江苏省亭湖高级中学2019-2020学年高三最后一模数学试题含解析《附15套高考模拟卷》
2019年江苏省高考数学全真模拟试卷(1)含答案
2019年江苏省高考数学全真模拟试卷(1)含答案2019年江苏省高考数学全真模拟试卷(一)注意事项:1.本试卷共4页,包括填空题(第1题~第14题)和解答题(第15题~第20题)两部分。
本试卷满分为160分,考试时间为120分钟。
2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内。
试题的答案写在答题纸上对应题目的答案空格内。
考试结束后,交回答题纸。
一、填空题(本大题共14小题,每小题5分,计70分。
不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A = {2.3},B = {1.log2a},若AB = {3},则实数a的值为 ________。
2.已知复数z = 1 - i3,其中i为虚数单位,则z的模为________。
3.根据XXX所示的伪代码,可知输出的结果S为________。
4.一组数据2.x。
4.6.1的平均值是5,则此组数据的标准差是 ________。
5.有一个质地均匀的正四面体木块,4个面分别标有数字1.2.3.4.将此木块在水平桌面上抛两次,则两次看不到的数字都大于2的概率为 ________。
6.若抛物线x^2 = 4y的焦点到双曲线C:x^2/a^2 - y^2/b^2 = 1(a。
0,b。
0)的渐近线距离等于1/3,则双曲线C的离心率为 ________。
7.若实数a。
b满足a ≤ 1,b - a - 1 ≤ 0,则(a + 2b)/(2a + b)的最大值为 ________。
8.在三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABC的体积为V1,三棱锥DE-ABC的体积为V2,则V1/V2 = ________。
9.设等差数列{an}的公差为d(d ≠ 0),若a1 + a2 + a3 = 6,a2 + a3 + a4 = 8,则d的值为 ________。
10.已知tan(α + β) = 1,tan(α - β) = 2,其前n项和为Sn。
2019-2020年高三模拟考试最后一卷(数学).doc
2019-2020年高三模拟考试最后一卷(数学)一、选择题:本大题共10小题;每小题5分.共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合A B y x y x A ==+=∈{}{|}01122,,,,则A 与B 的关系为 A. A B =B. A B ⊂≠C. A B ⊃≠D. A B ⊇2.在抽查某产品尺寸过程中,将其尺寸分成若干组,[,]a b 是其中的一组,已知该组的频率为m ,该组上的直方图的高为h ,则||a b -等于A. mhB.h m C. mhD. m h + 3.若,m n 均为非负整数,在做m n +的加法时各位均不进位(例如:134+3802=3936),则称(,)m n 为“简单的”有序对,而m n +称为有序数对(,)m n 的值,那么值为1942的“简单的”有序对的个数是A. 20B. 16C. 150D. 3004.设0a b ⋅>,则以下不等式中不恒成立的是A.2a bb a+≥C. 22222a b a b ++≥+ D. 3322a b ab a b +≥+ 5.若数列{}n a 中,311=a ,且对任意的正整数p 、q 都有q p q p a a a =+,则=n a A. 11()3n - B. 12()3n C. 1()3n D. 111()32n -6.定义在R 上的函数()f x 即是偶函数又是周期函数,若()f x 的最小正周期是π,且当[0,]2x π∈时,()sin f x x =,则1()2f x = 的解为A.6π B. 522()66x k x k k Z ππππ=+=+∈或 C. 566ππ或 D. 5()66x k x k k Z ππππ=+=+∈或 7.过正三棱锥S ABC -侧棱SB 与底面中心O 作截面SBO ,已知截面是等腰三角形,则侧面和底面所成角的余弦值为A.13 C. 138.已知D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=,设||,||AP PD λ=则λ的值为A. 2B. 1C.129.点P 到点(0,1),(2,)A B a 及直线1y =-的距离都相等,如果这样的点恰好只有一个,那么a 的值是A. 1-或1B. 1或0C. 0D. 1 10.一次研究性课堂上,老师给出函数)(||1)(R x x xx f ∈+=,四位同学甲、乙、丙、丁在研究此函数时分别给出命题:甲:函数f (x )的值域为(-1,1); 乙:若x 1≠x 2,则一定有f (x 1)≠f (x 2); 丙:函数在R 上不单调;丁:若规定||1)()),(()(),()(11x n x x f x f f x f x f x f n n n +===-则对任意*∈N n 恒成立. 你认为上述三个命题中正确的个数有A. 1个B. 2个C. 3个D. 4个三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤. 11.若5(1)ax -的展开式中3x 的系数是80-,则实数a 的值是 .12.双曲线2214x y k +=的离心率3e <,则k 的取值范围是____________. 13.已知正四棱柱ABCD —A 1B 1C 1D 1的底面ABCD 边长为1,高AA 1=2,它的八个顶点都在同一球面上,则A ,B 两点的球面距离为 . 14.在ABC ∆中,已知3tan =B,sin C =,63=AC ,则ABC ∆的面积为 ___________.15.已知函数()y f x =的图象如图,则满足2(1)12(log )(2)0x x f f ---⋅≥的x 的取值范围为 _______.16.数列{}n a 中,如果存在非零常数T ,使得n T n a a +=对于任意的非零自然数n 均成立,那么就称数列{}n a 为周期数列,其中T 叫做数列{}n a 的周期。
2019-2020年高三下学期一模考试数学(文)试题含解析.doc
2019-2020年高三下学期一模考试数学(文)试题含解析一、选择题:本大题共8个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合0,1{}A =,集合{|}B x x a =>,若AB =∅,则实数a 的范围是( )(A )1a ≤ (B )1a ≥ (C )0a ≥ (D )0a ≤ 【答案】B 【解析】 试题分析:因为AB =∅,所以0{|}x x a ∉>,且1{|}x x a ∉>,即0a ≥且1a ≥,从而1a ≥,选B.考点:集合的运算.2.复数z 满足i 3i z ⋅=-,则在复平面内,复数z 对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】C 【解析】试题分析:由i 3i z ⋅=-得3i13iz i -==--,对应点为(1,3)--,位于第三象限,选C. 考点:复数运算3.关于函数3()log ()f x x =-和()3x g x -=,下列说法中正确的是( )(A )都是奇函数 (B )都是偶函数 (C )函数()f x 的值域为R (D )函数()g x 的值域为R 【答案】C 【解析】试题分析:3()log ()f x x =-的定义域为(0)-∞,,所以()f x 为非奇非偶函数,()f x 在定义域上为单调减函数,值域为R ;()3x g x -=的定义域为(+)-∞∞,,且()3(),x g x g x -=≠±,所以()g x 为非奇非偶函数,()g x 在定义域上为单调减函数,值域为(0,).+∞;因此选C.考点:函数性质4.执行如图所示的程序框图,若输入的x 的值为3,则输出的n 的值为______.(A )4 (B )5 (C )6 (D )7【答案】B 【解析】试题分析:第一次循环:9,2;x n ==第二次循环:27,3;x n ==第三次循环:81,4;x n ==第四次循环:243100,5;x n =>=结束循环,输出5,n =选B. 考点:循环结构流程图5.设,P Q 分别为直线0x y -=和圆22(6)2x y +-=上的点,则||PQ 的最小值为( ) (A) (B)(C)(D )4 【答案】A 【解析】试题分析:设圆心为C ,直线:0l x y -=,则||||C l PQ PC r d r -≥-≥-==以选A.考点:直线与圆位置关系6.设函数()f x 的定义域为R ,则“x ∀∈R ,(1)()f x f x +>”是“函数()f x 为增函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B 【解析】试题分析:由增函数定义知:若函数()f x 为增函数,则x ∀∈R ,(1)()f x f x +>,必要性成立;反之充分性不成立,如非单调函数()=[x]f x (取整函数),满足x ∀∈R ,(1)()f x f x +>,所以选B. 考点:充要关系7.一个几何体的三视图如图所示,则该几何体的体积的是( ) (A )7 (B )152 (C )233 (D )476【答案】D 【解析】试题分析:几何体为一个正方体截去一个角(三棱锥),所以体积为321147211326-⨯⨯⨯=,选D.考点:三视图8.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格的比较结果是( )(A )2枝玫瑰的价格高 (B )3枝康乃馨的价格高 (C )价格相同 (D )不确定 【答案】A 【解析】试题分析:设1枝玫瑰与1枝康乃馨的价格分别为,x y 元,则6324,442028,5x y x y x y x y +>+<⇒+>+< ,因此侧(左)视图 正(主)视图 俯视图235(2)8()58850x y x y x y -=+-+>⨯-⨯=,因此2枝玫瑰的价格高,选A.考点:不等式比较大小第Ⅱ卷(共90分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知平面向量,a b 满足(1,1)=-a ,()()+⊥-a b a b ,那么|b |= ____.【解析】试题分析:22()()()()0||+⊥-⇒+⋅-=⇒=⇒=a b a b a b a b a b b |a 考点:向量运算10.函数22()sin cos f x x x =-的最小正周期是____. 【答案】π 【解析】试题分析:因为22()sin cos cos2f x x x x =-=-,所以其最小正周期是2=π.2π考点:三角函数周期11.在区间[2,1]-上随机取一个实数x ,则x 使不等式1|1|x -≤成立的概率为____. 【答案】13【解析】试题分析:102|1|x x ⇒≤≤-≤,又[2,1]x ∈-,所以[0,1]x ∈,因为测度为长度,所以所求概率为101.1(2)3-=--考点:几何概型概率12.已知双曲线C :22221(0,0)x y a b a b-=>>的一个焦点是抛物线28y x =的焦点,且双曲线 C 的离心率为2,那么双曲线C 的方程为____;渐近线方程是____.【答案】2213y x -=,y =【解析】试题分析:抛物线28y x =的焦点为(2,0),所以2c =,又双曲线 C 的离心率为2,所以1,a b =因此双曲线C 的方程为2213y x -=,渐近线方程是2203y x -=,即y =考点:双曲线方程及渐近线13.设函数20,1,()4,0.x x x f x x x x -⎧+>⎪=⎨⎪-<⎩则[(1)]f f -=____;函数()f x 的极小值是____. 【答案】103,2 【解析】试题分析:110[(1)](14)(3)333f f f f -=-+==+=,当0x >时,211()()1f x x f x x x'=+=-,,,由()0f x '=得1x =,(负值舍去),因此当0,1)(x ∈时,()0f x '<;当1,)(x +∞∈时,()0f x '>;从而函数()f x 在1x =取极小值为2;当0x <时,2()4x f x x -=-,,因此当2,0)(x ∈-时,()f x 单调递减;当(,2)x ∈-∞-时,()f x 单调递增;从而函数()f x 在2x =-取极大值为4; 从而函数()f x 的极小值是2 考点:分段函数求值,函数极值14.