据节点的力平衡条件建立杆系总体刚度矩 阵,必须将局部坐标系下的单元刚度矩阵转换到 总体坐标系下。
y
(e Fy(e ) 2
F
(e) y1
2
Fx(1e )
o
o
ϕ
F22 = (k1 + k 2 )u 2
F12 = −k1u2
F32 = −k 2u2

有限元法_精品文档

有限元法_精品文档
这种方法要求能建立微分方程,并能给出边 界条件的数学表达式,因此,对于一些不规则的 几何形状和不规则的特殊边界条件难以应用。
12
一、有限元法的基本概念
1.什么是有限元法
我们实际要处理的对象都是连续体,在传统设 计思维和方法中,是通过一些理想化的假定后,建 立一组偏微分方程及其相应的边界条件,从而求出 在连续体上任一点上未知量的值。
25
4)具有灵活性和适用性,适应性强(它可以把形状 不同、性质不同的单元组集起来求解,故特别适 用于求解由不同构件组合的结构,应用范围极为 广泛。它不仅能成功地处理如应力分析中的非均 匀材料、各向异性材料、非线性应力应变以及复 杂的边界条件等问题,且随着其理论基础和方法 的逐步完善,还能成功地用来求解如热传导、流 体力学及电磁场领域的许多问题)
21
对于一个具体的工程结构,单元的划分越小, 求解的结果就越精确,同时,其计算工作量也就越 大。
梯子的有限元模型不到100个方程; 在ANSYS分析中,一个小的有限元模型可能有几 千个未知量,涉及到的单元刚度系数几百万个。 单元划分的精细程度,取决于工程实际对计算 结果精确性的要求。
22
4)有限元分析 有限元分析就是利用数学近似的方法对真实
5)在具体推导运算过程中,广泛采用了矩阵方法。
26
2.有限元法的作用 1)减少模型试验的数量(计算机模拟允许对大量
的假设情况进行快速而有效的试验); 2)模拟不适合在原型上试验的设计(例如:器官
移植、人造膝盖); 3)节省费用,降低设计与制造、开发的成本; 4)节省时间,缩短产品开发时间和周期; 5)创造出高可靠性、高品质的产品。
因为点是无限多的,存在无限自由度的问题, 很难直接求解这种偏微分方程用来解决实际工程问 题,因此需要采用近似方法来处理。

第2章_有限元法的直接刚度法_平面刚架

第2章_有限元法的直接刚度法_平面刚架

0 0 1 0 0
0 0 0 cos 0
0 0 0 sin cos 0
0 sin
0 ui 0 vi 0 i u 0 j 0 v j 1 j
i 0 i 分块形式为 0 j j
{
单元:6个 节点:4个
结构自由度
{ 4 3 12
的矩阵。
每个节点3个自由度
个自由度
结构的整体刚度矩阵是一个
12 12
二、单元刚度矩阵 1、单元的节点力、节点位移 任取一个单元,设单元号为 e,两个节点分别为i、j。 局部坐标:局部坐标只对 该单元有效,每一个单元 有一个局部坐标。以下对 该单元所进行的分析都在 这个局部坐标系下进行。 在局部坐标系下,两个 节点的节点位移为:
6 EI l 2 f 2 EI i l i 6 EI f j 2 l j 4 EI l
(3)刚架单元的节点力和节点位移之间的关系——单元刚度矩阵 刚架单元的所有节点力和节点位移之间的关系为:
EA 0 l 12EI Ti 0 q l3 i 6 EI 0 2 mi l EA T j 0 qj l 12EI 0 m j l3 6 EI 0 l2 0 6 EI l2 4 EI l 0 6 EI l2 2 EI l EA l 0 0 EA l 0 0 0 12EI l3 6 EI 2 l 0 12EI l3 6 EI 2 l 6 EI i 2 l f 2 EI i i l j 0 f j 6 EI 2 l j 4 EI l 0

