《点和圆、直线和圆的位置关系》课件(共4课时)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A E
F
B
D
C
5.课堂小结
(1)通过本节课的学习你学会了哪些知识? (2)圆的切线和切线长相同吗? (3)什么是三角形的内切圆和内心?
4.练习
练习2 已知⊙A 的直径为 6,点 A 的坐标为(-3, -4),则⊙A 与 x 轴的位置关系是_相__离__,⊙A 与 y 轴的 位置关系是_相__切___.
-3 y Ox
A
-4
4.练习
例 Rt△ABC,∠C=90°,AC=3 cm,BC=4 cm,
以 C 为圆心,r 为半径的圆与 AB 有怎样的位置关系?
2.直线和圆的位置关系(数量特征)
O dr
l 相离
Or
d
l
A
相切
d Or l AB
相交
当直线和圆相离、相切、相交时,d 与 r 有何关系? 1.直线和圆相离 d>r; 2.直线和圆相切 d=r; 3.直线和圆相交 d<r. 直线和圆的位置关系的识别与特征:
小结:利用圆心到直线的距离与半径的大小关系来
九年级 上册
24.2 点和圆、直线和圆的 位置关系(第1课时)
• 点和圆、直线和圆、圆和圆的位置关系是学习圆的重 要内容之一,它们都是在学习了圆的有关概念和性质 后,进一步研究两个图形之间的位置关系.在研究点 和圆的位置关系时,是从其几何特征(交点个数)和 代数特性(点到圆心的距离与半径的关系)两个角度 刻画的.因此,在与圆有关的位置中,点和圆的位置 关系是基础.
(2)要证明切线需要什么条件?如何添加辅助线? (只要证明由点O向 AC 所作的垂线段OE是⊙O的半径 就可以了.所以过圆心 O 作 OE⊥AC ,垂足为E ,连接 OD ,OA .)
在运用切线的判定定理和性质定理时,应如何添加 辅助线?
4.运用切线的性质和判定定理解决简单问题
教科书第 98 页 练习第 1,2 题.
O l
A
圆的切线垂直于过切点的半径.
4.运用切线的性质和判定定理解决简单问题
例 已知:△ABC 为等腰三角形,O 是底边 BC 的 中点,腰 AB 与⊙O 相切于点 D.
求证: AC 是⊙O 的切线.
A
D
B
O
C
4.运用切线的性质和判定定理解决简单问题
(1)切线的判定方法有几种?结合已知,你选择 哪种判定方法?(切线的判定定理.)
• 对于经过不在同一直线上的三点作圆的问题,可以从 过一点、过两点开始探究,其中体现了转化的思想. 同时,对过一点、过两点、过不同直线上的三点作圆 的探究,其核心都是要明确确定圆的要素——确定圆 心和半径.
• 学习目标: 1.理解点和圆的三种位置关系,并会运用它解决一 些实际问题;
2.会过不在同一直线上的三个点作圆,理解三角形 的外心和外接圆的概念;
• 学习目标: 1.理解直线和圆相交、相切、相离等概念; 2.理解直线和圆相交、相切、相离的判定方法和性 质.
• 学习重点: 利用圆心到直线的距离与半径的关系判别直线和圆的 位置关系.
1.情境引入
1.情境引入
1.情境引入
2.直线和圆的位置关系
O l
2.直线和圆的位置关系(图形特征)
O l
4.练习
练习3 已知⊙O 到直线 l 的距离为 d,⊙O 的半径 为 r,若 d、r 是方程 x2 -7x+12=0 的两个根,则直线 l 和⊙O 的位置关系是__相__交__或__相__离____.
5.课堂小结
1.直线和圆的位置关系有三种:相离、相切和相 交.
2.识别直线和圆的位置关系的方法: (1)一种是根据定义进行识别: 直线 l 和⊙O 没有公共点 直线 l 和⊙O 相离; 直线 l 和⊙O 只有一个公共点 直线 l 和⊙O 相切; 直线 l 和⊙O 有两个公共点 直线 l 和⊙O 相交. (2)另一种是根据圆心到直线的距离 d 与圆半径 r 的大小关系来进行识别:
设⊙O 的半径为 r,点 P 到圆心的距离为 d,则有: 点 P 在圆外 d>r ; 点 P 在圆上 d=r ; 点 P 在圆内 d<r .
2.探究新知
我们知道,已知圆心和半径,可以作一个圆.经过 几个已知点,可以作一个圆呢?
2.探究新知
圆经过已知点 A.
A
2.探究新知
圆经过已知点 A、B.