某赛事组委会要为获奖者定做某工艺品作为奖品,其中一等奖奖品3件,二等奖奖品6件.制作一等奖和二等奖奖品所用原料完全相同,但工艺不同,故价格有所差异. 现有甲、乙两家工厂可以制作奖品(一等奖、二等奖奖品均符合要求),甲厂收费便宜,但原料有限,最多只能制作4件奖品,乙厂原料充足,但收费较贵,其具体收费情况如下表:则组委会定做该工艺品的费用总和最低为 元. 【答案】4900 【解析】试题分析:设在甲厂做一等奖奖品x 件,二等奖奖品y 件,则[0,3],[0,6],4,,x y x y x y N ∈∈+≤∈,组委会定做该工艺品的费用总和为500400800(3)600(6)100(6032)z x y x y x y =++-+-=--,可行域为一个直角梯形OABC 内整数点(包含边界),其中(0,0),(3,0),(3,1),(0,4).O A B C 当直线100(6032)z x y =--过点(3,1)B 时费用总和取最小值:4900考点:线性规划求最值三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)如图,在ABC ∆中,90ABC ∠=,4AB =,3BC =,点D 在线段AC 上,且4AD DC =.(Ⅰ)求BD 的长; (Ⅱ)求sin CBD ∠的值.【答案】(Ⅰ)5104=BD(Ⅱ)sin CDB ∠=【解析】试题分析:(Ⅰ)在直角三角形ABC 中,易得5=AC ,从而有1=DC ,在BCD ∆中,由余弦定理,可得2222cos BD BC CD BC CD C =+-⋅223323123155=+-⨯⨯⨯=,即5104=BD (Ⅱ)在BCD ∆中,由正弦定理,得sin sin CD BD CBD C =∠,所以sin 10CDB ∠=. 试题解析:(Ⅰ)解:因为 90=∠ABC ,4=AB ,3=BC , 所以3cos 5C =,4sin 5C =,5=AC , ..................... 3分 又因为DC AD 4=,所以4=AD ,1=DC . (4)分在BCD ∆中,由余弦定理,得2222cos BD BC CD BC CD C =+-⋅ ………………… 7分B CAD223323123155=+-⨯⨯⨯=,所以 5104=BD . (9)分(Ⅱ)在BCD ∆中,由正弦定理,得sin sin CD BDCBD C=∠,所以154sin 5CBD=∠, ………………… 12分所以sin CDB ∠=………………… 13分 考点:正余弦定理 16.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,且满足32a =,57S a =. (Ⅰ)求数列{}n a 的通项公式n a 及n S ;(Ⅱ)若444,,m n a a a ++(*,m n ∈N )成等比数列,求n 的最小值. 【答案】(Ⅰ)24n a n =-,23n S n n =-(Ⅱ)6. 【解析】试题分析:(Ⅰ)求等差数列{}n a 的通项公式,一般利用待定系数法,即设公差为d ,则可得方程组11122,15546,2a d a d a d +=⎧⎪⎨+⨯⨯=+⎪⎩解得12a =-,2d =,所以2(1)224n a n n =-+-⨯=-,212(1)232n S n n n n n =-+-⨯=-(Ⅱ)因为444,,m n a a a ++成等比数列,可得等量关系2(24)4(24)m n +=+,可看做二次函数21(2)22n m =+-,根据对称轴及正整数限制条件可得当2m =时,n 有最小值6. 试题解析:(Ⅰ)解:设公差为d ,由题意,得11122,15546,2a d a d a d +=⎧⎪⎨+⨯⨯=+⎪⎩ ………………… 4分 解得12a =-,2d =,…………………5分所以2(1)224n a n n =-+-⨯=-, ………………… 6分212(1)232n S n n n n n =-+-⨯=-. ………………… 7分(Ⅱ)解:因为444,,m n a a a ++成等比数列,所以2444m n a a a ++=, ………………… 9分即2(24)4(24)m n +=+, ………………… 10分化简,得21(2)22n m =+-, ………………… 11分考察函数21()(2)22f x x =+-,知()f x 在(0,)+∞上单调递增,又因为5(1)2f =,(2)6f =,*n ∈N ,所以当2m =时,n 有最小值6. ………………… 13分 考点:等差数列的通项及和项 17.(本小题满分14分)如图,在五面体ABCDEF 中,四边形ABCD 为正方形,//EF AD , 平面ADEF ⊥平面ABCD ,且2BC EF =,AE AF =,点G 是EF 的中点. (Ⅰ)证明:AG ⊥CD ; (Ⅱ)若点M 在线段AC 上,且13AM MC=,求证:GM //平面ABF ;(Ⅲ)已知空间中有一点O 到,,,,A B C D G 五点的距离相等,请指出点O 的位置. (只需写出结论)FCA DBG EFCADBG EMN【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)点O 为线段GC 的中点. 【解析】试题分析:(Ⅰ)由面面垂直性质定理,可得线面垂直:AG ⊥平面ABCD ,再由线面垂直性质定理可得AG ⊥CD .注意写全定理条件(Ⅱ)证明线面平行,一般利用其判定定理,即从线线平行出发,利用平几知识,可过点M 作MN //BC ,且交AB 于点N ,从而可推出GF //MN ,GF MN =.即四边形GFNM 是平行四边形. 所以 //GM FN .(Ⅲ)利用直角三角形斜边中线等于斜边一半,可找出满足条件的点O 为GC 的中点. 试题解析:(Ⅰ)证明:因为AE AF =,点G是EF 的中点,所以 AG EF ⊥. …………………1分 又因为 //EF AD ,所以 AG AD ⊥.…………………2分因为平面ADEF ⊥平面ABCD ,且平面ADEF 平面ABCD AD =,AG ⊂平面ADEF ,所以 AG ⊥平面ABCD . …………………4分 因为 CD ⊂平面ABCD ,所以 AG ⊥CD . …………………5分 (Ⅱ)证明:如图,过点M 作MN //BC ,且交AB 于点N ,连结NF , 因为13AM MC=,所以14MN AM BCAC==, …………………6分因为 2BC EF =,点G 是EF 的中点, 所以 4BC GF =,又因为 //EF AD ,四边形ABCD 为正方形, 所以 GF //MN ,GF MN =. 所以四边形GFNM 是平行四边形.所以 //GM FN . ……………8分 又因为GM ⊄平面ABF ,FN ⊂平面ABF ,所以 GM //平面ABF . …………………11分 (Ⅲ)解:点O 为线段GC 的中点. …………………14分考点:面面垂直性质定理,线面平行判定定理 18.(本小题满分13分)2014年12月28日开始,北京市公共电汽车和地铁按照里程分段计价. 具体如下表.(不考虑公交卡折扣情况)已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;(Ⅱ)已知选出的120人中有6名学生,且这6人乘坐地铁的票价情形恰好与按票价...从.这.120人中..分层..抽样..所选的结果相同,现从这6人中随机选出2人,求这2人的票价和恰好为8元的概率;(Ⅲ)小李乘坐地铁从A 地到陶然亭的票价是5元,返程时,小李乘坐某路公共电汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s 公里,试写出s 的取值范围.(只需写出结论)【答案】(Ⅰ)56(Ⅱ)415(Ⅲ)(20,22]s ∈【解析】试题分析:(Ⅰ)由票价统计图知120人中票价为3元、4元、5元的人数分别为60,40,20(人),所以票价小于5元的有6040100+=(人).从而根据古典概型概率计算得56(Ⅱ)先根据分层抽样,确定6名学生中票价为3元、4元、5元的人数分别为3,2,1(人).再根据枚举法列出基本事件,最后确定2人的票价和恰好为8元基本事件包含数,求出其概率(Ⅲ)由题意得乘坐地铁12公里至22公里(含)5元,所以(12,22]s ∈,乘公共电汽车10公里(含)内2元;10公里以上部分,每增加1元可乘坐5公里(含).因此5元乘公里数必大于10+52=20⨯,所以(20,22]s ∈试题解析:(Ⅰ)解:记事件A 为“此人乘坐地铁的票价小于5元”, …………………1分由统计图可知,得120人中票价为3元、4元、5元的人数分别为60,40,20(人). 所以票价小于5元的有6040100+=(人). …………………2分故120人中票价小于5元的频率是10051206=. 所以估计此人乘坐地铁的票价小于5元的概率5()=6P A . …………………4分(Ⅱ)解:记事件B 为“这2人的票价和恰好为8元”, …………………5分 由统计图,得120人中票价为3元、4元、5元的人数比为60:40:203:2:1=,则6名学生中票价为3元、4元、5元的人数分别为3,2,1(人). …………6分 记票价为3元的同学为,,a b c ,票价为4元的同学为,d e ,票价为5元的同学为f , 从这6人中随机选出2人,所有可能的选出结果共有15种,它们是:(,),(,)c a b a , (,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)d e f c d e f d e f e a a a b b b b c c c d , (,),(,)f f d e . …………………8分 其中事件B 的结果有4种,它们是: (,),(,),(,),(,)f f f e a b c d . …………9分 所以这2人的票价和恰好为8元的概率为4()15P B =. ………………… 10分(Ⅲ)解:(20,22]s ∈. …………………13分 考点:古典概型概率,分层抽样 19.(本小题满分14分)设点F 为椭圆2222 1(0)x y E a b a b+=>>:的右焦点,点3(1,)2P 在椭圆E 上,已知椭圆E 的离心率为12.(Ⅰ)求椭圆E 的方程;(Ⅱ)设过右焦点F 的直线l 与椭圆相交于A ,B 两点,记ABP ∆三条边所在直线的斜率的乘积为t ,求t 的最大值.【答案】(Ⅰ)22143x y +=(Ⅱ)964【解析】试题分析:(Ⅰ)求椭圆标准方程,一般需列出两个独立条件:21=a c 及点)23,1(P 在椭圆上,解方程组得椭圆方程为 22143x y +=. (Ⅱ)由题意得需根据直线l 斜率表示ABP ∆三条边所在直线的斜率的乘积,由直线与椭圆联立方程组解得2221438k k x x +=+,212241234k x x k -=+,从而PA PB t k k k =⨯⨯1212332211y y k x x --=⨯⨯--12121233[(1)][(1)]22()1k x k x k x x x x --⨯--=⨯-++122121239(2)24[]()1k x x k k x x x x -+-+=+⨯-++233()44k k k k =--⨯=--,再根据二次函数求出其最大值.