有限单元法

有限单元法
36
37
•从单纯的结构力学计算发展到求解许多物理场问题 有限元分析方法最早是从结构化矩阵分析发展而
来,逐步推广到板、壳和实体等连续体固体力学分析, 实践证明这是一种非常有效的数值分析方法。而且从 理论上也已经证明,只要用于离散求解对象的单元足 够小,所得的解就可足够逼近于精确值。所以近年来 有限元方法已发展到流体力学、温度场、电传导、磁 场、渗流和声场等问题的求解计算,最近又发展到求 解几个交叉学科的问题。
时计算模型的规模不能超过1万阶方程。Microsoft Windows操作
系统和32位的Intel Pentium 处理器的推出为将PC机用于有限元
分析提供了必需的软件和硬件支撑平台。因此当前国际上著名的
有限元程序研究和发展机构都纷纷将他们的软件移植到Wintel平
台上。
42
43
44
4.2 有限单元法的分析步骤
40
但是如果用手工方式来建立这个模型,然后再处 理大量的计算结果则需用几周的时间。可以毫不夸 张地说,工程师在分析计算一个工程问题时有80%以 上的精力都花在数据准备和结果分析上。
因此目前几乎所有的商业化有限元程序系统都 有功能很强的前置建模和后置数据处理模块。在强 调"可视化"的今天,很多程序都建立了对用户非常友 好的GUI(Graphics User Interface),使用户能以可 视图形方式直观快速地进行网格自动划分,生成有限 元分析所需数据,并按要求将大量的计算结果整理成 变形图、等值分布云图,便于极值搜索和所需数据的 列表输出。
53
54
55
56
平面应力
平面应变
57
58
59
60
61
62
63

(完整版)有限元法的基本原理

(完整版)有限元法的基本原理

第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。

有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。

2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。

在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。

2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。

同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。

A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。

微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。

所以在以上两式中采用了矩阵形式。

以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。

第2章_有限元法的直接刚度法-1梁单元

第2章_有限元法的直接刚度法-1梁单元

• 按照杆件结构划分单元的原则,对图2.1(a)所示结构划分 的单元如图2.1(b)所示
(a) 单元的节点位移
图2.1
(b) 单元的节点力
2.1直梁的有限元分析
任取一单元进行分析。根据材料力学的知识,梁单元上每个节点
的节点位移分量有2个:挠度
和转角fi'
qil3 3EI
,一般规定,向上为正,逆
1
f2
2
f3
3
f4
4
f1
1
f2
2
f3
3
f4
T 4
(2-6)
2.1直梁的有限元分析
节点力和节点载荷的区别:节点力是单元和节点之间的作用力, 如果取整个结构为研究对象,节点力是内力;而节点载荷是结构在节 点上所受到的外载荷或等效移置到节点上的外载荷。
qi a11fi a12i a13f j a14j mi a21fi a22i a23f j a24j qj a31fi a32i a33f j a34j mj a41fi a42i a43f j a44j
如图2.1(a)所示
直梁,已知E、I、
Z、M, AB=BC=CD=l, IAC=2l,ICD=l。
(b) 直梁的有限元模型
图2.1 直梁
2.1.1划分单元
• 两个节点之间的杆件构成一个单元,杆件结构的节点可按 以下原则选取:
1、杆件的交点一定要选为节点。 2、阶梯形杆截面变化处一定要取为节点。 3、支承点和自由端要取为节点。 4、集中载荷作用处要取为节点。 5、欲求位移的点要取为节点。 6、单元长度不要相差太多。
分量等于0时,对应的第2个节点力分量。
a 41 的物理意义:单元第1个节点位移分量等于1,其它节点位移
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


所以得到轴向节点位移 i、 j与轴向节点力
T i 、 T j 之间的关系,见式(2-54)。
EA
Ti Tj



l EA
EEAlAij

l l
图2.13 轴向拉压图
(2-54)
2.2 平面刚架的有限元分析
2. 弯曲分析
q m 平面刚架单元弯曲变形的挠度 f 、截面转角 与剪力 、弯矩
整体刚度矩阵是一个 1212的矩阵
图2.11 平面刚架的单元划分

2.2 平面刚架的有限元分析
2.2.2单元分析,局部坐标系下的单元刚度矩阵 任取一个平面刚架单元,设单元号为 ,两个节点分别
i e 为 、 j ,建立单元局部坐标系 x 'o ' y ' ,如图2.12所示。单元的局
部坐标系只对该单元有效,每一个单元都有一个局部坐标系。以下对 该单元所进行的分析都是在这个局各元素的物理意义如下:S ii —— i 1, j 0时,T i
的值;S ji ——
时,T i 的值;S
jj —i — 1i,0j
0
, j
时,T j 的值; ij ——
1时,T j 的值。
i
0 , j
1
2.2 平面刚架的有限元分析
求元素 S 因为
ii 、S ji i
的值,如图2.13所T i 示, i
Til EA
1