2.探究切线的判定定理
下面图中直线 l 与圆相切吗?
Ol A ×
O
A
l
×
2.探究切线的判定定理
下雨天当你快速转动雨伞时飞出的水珠,在砂轮上 打磨工件时飞出的火星中,存在与圆相切的现象吗?
2.探究切线的判定定理
已知一个圆和圆上的一点,如何过这个点画出圆的 切线?
O A
3.探究切线的性质定理
将本课件第 5 页中的问题反过来,如图,在⊙O 中,如果直线 l 是⊙O 的切线,切点为 A,那么半径 OA 与直线 l 是不是一定垂直呢?
过圆外一点能作几条圆的切线?它们的切线长有什 么关系?
∠APO 和∠BPO有什么关系? 定理有几个条件?分别是什么?定理有几个结论? 分别是什么? 切线长定理的直接作用是什么?
3.应用新知,迁移拓展
下面是一块三角形的铁皮,如何在它上面截下一块 圆形的用料,并且使截下来的圆与三角形的三边都相 切?
A
d >r 直线 l 和⊙O 相离; d =r 直线 l 和⊙O 相切; d <r 直线 l 和⊙O 相交.
3.谈谈这节课你学习的收获.
九年级 上册
24.2 点和圆、直线和圆的 位置关系(第3课时)
• 直线和圆相切是直线和圆的位置关系中特殊并且重 要的一种,圆的切线是连接直线型与曲线型的重要 桥梁,是研究三角形内切圆、切线长定理和正多边 形与圆的关系的基础.
5.课堂小结
(1)切线的判定定理与性质定理是什么?它们有 怎样的联系?
(2)在应用切线的判定定理和性质定理时,需要 注意什么?
6.布置作业
教科书习题 24.2 第 4,5,12 题.
九年级 上册
24.2 点和圆、直线和圆的 位置关系(第4课时)
• 圆的切线长定理和三角形的内切圆是在学习了切线的 性质和判定的基础之上,继续对切线的性质的研究, 是在垂径定理之后对圆的对称性又一次的认识.在切 线长定理的探究过程中,学生经历实验操作、归纳猜 想、推理论证的过程,体现了图形的认识、图形的变 换、图形的证明的有机结合.
3.结合本节内容的学习,体会数形结合、分类讨论 的数学思想.
• 学习重点: 点和圆的位置关系.
1.导入新知
我国射击运动员在奥运会上屡获金牌,为祖国赢得 荣誉.你知道运动员的成绩是如何计算的吗?
2.探究新知
结合上面的问题,你能试着说出点和圆有哪些位置 关系吗?
对于点和圆的位置关系,能从数量关系的角度进行 刻画吗?
B
C
3.应用新知,迁移拓展
与三条边相切的圆的圆心必须满足什么条件? 满足这样条件的点怎样作?要不要三条角平分线都 作出来?
三角形的内心 三角形的内切圆.
4.解决问题,加深理解
例 △ABC 的内切圆 ⊙O 与 BC,CA,AB 分别相 切于点 D,E,F,且 AB=9,BC=14,CA=13.
求 AF,BD,CE 的长.
CD ·AB=AC ·BC
∴
CD=
AC BC AB
3 4 5
2.4 (cm).
即圆心 C 到 AB 的距离 d = 2.4cm.
(1)当 r = 2 cm 时,∵ d >r,∴ ⊙C 与 AB 相离.
(2)当 r = 2.4 cm 时,∵ d = r,∴ ⊙C 与 AB 相切.
(3)当 r = 3 cm 时,∵ d <r,∴ ⊙C 与 AB 相交.
为什么?
(1)r=2 cm;(2)r=2.4 cm;(3)r=3 cm.
分析:
Fra Baidu bibliotek
根据直线和圆的位置关系 的数量特征,应该用圆心到直 线的距离 d 与半径 r 的大小进 行比较;
B d=2.4 cm
dD
关键是确定圆心 C 到直线
C
A
AB 的距离 d,这个距离是多少
呢?怎么求这个距离?
4.练习
解:过 C 作 CD⊥AB,垂足为 D. 在 Rt△ABC 中, AB= AC 2 BC 2 32 42 5(cm) 根据三角形面积公式有
求作的圆.
E
A F
O
D
B
C
G
2.探究新知
经过三角形的三个顶点可以作一个圆,这个圆叫做 三角形的外接圆.
外接圆的圆心是三角形三条边的垂直平分线的交点, 叫做这个三角形的外心.
A
O
B
C
3.应用举例
例1 已知⊙O 的半径为 5,圆心 O 的坐标为 (0,0),若点 P 的坐标为(4,2),点 P 与⊙O 的位 置关系是( ).