试题解析:(Ⅰ)解:设22b ac -=,由题意,得21=a c ,所以 2a c =,b =. …………………2分则椭圆方程为 2222143x y c c+=,又点)23,1(P 在椭圆上, 所以2213144c c+=,解得21c =, 故椭圆方程为 22143x y +=. ………………… 5分(Ⅱ)解:由题意,直线l 的斜率存在,右焦点(1,0)F , ………………… 6分 设直线l 的方程为(1)y k x =-,与椭圆的交点A(x1,y1),B(x2,y2), ……… 7分由 22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得 2222(34)84120k x k x k +-+-=. ………………… 8分由题意,可知0>∆,则有 2221438kk x x +=+,212241234k x x k -=+, ………… 9分 所以直线PA 的斜率11321PAy k x -=-,直线PB 的斜率22321PB y k x -=-, …………… 10分 所以PA PB t k k k =⨯⨯1212332211y y k x x --=⨯⨯--12121233[(1)][(1)]22()1k x k x k x x x x --⨯--=⨯-++2121212121239[()1](2)24()1k x x x x k x x k x x x x -++-+-+=⨯-++122121239(2)24[]()1k x x k k x x x x -+-+=+⨯-++233()44k k k k =--⨯=--. ………………… 12分 即 22339()4864t k k k =--=-++,所以当38k =-时,ABP ∆三条边所在直线的斜率的乘积t 有最大值964. ………14分考点:椭圆方程,直线与椭圆位置关系 20.(本小题满分13分)设*n ∈N ,函数ln ()n x f x x =,函数e ()xn g x x=,(0,)x ∈+∞.(Ⅰ)判断函数()f x 在区间(0,)+∞上是否为单调函数,并说明理由;(Ⅱ)若当1n =时,对任意的12,(0,)x x ∈+∞, 都有12()()g x f x t ≤≤成立,求实数t 的取值范围;(Ⅲ)当2n >时,若存在直线l y t =:(t ∈R ),使得曲线()y f x =与曲线()y g x =分别位于直线l 的两侧,写出n 的所有可能取值. (只需写出结论) 【答案】(Ⅰ)不是单调函数(Ⅱ)1e et ≤≤(Ⅲ){3,4} 【解析】试题分析:(Ⅰ)根据导数研究函数单调性,先求导数:11ln ()n n xf x x +-'=,再求导函数零点1e nx =,列表分析得函数()f x 在区间1(0,e )n上为单调递增,区间1(e ,)n+∞上为单调递减.即函数()f x 在区间(0,)+∞上不是单调函数. (Ⅱ)先转化条件为:当(0,)x ∈+∞时,max min ()()g f x t x ≤≤,因此求实数t 的取值范围,就是分别求max min ()()g f x x ,,这可利用导数求函数最值(Ⅲ)由题意得:直线l 为曲线()y f x =与曲线()y g x =分割线,由(Ⅱ)得1()()ng f e n ≤,因此n 的所有可能取值为{3,4}试题解析:(Ⅰ)解:结论:函数()f x 在区间(0,)+∞上不是单调函数. …………………1分 求导,得 11ln ()n n xf x x +-'=, …………………2分 令 ()0f x '=,解得1e n x =.当x 变化时,()f x '与()f x 的变化如下表所示:所以函数()f x 在区间1(0,e )n上为单调递增,区间1(e ,)n+∞上为单调递减. 所以函数()f x 在区间(0,)+∞上不是单调函数. …………………4分(Ⅱ)解:当1n =时,函数ln ()x f x x =,e ()xg x x=,0x >.由题意,若对任意的12,(0,)x x ∈+∞, 都有12()()g x f x t ≤≤恒成立,只需当(0,)x ∈+∞时,max min ()()g f x t x ≤≤. …………………5分 因为 21ln ()xf x x-'=. 令()0f x '=,解得e x =.当x 变化时,()f x '与()f x 的变化如下表所示:所以max ()(e)ef x f ==. …………………7分 又因为2e (1)()x x g x x-'=. 令 ()0g x '=,解得1x =.当x 变化时,()g x '与()g x 的变化如下表所示:所以min ()(1)e g x g ==. …………………9分 综上所述,得1e et ≤≤. …………………10分 (Ⅲ)解:满足条件的n 的取值集合为{3,4}. …………………13分 考点:利用导数研究函数单调性,利用导数研究函数最值。
2023-2024学年江苏省盐城市亭湖高级中学高一(上)期末数学试卷【答案版】
2023-2024学年江苏省盐城市亭湖高级中学高一(上)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知非空集合A ⊆{x ∈N |x 2﹣x ﹣2<0},则满足条件的集合A 的个数是( ) A .1B .2C .3D .42.已知扇形弧长为π3,圆心角为π6,则该扇形面积为 ( )A .π6B .π4C .π3D .π23.已知点P (﹣4,3)是角α终边上的一点,则cos α﹣sin α等于( ) A .75B .−75C .15D .−154.已知函数f(x)={2x (x ≤1)log 12x(x >1),则f (1﹣x )的图象是( )A .B .C .D .5.设a =log 52,e b =12,c =ln32,则( )A .c >a >bB ..c >b >aC ..a >b >cD ..a >c >b6.已知函数f (x )=(2m ﹣1)x m 为幂函数,若函数g (x )=lnx +2f (x )﹣6,则y =g (x )的零点所在区间为( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)7.已知a ∈Z ,关于x 的一元二次不等式x 2﹣8x +a ≤0的解集中有且仅有3个整数,则a 的值不可能是( ) A .13B .14C .15D .168.已知函数f (x )定义域为(0,+∞),f (1)=e ,对任意的x 1,x 2∈(0,+∞),当x 2>x 1时,有f(x 1)−f(x 2)x 1x 2>e x 2x 1−e x 1x 2.若f (lna )>2e ﹣alna ,则实数a 的取值范围是( )A .(﹣∞,e )B .(e ,+∞)C .(0,1)D .(1,e )二、多项选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分。
江苏省苏州市2019届高三高考模拟最后一卷数学试题 含解析
江苏省苏州市2019届高三最后一卷数学试题一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合{|02}A x x =<<,{}1B x x =,则A B =____.【答案】{}|12x x << 【解析】 【分析】利用交集定义直接求解. 【详解】集合A {x |0x 2}=<<,{}B x x 1=,A B {x |1x 2}∴⋂=<<.故答案为:{x |1x 2}<<.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.设i 是虚数单位,复数i2ia z -=的模为1,则正数a 的值为_______.【解析】 【分析】先化简复数,再解方程21144a +=即得解.【详解】由题得i 1i 2i 22a az -==--, 因为复数z 的模为1,所以21144a +=,解之得正数a【点睛】本题主要考查复数的除法和模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.为了解某团战士的体重情况,采用随机抽样的方法.将样本体重数据整理后,画出了如图所示的频率分布直方图.已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,则全团共抽取人数为_______.【答案】48【解析】【分析】先求出频率分布直方图左边三组的频率和,再求全团共抽取的人数.【详解】由题得频率分布直方图左边三组的频率和为15(0.03750.0125)0.75-⨯+=所以全团抽取的人数为:212(0.75)6÷⨯=48.故答案为:48【点睛】本题主要考查频率分布直方图频率和频数的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.执行如图所示的程序框图,输出的k的值为_______.【答案】4 【解析】试题分析:程序执行中的数据变化如下:133130,3,,,1,,,22244k a q a k a =====<= 313313312,,,3,,,4,,4488416164k a k a k =<==<==<成立,输出4k =考点:程序框图5.设x ∈[﹣1,1],y ∈[﹣2,2],记“以(x ,y)为坐标的点落在不等式221x y +≥所表示的平面区域内”为事件A ,则事件A 发生的概率为_______. 【答案】1﹣8π 【解析】 【分析】利用几何概型的概率公式求事件A 发生的概率.【详解】由题得x ∈[﹣1,1],y ∈[﹣2,2],对应的区域是长方形, 其面积为24=8⨯.设事件A 发生的概率为P ,故P =88π-=1﹣8π.故答案为:1﹣8π【点睛】本题主要考查几何概型的概率的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.6.已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,若a >b 且sin A cosCa b=,则A =_______. 【答案】2π【解析】 【分析】由题得sinB =cosC ,再求A 的大小. 【详解】因为sin cos A Ca b =,所以sin cos sin sin A C A B=,则sinB =cosC , 由a >b ,则B ,C 都是锐角,则B +C =2π,所以A =2π. 故答案为:2π【点睛】本题主要考查正弦定理解三角形,意在考查学生对该知识的理解掌握水平和分析推理能力.7.已知等比数列{}n a 满足112a =,且2434(1)a a a =-,则5a =_______. 【答案】8 【解析】 【分析】先求出3a 的值,再求5a 的值. 【详解】∵2434(1)a a a =- ∴2334(1)a a =-,则3a =2∴223512812a a a ===. 故答案为:8【点睛】本题主要考查等比中项的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.8.已知函数221()log (1)1x a x f x x x ⎧+≤=⎨->⎩,,,若[(0)]2f f =,则实数a 的值是_______.【解析】 【分析】解方程[(0)]2f f =即得a 的值. 【详解】∵0(0)223f =+= ∴[(0)](3)log 2a f f f == ∵[(0)]2f f = ∴log 22a =, 因0,a >所以解得a【点睛】本题主要考查分段函数求值,考查指数对数运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.圆柱形容器内部盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm 。
江苏省苏州市2019届高三高考模拟最后一卷数学试题(解析版)