所以
Ti

EA l Si
1 , j 0 。
。根据平衡
i
Ti
Tj
0,得
i
Tj Ti El ASji 0, j 1 时,同理可求得
Sij
EA, l
S jj

EA l
2.2 平面刚架的有限元分析
平面刚架所有杆的轴线都在同一平面内,且各杆之间均为刚性连 接,如图2.8所示。根据材料力学知识,用截面法可以求出平面刚架 横截面上的内力。
图2.8 平面刚架
图2.9 平面刚架横截面上的受力
2.2 平面刚架的有限元分析
例如,求图2.8所示1-1横截面的内力。
用截面法,如图2.9所示,列平衡方程,得
'e i fi i j fj
T j
(2-51)
p ' e T i q i m i T j q j m jT
(2-52)
规定:剪力 q 与 y '轴正向一致为正;弯矩 m逆时针方向为正;
T 轴力 与 轴x正' 向一致为正。
2.2 平面刚架的有限元分析
有关根,据弯材曲料变力形学的的挠知度识f ,和在截线面弹转性角范围只内与,剪轴力向q位和移弯矩只m与有轴关力, T
这样可分别按轴向拉压和弯曲来进行分析。
1. 轴向拉压分析
求轴向节点位移


i
j 与轴向节点力
T i 、T j
之间的关系。根据
材料力学的知识已知,在线弹性范围内,轴向拉压杆的轴向变形与轴
。 向力之间的关系为线形关系,见式(2-53)
TTij SSijii
Siji
Sjjj
l2
6EI
l2 2EI
l 6EI
l2 4EI
fi
f ijj


l
(2-55)
2.2 平面刚架的有限元分析
3. 局部坐标系下的单元刚度矩阵
综合上述轴向拉压分析和弯曲分析,得到局部坐标系 x 'o ' y '下,平
面刚架单元的节点力和节点位移之间的关系——单元刚度矩阵 K ' e。
f 每个节点有3个节点位移:轴向位移 、横向挠度 、截面的转
角 。
2.2 平面刚架的有限元分析
2.2.1划分单元
对图2.11所示的平面刚架结构 划分单元,并对单元和节点进行编号, 共得到6个单元和4个节点。
因为平面刚架单元的每个节点 有3个节点位移,即每个节点有3个自 由度,结构自由度=节点总数节点自由 度,所以图2.11所示的平面刚架结构 具有个4312自由度,所以结构的
之间的关系完全等同于直梁单元的关系,见式(2-22),即有
12EI
qi mi q j mj



l3 6EI
l2
61lE2l2E3I I
6EI
l2 4EI
l 6EI
l2 2EI
l
12EI l3
6EI l2
12EI
l3 6EI
EA

l
Ti 0

qi
mi

T
j



0 EA
q
j

m j
l

0

0
0
12EI
l3 6EI
l2
0

12EI l3
6EI
l2
0
6EI l2 4EI
l
0

6EI l2
2EI
l
EA l 0
0 EA l 0

T1 p2 q1 p1
m1 p 2 a p1 x (2-48)
图2.10 刚架单元的受力
由式(2-48)可知,平面刚架横截面上的内力有3个:轴力 T、
剪力 q 、弯矩 m,是拉压与弯曲的组合变形。所以平面刚架单元 每个节点有3个节点力:轴力 T、剪力 q、弯矩 m,如图2.10所示,
图2.12 刚架单元的节点位移和节点力
2.2 平面刚架的有限元分析
i 在局部坐标系下,两个节点 、 j 的节点位移
(2-49),节点力
p
' i
、p
' j
见式(2-50)。

' i

' j
见式

' i


f
i i

i

' j


f
j j

(2-49)
p
' i


j



T q
i i

m i
p
' j

T

q
j j
(2-50)

m
j

所以,局部坐标系下平面刚架单元的节点位移 ' e和节点力 p ' e
见式(2-51)、(2-52)。
0
0
12EI l3
6EI l2
0
12EI l3 6EI
l2
0

6EI
i
l2 2EI

fi

l 0
i


j


6EI l2
f
j j

4EI

l
(2-56)
2.2 平面刚架的有限元分析
相关文档
最新文档