点 P 在圆外 d>r; 点 P 在圆上 d=r; 点 P 在圆内 d<r. (2)不在同一条直线上的三个点确定一个圆. (3)理解三角形外接圆和三角形外心的概念.
5.布置作业
教科书第 95 页 练习第 2,3 题.
九年级 上册
24.2 点和圆、直线和圆的 位置关系(第2课时)
• 本课是在研究点和圆的位置关系之后,进一步研究由 点组成的直线和圆的位置关系.
• 切线的判定定理与性质定理揭示了直线和圆的半径 的特殊位置关系,即,切线过半径外端并与这条半 径垂直.两个定理互为逆命题.切线判定定理的探 究过程体现了由一般到特殊的研究方法.
• 学习目标: 1.理解切线的判定定理与性质定理; 2.会应用切线的判定定理和性质定理解决简单问题.
• 学习重点: 切线的判定定理和性质定理的应用.
A.点 P 在⊙O 内 B.点 P 在⊙O上 C.点 P 在⊙O 外 D.点 P 在⊙O 上或⊙O 外
例2 直角三角形的外心是______的中点, 锐角三 角形的外心在三角形______,钝角三角形的外心在三角 形_________.
4.课堂小结
(1)点和圆的位置关系: 设⊙O 的半径为 r,点 P 到圆心的距离为 d,则
1.复习直线和圆的位置关系
1.直线和圆有哪些位置关系? 2.如何判断直线和圆相切?
2.探究切线的判定定理
如图,在⊙O中,经过半径 OA 的外端点 A 作直线 l⊥OA,则圆心 O 到直线 l 的距离是多少?直线 l 和⊙O 有什么位置关系?
O l
A 经过半径的外端并且垂直于这条半径的直线是圆的 切线.
A
B
2.探究新知
已知点 A、B、C
已知三点共线 已知三点不共线 不在同一条直线上的三个点确定一个圆.
2.探究新知
如何经过不在同一条直线上的三个点 A、B、C 作圆?
① 连接 AB、BC;
② 分别作线段 AB、BC 的垂直平分线DE 和 FG,
DE 和FG 相交于点 O;
③ 以点O 为圆心,OA 为半径作圆,⊙O 就是所要
识别直线和圆的位置关系.
3.归纳小结
直线和圆的 位置关系
相交
图形
公共点个数 公共点名称
直线名称 距离 d 与半 径 r 的关系
d Or l AB
2个 交点 割线
d<r
相切
d Or A
l
1个
切点
切线
d=r
相离
O dr
l 没有 - - d>r
4.练习
练习1 圆的直径是 13 cm,如果直线和圆心的距离 分别是 ① 4.5 cm;② 6.5 cm;③ 8 cm,那么直线和圆分 别是什么位置关系?有几个公共点?
1.猜想:图中的线段 PA 与 PB 有什么关系? 2.图中还有哪些量?猜想它们之间有什么关系?
A
O
P
B
2.探究新知,挖掘内涵
如何验证我们的猜想是否正确呢? 只用猜想或测量的方法不能说明结论是否正确,同 学们能不能运用逻辑推理的方法证明结论?
2.探究新知,挖掘内涵
切线与切线长有什么区别?表示切线长的线段的两 个端点分别是什么?
• 学习目标: 1.知道三角形内切圆、内心的概念,理解切线长定 理,并会用其解决有关问题;
2.经历探究切线长定理的过程,体会应用内切圆相 关知识解决问题,渗透转化思想.
• 学习重点: 切线长定理及其应用.
1.创设情境,导入新知
已知⊙O 和⊙O 外一点 P,你能够过点 P 画出⊙O 的切线吗?
1.创设情境,导入新知
O
O
A
l
l AB
直线和圆没有公共点时,叫做直线和圆相离. 直线和圆有唯一公共点时,叫做直线和圆相切. 这条直线叫做圆的切线,这个点叫做切点.
直线和圆有两个公共点时,叫做直线和圆相交. 这条直线叫做圆的割线,公共点叫直线和圆的交点.
2.直线和圆的位置关系(图形特征)
1.能否根据基本概念判断直线和圆的位置关系? 直线 l 和⊙O 没有公共点 直线 l 和⊙O 相离. 直线 l 和⊙O 只有一个公共点 直线 l 和⊙O 相切. 直线 l 和⊙O 有两个公共点 直线 l 和⊙O 相交. 用公共点的个数来判断直线和圆的位置关系. 2.是否还有其他的方法判断直线和圆的位置关系?