江苏省苏州市2019届高三高考模拟最后一卷数学试题一、填空题(本大题共14小题,每小题5分,共70分.)1.已知集合{|02}A x x =<<,{}1B x x =,则AB =____. 『答案』{}|12x x << 『解析』集合A {x |0x 2}=<<,{}B x x 1=, A B {x |1x 2}∴⋂=<<.故答案为:{x |1x 2}<<.2.设i 是虚数单位,复数i 2ia z -=的模为1,则正数a 的值为_______.『解析』由题得i 1i 2i 22a a z -==--, 因为复数z 的模为1,所以21144a +=,解之得正数a .3.为了解某团战士的体重情况,采用随机抽样的方法.将样本体重数据整理后,画出了如图所示的频率分布直方图.已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,则全团共抽取人数为_______.『答案』48『解析』由题得频率分布直方图左边三组的频率和为15(0.03750.0125)0.75-⨯+=所以全团抽取的人数为:212(0.75)6÷⨯=48.故答案为:48.4.执行如图所示的程序框图,输出的k 的值为_______.『答案』4 『解析』程序执行中的数据变化如下:133130,3,,,1,,,22244k a q a k a =====<= 313313312,,,3,,,4,,4488416164k a k a k =<==<==<成立,输出4k = 5.设x ∈『﹣1,1』,y ∈『﹣2,2』,记“以(x ,y )为坐标点落在不等式221x y +≥所表示的平面区域内”为事件A ,则事件A 发生的概率为_______.『答案』1﹣8π 『解析』由题得x ∈『﹣1,1』,y ∈『﹣2,2』,对应的区域是长方形,其面积为24=8⨯.设事件A 发生的概率为P ,故P =88π-=1﹣8π. 故答案为:1﹣8π 6.已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,若a >b 且sin A cosC a b=,则A =_______.的『答案』2π 『解析』因为sin cos A C a b =,所以sin cos sin sin A C A B =,则sinB =cosC , 由a >b ,则B ,C 都是锐角,则B +C =2π,所以A =2π. 故答案为:2π 7.已知等比数列{}n a 满足112a =,且2434(1)a a a =-,则5a =_______. 『答案』8『解析』∵2434(1)a a a =-∴2334(1)a a =-,则3a =2 ∴223512812a a a ===. 故答案为:8.8.已知函数221()log (1)1x a x f x x x ⎧+≤=⎨->⎩,,,若[(0)]2f f =,则实数a 的值是_______.『解析』∵0(0)223f =+=∴[(0)](3)log 2a f f f ==∵[(0)]2f f =∴log 22a =,因0,a >所以解得a9.圆柱形容器内部盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm 。
江苏省2019-2020学年高三数学联考试题(含解析)
高三数学联考试题一、填空题:本大题共14小题,每小题5分,共计70分.把答案填写在答题卡相应位置........1.已知集合,,,则____.【答案】【解析】【分析】根据并集和补集的定义,直接计算得结果.【详解】由题意得:则本题正确结果:【点睛】本题考查集合的基本运算,属于基础题.2.已知复数(i为虚数单位),若为纯虚数,则实数a的值为__.【答案】2【解析】【分析】将化简的形式,为纯虚数要求实部为零,虚部不为零,由此可求得结果.【详解】为纯虚数本题正确结果:【点睛】本题考查复数的基本运算和纯虚数的定义,属于基础题.3.对某种电子元件使用寿命跟踪调查,抽取容量为1000的样本,其频率分布直方图如图所示.根据此图可知这批样本中寿命不低于300 h的电子元件的个数为____.【答案】800【解析】【分析】根据频率分布直方图求出的频率,利用得到不低于的概率,利用得到结果.【详解】使用寿命在的概率为:使用寿命在的概率为:使用寿命在的概率使用寿命不低于的概率使用寿命不低于的电子元件个数为:(个)本题正确结果:【点睛】本题考查利用频率分布直方图估计总体的问题,属于基础题.4.运行如图所示的流程图,若输入的,则输出的x的值为____.【答案】0【解析】【分析】按照程序框图依次运算,不满足判断框中条件时输出结果即可.【详解】由,得:,循环后:,由,得:,循环后:,由,得:,循环后:,由,得:,输出结果:本题正确结果:【点睛】本题考查程序框图中的条件结构和循环结构,属于基础题.5.将一颗质地均匀的正四面体骰子(四个面上分别写有数字1,2,3,4)先后抛掷2次,观察其朝下一面的数字,则两次数字之和为偶数的概率为____.【答案】【解析】【分析】所有可能的结果共种,通过两次数字之和为偶数说明两次均为奇数或者均为偶数,共种,由此得到概率为.【详解】骰子扔两次所有可能的结果有:种两次数字之和为偶数,说明两次均为奇数或均为偶数,则有:种两次数字之和为偶数的概率本题正确结果:【点睛】本题考查古典概型的应用,可通过排列组合来解决,由于此题基本事件个数较少,也可采用列举法来求解.6.已知双曲线的一个焦点到一条渐近线的距离为3a,则该双曲线的渐近线方程为____.【答案】【解析】【分析】由标准方程可得渐近线方程,利用点到直线的距离构造方程,求得的值,从而得到渐近线方程.【详解】渐近线方程为:由双曲线对称性可知,两焦点到两渐近线的距离均相等取渐近线,焦点渐近线方程为:本题正确结果:【点睛】本题考查双曲线的几何性质、点到直线距离公式,关键在于利用点到直线距离公式建立的等量关系,求解得到结果.7.已知正四棱柱中,AB=3,AA1=2,P,M分别为BD1,B1C1上的点.若,则三棱锥M PBC的体积为____.【答案】1【解析】【分析】三棱锥体积与三棱锥体积一样,为上动点,可知面积为侧面面积的一半;到面的距离等于到面的距离的,由此可根据三棱锥体积公式求得体积.【详解】由题意可知原图如下:又,即到面的距离等于到面的距离即本题正确结果:【点睛】本题考查三棱锥体积的求解,关键在于能够通过体积桥的方式将原三棱锥进行体积变换,找到易求解的底面积和高.8.已知函数是R上的奇函数,当x≥0时,f(x)=2x+m(m为常数),则的值为____.【答案】【解析】【分析】根据奇函数求得;将变成,代入,求得结果.【详解】为上的奇函数又本题正确结果:【点睛】本题考查利用函数奇偶性求解函数值的问题,属于基础题.9.已知角的终边经过点,函数图象的相邻两条对称轴之间的距离等于,则的值为____.【答案】【解析】【分析】根据对称轴之间距离求出最小正周期,从而求得;利用的终边所过点,得到、;将利用两角和差公式展开求得结果.【详解】角终边经过点,两条相邻对称轴之间距离为即本题正确结果:【点睛】本题考查利用三角函数图像特点求解解析式、三角函数定义、两角和差公式的应用,关键在于能够通过对称轴之间距离求出解析式,能够利用三角函数定义解出的正余弦值.10.如图,在平面直角坐标系中,点在以原点为圆心的圆上.已知圆O与y轴正半轴的交点为P,延长AP至点B,使得,则____.【答案】2【解析】【分析】根据点求出,从而得到直线;假设点坐标,利用可求得,由此可用坐标求解.【详解】圆半径则所在直线为:,即:设,则,解得:本题正确结果:【点睛】本题考查向量数量积的坐标运算,关键在于能够利用向量垂直求得点的坐标,从而得到所求向量的坐标,最终求得结果.11.已知函数的单调减区间为,则的值为____.【答案】e【解析】【分析】通过单调递减区间可确定,,利用韦达定理得到关于的方程,求解出结果.【详解】单调递减区间为且为方程的两根由韦达定理可知:当,即时,当,即时,,即此时,,即无解综上所述:本题正确结果:【点睛】本题考查利用单调区间求解参数值的问题,解题关键是要明确此函数单调区间的端点值恰为导函数值为零的点,通过构建方程求得结果.12.已知函数有三个不同的零点,则实数m的取值范围是____.【答案】【解析】【分析】通过时函数的单调性和值域,可判断出此时有且仅有一个零点,由此可知当时,有两个零点;通过求导运算,得到单调性,通过图像可知要想有两个零点,只需,求解得范围.【详解】当时,且在上单调递增有且仅有一个零点当时,需要有两个零点当时,当时,恒成立,即单调递增,不合题意;当时,令,解得:当时,,此时单调递增;当时,,此时单调递减,本题正确结果:【点睛】本题考查利用导数研究函数图像和零点个数的问题,关键在于能够通过导数得到图像情况,然后找到临界情况,从而列出关于的不等关系,求得范围.13.在平面直角坐标系中,已知圆O:和点M(1,0) .若在圆O上存在点A,在圆C:上存在点B,使得△MAB为等边三角形,则r的最大值为____.【答案】8【解析】【分析】通过分析图像可知:取最大值时,且在圆内部,由此可确定点的坐标,再利用方程组求解得到坐标为,由此可求得.【详解】圆由题意可知:,又且若最大,则需取最大值,且在圆内部可得,又与成角为设,则直线所在直线方程为:又解得:或(舍)时取最大值本题正确结果:【点睛】本题考查点与圆上点连线的最值、圆的最值类问题,关键在于能够通过图像分析出取得最值时点的位置,然后根据等量关系求解出坐标,进而求得结果.14.已知等差数列的前n项和S n>0,且,其中且.若(),则实数t的取值范围是____.【答案】【解析】【分析】首先根据可得恒成立,通过分析可求得;利用已知条件得到时,,根据等差数列通项公式和求和公式可化为,将右侧看做函数,即,通过的范围求得的范围,再结合变量和,分析求出的取值范围.【详解】设等差数列首项为,公差为由得:且即:对恒成立若,不恒成立,舍去若即,此时满足题意若即时,需时,,满足题意,又,所以由得:两式作商可得:,又整理可得:设,①当时,即当时,当时,此时,即,无法取得②当时,即当时,当时,综上所述:【点睛】本题考查数列的综合应用问题,在求解过程中结合了函数、不等式、恒成立等问题的求解方法和思路,整体难度较大.关键在于能够将范围的求解转化为函数值域的求解,在求解最值过程中,因为变量较多,需要不断进行变量迁移,从而能够在最值集合中找到满足题意的临界值,对学生的综合分析和应用能力要求较高.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤.15.如图,在三棱柱中,,.求证:(1)平面;(2)平面平面.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)通过,证得结论;(2)通过四边形为菱形,得到,又,可得到平面,从而证得结论.【详解】(1)在三棱柱中,又平面,平面所以平面(2)在三棱柱中,四边形为平行四边形因为,所以四边形为菱形,所以又,,平面,平面所以平面而平面所以平面平面【点睛】本题考查线面平行、面面垂直的证明,题目中的位置关系较为简单,属于基础题.16.在中,角所对的边分别为.向量,,且(1)若,求角的值;(2)求角的最大值.【答案】(1);(2).【解析】【分析】(1)利用向量平行得到,再利用正弦定理化简,可求得,从而求得;(2)方法一:利用正弦定理将边都化成角的关系,化简求得,再利用,结合基本不等式求得的最值,从而得到的最大值;方法二:利用余弦定理将角化成边的关系,再利用和基本不等式得到的最小值,从而得到的最大值.【详解】(1)因为,,且所以,即由正弦定理,得……①所以整理,得……②将代入上式得又,所以(2)方法一:由①式,因为,,所以②式两边同时除以,得又当且仅当,即时取等号又,所以的最大值为方法二:由(1)知,由余弦定理代入上式并化简得所以又当且仅当,即时取等号又,所以的最大值为【点睛】本题主要考查解三角形边角关系式的化简,以及通过边角关系式求解角的范围的问题.解决边角关系式的关键是能够通过正余弦定理将边化成角或者将角化成边,然后再进行处理.17.如图,在平面直角坐标系中,已知椭圆:的离心率为,且左焦点F1到左准线的距离为4.(1)求椭圆的方程;(2)若与原点距离为1的直线l1:与椭圆相交于A,B两点,直线l2与l1平行,且与椭圆相切于点M(O,M位于直线l1的两侧).记△MAB,△OAB的面积分别为S1,S2,若,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)根据椭圆的几何性质得到关系,求解得到标准方程;(2)设,根据可知,,又与原点距离为,即,可把化简为:,根据与椭圆相切,联立可得,由此代入化简可得的范围,再进一步求解出的范围.【详解】(1)因为椭圆的离心率为,所以又椭圆的左焦点到左准线的距离为所以所以,,所以椭圆的方程为(2)因为原点与直线的距离为所以,即设直线由得因为直线与椭圆相切所以整理得因为直线与直线之间的距离所以,所以又因为,所以又位于直线的两侧,所以同号,所以所以故实数的取值范围为【点睛】本题考查椭圆几何性质、直线与椭圆中的参数范围问题求解.求解参数范围问题,关键是构造出满足题意的函数关系式,然后通过函数求值域的方法,求解出函数的范围,从而可以推导出参数的范围.18.某鲜花小镇圈定一块半径为1百米的圆形荒地,准备建成各种不同鲜花景观带.为了便于游客观赏,准备修建三条道路AB,BC,CA,其中A,B,C分别为圆上的三个进出口,且A,B 分别在圆心O的正东方向与正北方向上,C在圆心O南偏西某一方向上.在道路AC与BC之间修建一条直线型水渠MN种植水生观赏植物黄鸢尾(其中点M,N分别在BC和CA上,且M在圆心O的正西方向上,N在圆心O的正南方向上),并在区域MNC内种植柳叶马鞭草.(1)求水渠MN长度的最小值;(2)求种植柳叶马鞭草区域MNC面积的最大值(水渠宽度忽略不计).【答案】(1)百米;(2)平方米.【解析】【分析】(1)设,可表示出直线的方程,从而求得两点坐标,进而将表示为关于的函数,利用导数求得最值;(2)方法一:将表示为,利用将面积表示出来,利用进行换元,从而化简得:,再根据的范围求得面积最大值;方法二:利用三角形面积公式,直接用表示出,再利用换元,也可得到,从而与方法一采用相同的求最大值方法求值. 【详解】【解】(1)以圆心为原点,建立平面直角坐标系,则圆的方程为设点,直线的方程为,令,得直线的方程为,令,得所以令,即,则令,得当时,,则单调递减;当时,,则单调递增;所以当时,所以水渠长度的最小值为百米(2)由(1)可知,,,且则设,因为,所以所以,所以当时,种植柳叶马鞭草区域面积的最大值为平方百米另法:(2)因为,所以由所以设,因为,所以所以,所以当时,种植柳叶马鞭草区域面积的最大值为平方百米【点睛】本题考查函数导数的实际应用问题,属于中档题.解题关键在于能够将所求量表示为某一变量的函数关系,然后利用函数最值的求解方式求得对应的结果.19.已知数列的各项均不为0,其前n项和为.若,,,.(1)求的值;(2)求数列的通项公式;(3)若数列满足,,求证:数列是等差数列.【答案】(1)81;(2);(3)详见解析.【解析】【分析】(1)将代入,可求得;(2)由可求得,进而,两式作差可得,进而推得,可得数列及数列均为等差数列,进而求得通项;(3)由与关系可得:,即,两式作差可得:,进而推得,即,则证明结束.【详解】(1)时,由得解得 (2)时,由,得则 因为,所以……① 所以……②②①得所以,两式相减得即数列及数列都成公差为的等差数列由,得,可求得 所以数列的通项公式为(3)由,,得所以因为,所以所以两式相减得,即所以两式相减得所以因为,可得所以所以数列是等差数列【点睛】本题考查由数列递推关系式求解通项公式以及证明类问题.关键在于能够适当代入和,从而得到数列前后项之间的关系,灵活运用递推关系式.证明数列为等差数列问题,基本思路为说明或,符合定义式即可证得结论.20.已知函数,,其中且,.(1)若函数f(x)与g(x)有相同的极值点(极值点是指函数取极值时对应的自变量的值),求k的值;(2)当m>0,k = 0时,求证:函数有两个不同的零点;(3)若,记函数,若,使,求k的取值范围.【答案】(1)0;(2)详见解析;(3)或.【解析】【分析】(1)分别求得与的极值点,利用极值点相同构造方程,求得;(2)首先求得在上单调递减,在上单调递增;再通过零点存在定理,分别在两段区间找到零点所在大致区间,根据单调性可知仅有这两个不同零点;(3)根据已知关系,将问题变为:,又,则可分别在,,三个范围内去求解最值,从而求解出的范围.【详解】(1)因为,所以令,得当时,,则单调递减;当时,,则单调递增;所以为的极值点因为,,所以函数的极值点为因为函数与有相同的极值点,所以所以(2)由题意,所以因为,所以令,得当时,,则单调递减;当时,,则单调递增;所以为的极值点因为,,又在上连续且单调所以在上有唯一零点取满足且则因为且,所以所以,又在上连续且单调所以在上有唯一零点综上,函数有两个不同的零点(3)时,由,使,则有由于①当时,,在上单调递减所以即,得②当时,,在上单调递增所以即,得③当时,在上,,在上单调递减;在上,,在上单调递增;所以即(*)易知在上单调递减故,而,所以不等式(*)无解综上,实数的取值范围为或【点睛】本题考查导数在研究函数中的综合应用问题,包括了单调性的求解、极值和极值点、最值问题,综合性较强.证明零点个数问题重点在于能够通过单调性将零点个数的最大值确定,进而再通过零点存在定理来确定零点个数;而能够将存在性问题转化为恒成立问题,通过最值来求解参数范围,也是解决此题的关键.数学Ⅱ(附加题)第21、22、23题,每小题10分,共计30分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.21.已知二阶矩阵有特征值,其对应的一个特征向量为,并且矩阵对应的变换将点(1,2)变换成点(8,4),求矩阵.【答案】【解析】【分析】设二阶矩阵为,根据特征值、特征向量可列出关于的方程组,求解即可得到结果.【详解】设所求二阶矩阵因为有特征值,其对应的一个特征向量为所以,且所以,解得所以【点睛】本题考查二阶矩阵以及特征值与特征向量的计算问题,属于基础题.22.如图,四棱锥P ABCD中,底面四边形ABCD为矩形,PA⊥底面ABCD,,F为BC的中点,.(1)若,求异面直线PD与EF所成角的余弦值;(2)若,求二面角E AF C的余弦值.【答案】(1);(2).【解析】【分析】(1)根据求得点坐标,从而表示出,通过夹角公式求得结果;(2)通过求得得点坐标,再进一步求出平面法向量,又面的一个法向量为,求出即可求得所求余弦值.【详解】以为原点,为正交基底建立如图所示的空间直角坐标系则,,,,,(1)当时,由得所以,又所以所以异面直线与所成角的余弦值为(2)当时,由,得设平面的一个法向量为,又,则,得又平面的一个法向量为所以所以二面角的余弦值为【点睛】本题考查利用空间向量法求解异面直线所成角和二面角的问题,关键在于能够准确地建立坐标系,并用坐标表示点、求解法向量;需要注意的问题是:平面法向量有无数条,方向不同会造成的符号不同,要判断好所求二面角与法向量夹角是等角关系还是补角关系,从而准确求得结果. 23.设整数数列{a n }共有2n ()项,满足,,且().(1)当时,写出满足条件的数列的个数;(2)当时,求满足条件的数列的个数.【答案】(1)8;(2).【解析】 【分析】(1)当确定时,可确定,再逆推可知有种取法;再依据可知各有种取法;由于与有关,当确定时,必然随之确定,故根据分步乘法计数原理,可得数列个数为;(2)设,且,可推得:;又,可推得:;用表示中值为的项数可知的取法数为,再任意指定的值,有种,可知数列有个;再化简,可得最终结果. 【详解】(1)时,,且则确定时,有唯一确定解又,可知有种取法若,则,则有种取法此时,也有种取法又,当确定时,随之确定故所有满足条件的数列共有:个满足条件的所有的数列的个数为(2)设,则由得①由得,则:即②用表示中值为的项数由②可知也是中值为的项数,其中所以的取法数为确定后,任意指定的值,有种由①式可知,应取,使得为偶数这样的的取法是唯一的,且确定了的值从而数列唯一地对应着一个满足条件的所以满足条件的数列共有个下面化简设两展开式右边乘积中的常数项恰好为因为,又中的系数为所以所以满足条件的数列共有个【点睛】本题考查新定义、排列组合、二项式定理问题,对学生分析解决问题能力要求较高;如何正确理解定义,同时找到定义式的切入点是解决问题的关键;题目对于排列组合、二项式定理知识的应用能力要求比较高,难度较大.。
江苏省苏州市2019-2020学年高考数学最后模拟卷含解析
江苏省苏州市2019-2020学年高考数学最后模拟卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. “8πϕ=-”是“函数()sin(3)f x x ϕ=+的图象关于直线8x π=-对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】先求解函数()f x 的图象关于直线8x π=-对称的等价条件,得到7,8k k ϕππ=+∈Z ,分析即得解. 【详解】若函数()f x 的图象关于直线8x π=-对称,则3,82k k ππϕπ⎛⎫⨯-+=+∈ ⎪⎝⎭Z , 解得7,8k k ϕππ=+∈Z , 故“8πϕ=-”是“函数()sin(3)f x x ϕ=+的图象关于直线8x π=-对称”的充分不必要条件.故选:A 【点睛】本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题. 2.设α为锐角,若3cos 45πα⎛⎫+= ⎪⎝⎭,则sin 2α的值为( ) A .1725B . 725-C . 1725-D .725【答案】D 【解析】 【分析】用诱导公式和二倍角公式计算. 【详解】2237sin 2cos(2)cos 2()[2cos ()1][2()1]244525ππααααπ=-+=-+=-+-=-⨯-=.故选:D . 【点睛】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系.3.设a ,b 都是不等于1的正数,则“22a b log log <”是“222a b >>”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据对数函数以及指数函数的性质求解a,b 的范围,再利用充分必要条件的定义判断即可. 【详解】由“l 22og log a b <”,得2211log log a b<,得22log 0log 0a b <⎧⎨>⎩或220log a log b >>或220log a log b >>,即011a b <<⎧⎨>⎩或1a b >>或01b a <<<,由222a b >>,得1a b >>,故“22log log a b <”是“222a b >>”的必要不充分条件,故选C . 【点睛】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题. 4.设全集U =R ,集合{}2A x x =<,{}230B x x x =-<,则()U A B =I ð( ) A .()0,3 B .[)2,3C .()0,2D .()0,∞+【答案】B 【解析】 【分析】可解出集合B ,然后进行补集、交集的运算即可. 【详解】{}()2300,3B x x x =-<=Q ,{}2A x x =<,则[)2,U A =+∞ð,因此,()[)2,3U A B =I ð.故选:B. 【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.5.过抛物线C 的焦点且与C 的对称轴垂直的直线l 与C 交于A ,B 两点,||4AB =,P 为C 的准线上的一点,则ABP ∆的面积为( ) A .1 B .2 C .4 D .8【答案】C 【解析】 【分析】设抛物线的解析式22(0)y px p =>,得焦点为,02p F ⎛⎫⎪⎝⎭,对称轴为x 轴,准线为2p x =-,这样可设A点坐标为,22p ⎛⎫⎪⎝⎭,代入抛物线方程可求得p ,而P 到直线AB 的距离为p ,从而可求得三角形面积. 【详解】设抛物线的解析式22(0)y px p =>, 则焦点为,02p F ⎛⎫⎪⎝⎭,对称轴为x 轴,准线为2p x =-,∵ 直线l 经过抛物线的焦点,A ,B 是l 与C 的交点, 又AB x ⊥轴,∴可设A 点坐标为,22p ⎛⎫⎪⎝⎭, 代入22y px =,解得2p =,又∵点P 在准线上,设过点P 的AB 的垂线与AB 交于点D ,||222p pDP p =+-==, ∴11||||24422ABP S DP AB ∆=⋅=⨯⨯=. 故应选C. 【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出A 点坐标,从而求得参数p 的值.本题难度一般.6.已知i 为虚数单位,若复数12i12iz +=+-,则z = A .9i 5+B .1i -C .1i +D .i -【答案】B 【解析】 【分析】 【详解】因为212i (12i)(2i)2i 4i 2i 1111i 2i (2i)(2i)5z ++++++=+=+=+=+--+,所以1i z =-,故选B . 7.已知函数()2()2ln (0)f x a e x x a =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点(,())s f t ,(,)s t D ∈所构成的平面区域面积为2e 1-,则a =( ) A .e B .1e 2- C .1 D .2e e - 【答案】D 【解析】 【分析】依题意,可得()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,于是可得()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为2(2),a e e a ⎡⎤+⎣⎦,继而可得()221211a e e e e ⎛⎫---=- ⎪⎝⎭,解之即可. 【详解】解:()2222()a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为2(2),a e e a ⎡⎤+⎣⎦,因为所有点(,())s f t (,)s t D ∈所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=-⎪⎝⎭, 解得2ea e =-, 故选:D. 【点睛】本题考查利用导数研究函数的单调性,理解题意,得到221(2)(1)1a e e e e---=-是关键,考查运算能力,属于中档题.8.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了100GW ,达到114.6GW ,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )A .截止到2015年中国累计装机容量达到峰值B .10年来全球新增装机容量连年攀升C .10年来中国新增装机容量平均超过20GWD .截止到2015年中国累计装机容量在全球累计装机容量中占比超过13【答案】D 【解析】 【分析】先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择. 【详解】 年份 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 累计装机容量 158.1 197.2 237.8 282.9 318.7 370.5 434.3 489.2 542.7 594.1 新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A 错误;全球新增装机容量在2015年之后呈现下降趋势,B 错误;经计算,10年来中国新增装机容量平均每年为19.77GW ,选项C 错误;截止到2015年中国累计装机容量197.7GW ,全球累计装机容量594.1158.1436GW -=,占比为45.34%,选项D 正确.故选:D 【点睛】本题考查条形图,考查基本分析求解能力,属基础题.9.平行四边形ABCD 中,已知4AB =,3AD =,点E 、F 分别满足2AE ED =uu u r uu u r ,DF FC =u u ur u u u r ,且6AF BE ⋅=-u u u r u u u r ,则向量AD u u u r 在AB u u u r上的投影为( )A .2B .2-C .32D .32-【答案】C 【解析】 【分析】将,AF BE u u u r u u u r 用向量AD u u u r 和AB u u u r 表示,代入6AF BE ⋅=-u u u r u u u r 可求出6AD AB ⋅=u u u r u u u r ,再利用投影公式AD AB AB⋅u u u r u u u r u u u r 可得答案. 【详解】解:()()AF BE AD DF BA AE ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r21123223AD AB AD AD AB AB AB AD =⋅+⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r22421346332AD AB =⋅+⨯-⨯=u u ur u u u r , 得6AD AB ⋅=u u u r u u u r,则向量AD u u u r 在AB u u u r 上的投影为6342AD AB AB⋅==u u u r u u u ru u ur . 故选:C. 【点睛】本题考查向量的几何意义,考查向量的线性运算,将,AF BE u u u r u u u r用向量AD u u u r 和AB u u u r表示是关键,是基础题. 10.设1,0(){2,0xx x f x x -≥=<,则((2))f f -=( )A .1-B .14C .12D .32【答案】C 【解析】试题分析:()21224f --==Q ,()()11112114422f f f ⎛⎫∴-==-=-= ⎪⎝⎭.故C 正确. 考点:复合函数求值.11.空气质量指数AQI 是反映空气状况的指数,AQI 指数值趋小,表明空气质量越好,下图是某市10月1日-20日AQI 指数变化趋势,下列叙述错误的是( )A .这20天中AQI 指数值的中位数略高于100B .这20天中的中度污染及以上(AQI 指数>150)的天数占14C .该市10月的前半个月的空气质量越来越好D .总体来说,该市10月上旬的空气质量比中旬的空气质量好 【答案】C 【解析】 【分析】结合题意,根据题目中的20天的AQI 指数值,判断选项中的命题是否正确. 【详解】对于A ,由图可知20天的AQI 指数值中有10个低于100,10个高于100,其中第10个接近100,第11个高于100,所以中位数略高于100,故A 正确.对于B ,由图可知20天的AQI 指数值中高于150的天数为5,即占总天数的14,故B 正确. 对于C ,由图可知该市10月的前4天的空气质量越来越好,从第5天到第15天空气质量越来越差,故C 错误.对于D ,由图可知该市10月上旬大部分指数在100以下,中旬大部分指数在100以上,所以该市10月上旬的空气质量比中旬的空气质量好,故D 正确. 故选:C 【点睛】本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.12.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b c a >>D .a c b >>【答案】D 【解析】 【分析】由指数函数的图像与性质易得b 最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较a 和c 的大小关系,进而得解.【详解】根据指数函数的图像与性质可知1314120131b ⎛⎫<= ⎪⎭<⎝,由对数函数的图像与性质可知12log 131a =>,13log 141c =>,所以b 最小; 而由对数换底公式化简可得1132log 13log 14a c -=-lg13lg14lg12lg13=- 2lg 13lg12lg14lg12lg13-⋅=⋅ 由基本不等式可知()21lg12lg14lg12lg142⎡⎤⋅<+⎢⎥⎣⎦,代入上式可得()2221lg 13lg12lg14lg 13lg12lg142lg12lg13lg12lg13⎡⎤-+⎢⎥-⋅⎣⎦>⋅⋅221lg 13lg1682lg12lg13⎛⎫- ⎪⎝⎭=⋅11lg13lg168lg13lg16822lg12lg13⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭=⋅((lg13lg13lg 0lg12lg13+⋅-=>⋅所以a c >, 综上可知a c b >>, 故选:D. 【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
2019-2020年高三最后一卷数学试题含答案
2019-2020年高三最后一卷数学试题含答案一.填空题1.已知,则= 。
2.若“”是“”的必要不充分条件,则的最大值为 。
3.已知角的顶点在坐标原点,始边与轴的正半轴重合,终边上有一点,则= 。
4.已知中心在原点,坐标轴为对称轴的双曲线的渐近线方程是,则该双曲线的离心率是 。
5.已知一个正四面体的边长为2,则它的体积为 。
6. 已知,且,,则_______.7. 圆关于直线成轴对称图形,则的取值范围是___________.8. 在平面直角坐标系中,直线与圆相切,其中,N *,,若函数的零点,Z ,则 .9. 若直线与圆交于两点,且关于直线对称,动点在不等式组⎪⎩⎪⎨⎧≥≤-≥+-0002y my kx y kx 表示的平面区域内部及边界上运动,则的取值范围是 .10. 在中,设()()4,2,3,2=-=k 且Z ,则为直角三角形的概率为__________. 11. 已知函数,若方程有且仅有三个不同的实根,则实数的取值的集合为 .12. 已知R ,且,设的最大值和最小值分别为,则________.13. 已知函数2342015()12342015x x x x f x x =+-+-++,设,且函数的零点均在区间(,,Z )内,圆的面积的最小值是_______.14. 各项均为正偶数的数列,,,中,前三项依次成公差为的等差数列,后三项依次成公比为的等比数列.若,则的所有可能的值构成的集合为__________. 二.解答题15. 已知,,. (1)若,求的值;(2)若∥,又为锐角,且求的值.16. 在四棱锥中,,,平面,为的中点,.(1)若为的中点,求证平面; (2)求证平面.17. 如图所示,l 1,l 2是两条互相垂直的海岸线,C 为一海岛,ABCD 是一矩形渔场,为了扩大渔业规模,将该渔场改建成一个更大的矩形渔场AMPN ,要求点D ,N 在海岸线l 1上,点B ,M 在海岸线l 2上,且两点M ,N 连线经过海岛C ,已知AB =3km,AD =2km.(1)要使矩形AMPN 的面积大于32km 2,则AN 的长应在什么范围内? (2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积.(3)若AN 的长度不少于6km ,则当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.MF EDCBAP18. 已知椭圆()01:2222>>=+b a by a x C 上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(1)求椭圆的方程;(2)设,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点E , 证明直线与轴相交于定点.(3)在(2)的条件下, 过点的直线与椭圆交于两点,直线中点的横坐标为,求的范围.19. 设.2)(,ln )(),(2)(--==--=epqe e g x x f x f x q px x g 且其中(e 为自然对数的底数)。
2020年江苏省盐城市亭湖高级中学高三数学文期末试题含解析
2020年江苏省盐城市亭湖高级中学高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知双曲线(a>0,b>0)的离心率为3,则其渐近线的方程为A.2y±x=0 B.2x±y=0 C.8x±y=0 D.x±8y=0参考答案:B2. 已知,则()A. a>b>c B. b>a>c C. a>c>b D. c>a>b参考答案:C考点:指数函数的单调性与特殊点.专题:函数的性质及应用.分析:比较大小的方法:找1或者0做中介判断大小,log43.6<1,log23.4>1,利用分数指数幂的运算法则和对数的运算法则对c进行化简,得到>1>b,再借助于中间值log2进行比较大小,从而得到结果.,解答:解:∵log23.4>1,log43.6<1,又y=5x是增函数,∴a>b,>==b 而log23.4>log2>log3,∴a>c故a>c>b.故选C.点评:此题是个中档题.本题考查对数函数单调性、指数函数的单调性及比较大小,以及中介值法,考查学生灵活应用知识分析解决问题的能力.3. 已知函数, 若, 则实数的取值范围是( )A. B. C. D.参考答案:D10.若变量满足约束条件则的最大值等于()A. 7B. 8C. 10D. 11参考答案:C5. 在实数0,-1.5,1,-中,比-2小的数是()A. 0B. -1.5C. 1D. -参考答案:D分析:实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.详解:根据实数比较大小的方法,可得<-2<-1.5<0<1,∴最小的数是.故选D.点睛:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6. 若复数的实部与虚部相等,则实数()(A)(B)(C)(D)参考答案:A略7. 已知圆,点,A,B两点关于x轴对称.若圆C上存在点M,使得,则当m取得最大值时,点M的坐标是A.B.C.D.参考答案:C由题得圆的方程为设由于,所以由于表示圆C上的点到原点距离的平方,所以连接OC,并延长和圆C相交,交点即为M,此时最大,m也最大.故选C.8. 已知定义在R上的函数满足f(1)=2,且f(x)的导数f′(x)在R上恒有f′(x)<1(x∈R),则不等式f(x)<x+1的解集为()A.(1,+∞)B.(﹣∞,﹣1)C.(﹣1,1)D.(﹣∞,1)∪(1,+∞)参考答案:A【考点】利用导数研究函数的单调性.【分析】由题意,设g(x)=f(x)﹣(x+1),x∈R;求出g′(x),判定g(x)的单调性,由此求出不等式f(x)<x+1的解集.【解答】解:根据题意,设g(x)=f(x)﹣(x+1),x∈R;∴g′(x)=f′(x)﹣1<0,∴g(x)在R上是单调减函数;又∵g(1)=f(1)﹣(x+1)=0,∴当x>1时,g(x)<0恒成立,即f(x)<x+1的解集是(1,+∞).故选:A.9. 如右图是某四面体的三视图,则该几何体最长的棱长为()A.B.C.D.3参考答案:D由三视图可知,该几何体是如图所示的三棱锥,图中正方体的棱长为,点为所在棱的中点,该三棱锥三条棱长为,两条棱长为,最长棱长为,故选D.10. 点A、B、C、D在同一个球的球面上,AB=BC=,AC=2,若四面体ABCD体积的最大值为,则这个球的表面积为()A. B.8πC. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 若函数在区间上有且仅有一条平行于y轴的直线是其图像的对称轴,则的取值范围是___________。
江苏省盐城市亭湖高级中学2023届高三一模模拟数学试题
一、单选题二、多选题1. 已知等差数列的公差为,前项和为,则“”是“”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件2. 已知函数,若函数在区间上有4个不同的零点,则实数的取值范围是( )A.B.C.D.3. 已知全集,集合,,则( )A.B.C.D.4. 函数在区间内单调递增的一个充分不必要条件是A.B.C.D.5.函数的单调递增区间A.B.C.D.6.已知的展开式中的系数为,则正整数( )A .8B .6C .5D .47. 设双曲线的左、右焦点分别为,过右顶点的直线与右支交于不同于点A 的另一点P ,若,则该双曲线的离心率是( )A .2B.C .3D .48. 如图,在正方体中, 直线与平面的位置关系为()A .直线在平面内B .直线与平面相交但不垂直C .直线与平面相交且垂直D .直线与平面平行9. 在中,角, ,的对边分别为,,,若,且,则不可能为( )A .等腰直角三角形B .等边三角形C .锐角三角形D .钝角三角形10. 中国饮食文化是有着长远历史,博大精深的中国文化.譬如粽子,有人说是因为纪念爱国诗人屈原人们用艾叶或苇叶、荷叶包住食物,用五色丝线捆好,投江祭奠;也有人说是为了清明节纪念晋文公名臣介子推.现在粽子已演变出不同品种、不同类别,很多地方逢年过节怀着美好祝愿以粽子为食物.其中一种粽子被包成比较对称的四面体形状.现有一只质地均匀的粽子各棱长为12的四面体ABCD ,兄弟三人分食此粽.大哥将粽子平放桌面上(面BCD 在桌面),准备用垂直于桌面的两刀将粽子体积三等分,忽略粽子的变形,第一刀经过了棱AB 上点E ,切截面与棱BC ,BD 均相交;则以下结论正确的是( )江苏省盐城市亭湖高级中学2023届高三一模模拟数学试题江苏省盐城市亭湖高级中学2023届高三一模模拟数学试题三、填空题四、解答题A .若AE =2,第一刀切底面所得的三角形面积是定值;B .若AE =2,截面截底面两边的长度为及;C .点E 能与点A 重合;D .若第二刀将剩余部分分为全等的两块,则BE长为.11.已知函数,若关于的方程有5个不同的实根,则实数可能的取值有( )A.B.C.D.12. 已知函数,则( )A .为偶函数B .为周期函数,且最小正周期为C .恒成立D.的最小值为13.已知等比数列的前n 项和为,,,则c =______.14. 甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为;乙第一次射击的命中率为,若第一次未射中,则乙进行第二次射击,射击的命中率为,如果又未中,则乙进行第三次射击,射击的命中率为.乙若射中,则不再继续射击.则甲三次射击命中次数5的期望为_____,乙射中的概率为_____.15. 函数,且,则的值为______.16.已知在中,A ,B ,C 为三个内角,a ,b ,c 为三边,,.(1)求角B 的大小;(2)在下列两个条件中选择一个作为已知,求出BC 边上的中线的长度.①的面积为;②的周长为.17. 已知函数.(1)当时,若曲线的一条切线斜率为4,求该切线方程;(2)试讨论的零点个数.18. 设函数,其中.(1)当时,求函数的单调区间;(2)若,求实数的取值范围.19.已知数列满足,.数列满足,,,.(1)求数列及的通项公式;(2)求数列的前n项和.20. 已知数列中,,为数列的前项和,且.(1)求数列的通项公式;(2)若数列满足,为数列的前项和,求证:.21. 某校高三共有500名学生,为了了解学生的体能情况,采用分层抽样的方法从中随机抽取了100名学生进行体能测试,整理他们的成绩得到如下频率分布直方图:(1)估算:若进行高三学生全员测试,测试成绩低于50的人数;(2)已知从样本中的男同学中随机抽取1人,该同学成绩不低于70的概率为;从样本中成绩不低于70的学生中随机抽取1人,该学生为男生的概率也为.试估计该校高三学生中男同学和女同学人数的比例.。
江苏省盐城市亭湖高级中学2023届高三一模模拟数学试题(1)
一、单选题二、多选题1. 命题:“,则”的否定是( )A .,B .,C .,D .,2.( )A.B .-2C .1D .43.已知为等差数列,前项和为,且,,则( )A .54B .45C .23D .184. 已知,则的大小关系为( )A.B.C.D.5. 要得到函数的图象,可将函数的图象A.向左平移个单位长度B .向左平移个单位长度C.向右平移个单位长度D .向右平移个单位长度6. 抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形.阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的斜率之积为定值.设抛物线,弦AB 过焦点,△ABQ 为阿基米德三角形,则△ABQ 的面积的最小值为( )A.B.C.D.7.已知等比数列中,,且,则( )A.B .16C.D .48. 复数,在复平面内z 的共轭复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限9. 如图,为了测量障碍物两侧A ,B 之间的距离,一定能根据以下数据确定AB 长度的是()A .a ,b,B .,,C .a ,,D .,,b10. 八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形,其中,则下列结论正确的有( )江苏省盐城市亭湖高级中学2023届高三一模模拟数学试题(1)江苏省盐城市亭湖高级中学2023届高三一模模拟数学试题(1)三、填空题四、解答题A.B.C.D .在向量上的投影向量为11.在锐角中,有( )A.B.C.D.12. 如图,将一副三角板拼成平面四边形,将等腰直角沿向上翻折,得三棱锥,设,点分别为棱的中点,为线段上的动点,下列说法正确的是()A.不存在某个位置,使B.存在某个位置,使C.当三棱锥体积取得最大值时,AD 与平面ABC成角的正弦值为D .当时,的最小值为13. 已知向量,,若,则m=________.14. 某班设计了一个“水滴状”班徽(如图),徽章由等腰三角形,及以弦和劣弧所围成的弓形所组成,劣弧所在的圆为三角形的外接圆,若,外接圆半径为1,则该图形的面积为____________.15.在中,内角所对的边分别是,且,,则的面积为___________.16.已知函数.(1)求过点且与曲线相切的直线方程;(2)设,其中a为非零实数,若有两个极值点,且,求证:.17. 已知椭圆的左、右焦点分别为、,焦点为的抛物线的准线被椭圆截得的弦长为.(1)求椭圆的标准方程;(2)若点、到直线的距离之积为,求证:直线与椭圆相切.18. 为喜迎马年新春佳节,怀化某商场在正月初六进行抽奖促销活动,当日在该店消费满500元的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“马”“上”“有”“钱”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“钱”字球,则停止取球.获奖规则如下:依次取到标有“马”“上”“有”“钱”字的球为一等奖;不分顺序取到标有“马”“上”“有”“钱”字的球,为二等奖;取到的4个球中有标有“马”“上”“有”三个字的球为三等奖.(1)求分别获得一、二、三等奖的概率;(2)设摸球次数为,求的分布列和数学期望19. 设连续正值函数定义在区间上,如果对于任意,都有,则称为“几何上凸函数”.已知,.(1)讨论函数的单调性;(2)若,试判断是否为上的“几何上凸函数”,并说明理由.20. 某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期12月1日12月2日12月3日12月4日12月5日温差X/℃101113128发芽数Y/颗2325302616该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出Y关于X的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?21. 某自行车厂为了解决复合材料制成的自行车车架应力不断变化问题,在不同条件下研究结构纤维按不同方向及角度黏合强度,在两条生产线上同时进行工艺比较实验,为了比较某项指标的对比情况,随机地抽取了部分甲生产线上产品该项指标的值,并计算得到其平均数,中位数,随机地抽得乙生产线上100件产品该项指标的值,并绘制成如下的频率分布直方图.(1)求乙生产线的产品指标值的平均数与中位数(每组值用中间值代替,结果精确到0.01),并判断乙生产线较甲生产线的产品指标值是否更好(如果,则认为乙生产线的产品指标值较甲生产线的产品指标值更好,否则不认为更好).(2)用频率估计概率,现从乙生产线上随机抽取5件产品,抽出指标值不小于70的产品个数用表示,求的数学期望与方差.。
2023届江苏省盐城市亭湖高级中学高三一模模拟数学试卷(word版)
2023届江苏省盐城市亭湖高级中学高三一模模拟数学试卷(word版)一、单选题(★★) 1. 不等式( x-π)( x-e)≤0成立的一个充分不必要条件是()A.x∈(π,e)B.x∈[e,π]C.x∈(e,π)D.x∈(-∞,π](★★) 2. 已知复数z满足(1-i) z=2+3i(i为虚数单位),则z=()A.-+i B.+iC.-i D.--i(★) 3. 某校高三年级的名学生中,男生有名,女生有名.从中抽取一个容量为的样本,则抽取男生和女生的人数分别为()A.、B.、C.、D.、(★★★) 4. 七巧板,又称七巧图、智慧板,是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型,于明、清两代在民间广泛流传.某同学用边长为4dm的正方形木板制作了一套七巧板,如图所示,包括5个等腰直角三角形,1个正方形和1个平行四边形.若该同学从这七块小木板中随机抽取2块,这两块的面积相等的概率是()A.B.C.D.(★★★) 5. 在三棱锥P- ABC中,已知△ABC是边长为2的等边三角形,P A为此三棱锥外接球O的直径,P A=4,则点P到底面ABC的距离为()A.B.C.D.(★★) 6. 设数列为等比数列,若,,则数列的前项和为()A.B.C.D.(★★★) 7. 函数的部分图象如图,则下列选项中是其一条对称轴的是()A.B.C.D.(★★★) 8. 已知f( x)=x2+2 ax-1,对任意x1、x2∈[1,+∞)且x1<x2,恒有x2f( x1)-xf( x2)<a( x1-x2)成立,则实数a的取值范围是()1A.(-∞,2]B.(-∞,3]C.(-∞,]D.(0,]二、多选题(★★★) 9. 某企业节能降耗技术改造后,在生产某产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据如表,现发现表中有个数据看不清,已知回归直线方程为,下列说法正确的是()21938A.看不清的数据的值为34B.具有正相关关系,相关系数C.第三个样本点对应的残差D.据此模型预测产量为7吨时,相应的生产能耗约为50吨(★★★) 10. 等差数列的前项和为,公差为,若,则下列结论正确的是()A.若,则B.若,则最小C.D.(★★★) 11. 甲袋中装有4个白球,2个红球和2个黑球,乙袋中装有3个白球,3个红球和2个黑球.先从甲袋中随机取出一球放入乙袋,再从乙袋中随机取出一球.用,,分别表示甲袋取出的球是白球、红球和黑球,用B表示乙袋取出的球是白球,则()A.,,两两互斥B.C.与B是相互独立事件D.(★★★) 12. 笛卡尔是西方哲学思想的奠基人之一,“我思故我在”便是他提出的著名的哲学命题;同时,笛卡尔也是一位家喻户晓的数学家,除了发明坐标系以外,笛卡尔叶形线也是他的杰出作品,其方程为x3+y3=3 axy,a为非零常数.下列关于笛卡尔叶形线的说法中正确的是()A.图象关于直线y=x对称B.图象与直线x+y+a=0有2个交点C.当a>0时,图象在第三象限没有分布D.当a=1,x、y>0时,y的最大值为三、填空题(★★★) 13. 设随机变量,函数没有零点的概率是,则_____________ 附:若,则,.(★★★) 14. 中的系数为 __________ (用数字作答).(★★★) 15. 已知函数的图像关于对称,且,则 __________ .(★★★) 16. 设为抛物线的焦点,、、为抛物线上不同三点,且,为坐标原点,若、、的面积分别为、、,则 ___________ .四、解答题(★★★) 17. 已知△ABC的内角A,B,C的对边分别为a,b,c.若.(1)求的值;(2)若,求cos B的值.(★★★) 18. 记为数列的前项和,已知,,且数列是等差数列.(1)证明:是等比数列,并求的通项公式;(2)设,求数列的前项和.(★★★) 19. 全国高中数学联赛试题设置如下:联赛分为一试、加试(即俗称的“二试”).一试包括8道填空题(每题8分)和3道解答题(分别为16分、20分、20分),满分120分.二试包括4道解答题,涉及平面几何、代数、数论、组合四个方面.前两道题每题40分,后两道题每题50分,满分180分.已知某一数学克赛选手在一试中每道填空题能够正确解答的概率均为,每道解答题能够正确解答的概率均为,在二试中前两道每题能够正确解答的概率均为,后两道每题能够正确解答的概率均为.假设每道题答对得满分.答错得0分.(1)记该选手在二试中的成绩为,求;(2)根据该选手所在省份历年的竞赛成绩分布可知,若一试成绩在100分(含100分)以上的选手,最终获得省一等奖的可能性为,一试成绩低于100分,最终获得省一等奖的可能性为.问该选手最终获得省一等奖的可能性能否达到,并说明理由.(参考数据:)(★★★) 20. 如图,是圆的直径,是圆上异于,的一点,垂直于圆所在的平面,,,.(1)求证:平面平面;(2)若,求平面与平面所成的锐二面角的余弦值.(★★★) 21. 在平面直角坐标系xOy中,已知双曲线C:-=1( a、b为正常数.. )的右顶点为A,直线l与双曲线C交于P、Q两点,且P、Q均不是双曲线的顶点,M为PQ的中点.(1)设直线PQ与直线OM的斜率分别为k1、k2,求k1·k2的值;(2)若=,试探究直线l是否过定点?若过定点,求出该定点坐标;否则,说明理由.(★★★★) 22. 已知函数(1)求在处的切线方程;(2)若在定义域上有两解,求证:①;②.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省亭湖高级中学2019-2020学年高三最后一模数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记函数()223f x x ax =+-在区间(],3-∞-上单调递减时实数a 的取值集合为A ;不等式()122x a x x +≥>-恒成立时实数a 的取值集合为B ,则“x B ∈”是“x A ∈”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.奇函数f x ()的定义域为R ,若1f x +()为偶函数,且(1)1f ﹣=﹣,则20182019f f +()()=( )A .﹣2B .﹣1C .0D .13.已知O 为ABC ∆内一点,且1()2AO OB OC =+u u u r u u u r u u u r ,AD t AC =u u u r u u u r,若B ,O ,D 三点共线,则t 的值为( )A .14B .13C .12D .234.设()f x '为函数()f x 的导函数,且满足()32133f x x ax bx =-++,()()6f x f x ''=-+,若()6ln 3f x x x ≥+恒成立,则实数b 的取值范围是( )A .[)66ln6,++∞ B .[)4ln 2,++∞ C .[)5ln5,++∞ D .)643,⎡++∞⎣5. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且B =2C,2bcosC -2ccosB =a ,则角A 的大小为( ) A .2πB .3π C . 4π D . 6π6.如图,已知线段AB 上有一动点D (D 异于A B 、),线段CD AB ⊥,且满足2CD AD BD λ=⋅(λ是大于0且不等于1的常数),则点C 的运动轨迹为( )A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分7.若函数()sin()f x A x ωϕ=+(其中0A >,||)2πϕ<图象的一个对称中心为(3π,0),其相邻一条对称轴方程为712x π=,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( )A .向右平移6π个单位长度B .向左平移12π个单位长度 C .向左平移6π个单位长度 D .向右平移12π个单位长度8.平行四边形ABCD 中,120,2,3,BAD AB AD ∠===ou u u r u u u r 11,32BE BC CF CD ==u u u v u u u v u u u v u u u v ,则AE AF ⋅=u u u v u u u v( )A .3B .32C .3-D .32-9.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( ) A .74 B .32 C .2 D .5410.已知函数2(sin 2cos ()+∈f x x x x x R ,则()f x 在区间02π⎡⎤⎢⎥⎣⎦,上的最小值为( ) A .3- B .2- C .1- D .011.已知点p 是直线0x y m -+=上的动点,由点p 向圆22:1O x y +=引切线,切点分别为M ,N 且90MPN ∠=︒,若满足以上条件的点p 有且只有一个,则m =( )A .2B .2± CD.12.若抛物线28y x =上一点P 到其焦点的距离为10,则点P 的坐标为( ) A .(8,8)B .(8,8)-C .(8,8)±D .(8,8)-±二、填空题:本题共4小题,每小题5分,共20分。
13.将函数()sin 2f x x =的图象向右平移6π个单位得到函数()g x 的图象,则以函数()f x 与()g x 的图象的相邻三个交点为顶点的三角形的面积为________________.14.已知双曲线22:41C x y -=,过点()2,0P 的直线l 与C 有唯一公共点,则直线l 的方程为__________.15.圆C :()2211x y -+=的圆心到直线l :()00x y a a -+=>,则a 的值为______.16.直线y ax =是曲线1ln y x =+的切线,则实数a =____. 三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系xOy 中,曲线C 1的参数方程为x 4cos θy 3sin θ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4).求曲线C 1,C 2的直角坐标方程.若M 是曲线C 1上的一点,N 是曲线C 2上的一点,求|MN|的最小值.18.(12分)某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y (单位:万只)与相应年份x (序号)的数据表和散点图(如图所示),根据散点图,发现y 与x 有较强的线性相关关系,李四提供了该县山羊养殖场的个数z (单位:个)关于x 的回归方程230z x ∧=-+.年份序号x 1 2 3 4 5 6 7 8 9年养殖山羊y /万只1.21.5 1.6 1.6 1.82.5 2.5 2.6 2.7根据表中的数据和所给统计量,求y 关于x 的线性回归方程(参考统计量:()92160ii x x =-=∑,()()9112i i i x x y y =--=∑);试估计:①该县第一年养殖山羊多少万只?②到第几年,该县山羊养殖的数量与第一年相比缩小了? 附:对于一组数据()()()1122,,,,,,n n u v u v u v L ,其回归直线v u βα=+的斜率和截距的最小二乘估计分别为()()()121ˆniii ni i u u v v u u β==--=-∑∑,ˆˆv u αβ=-.19.(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.求从这18人中随机选取3人,至少有1人是“很幸福”的概率;以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记X 表示抽到“很幸福”的人数,求X 的分布列及()E X .20.(12分)已知数列{}n a 的前n 项和为n S ,且23n n S p m =⋅+,(其中p m 、为常数),又123a a ==.求数列{}n a 的通项公式;设3log n n b a =,求数列{}n n a b ×的前n 项和n T .21.(12分)如图,在直角梯形ABCD 中,//,90AD BC ADC ∠=o,平面ABCD 外一点P 在平ABCD内的射影Q 恰在边AD 的中点Q 上,223PA AD BC CD ====.求证:平面PQB ⊥平面PAD ;若M 在线段PC 上,且//PA 平面BMQ ,求点M 到平面PAB 的距离.22.(10分)已知ABC ∆的内角,,A B C 对边分别为,,a b c ,且满足()()sin 222cos sin A B A B A+=++.求ba值; 若1,7a c ==,求ABC ∆的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B 2、B 3、B 4、A 5、A 6、B 7、B 8、B 9、C 10、D 11、B 12、C二、填空题:本题共4小题,每小题5分,共20分。
13、3π14、112y x =-或112y x =-+15、1 16、1三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
17、(1)C 1:22x y 1169+=,C 2:x+y-6=0;(2【解析】 【分析】(1)利用平方和为1消去参数θ得到曲线C 1的直角坐标方程,利用y=ρsinθ,x=ρcosθ将极坐标方程转为直角坐标方程.(2)设点M (4cosθ,3sinθ),利用点到直线的距离公式和正弦函数的性质可求得最值. 【详解】(1)由题意得,cosθ=x 4①,ysin θ3=② ①②式平方相加得:22x y 1169+=.所以曲线C 1的直角坐标方程22x y 1169+=;曲线线C 2的极坐标方程为πρsin θ4⎛⎫+= ⎪⎝⎭, 即ρsinθ+ρcosθ-6=0,所以曲线C 2的直角坐标方程为x+y-6=0. (2)设点M (4cosθ,3sinθ),C 2:x+y-6=0.由点到直线的距离公式得d =,当sin (θ+α)=1时,min 2d =. 所以|MN|的最小值是2. 【点睛】本题考查参数方程直角坐标方程和极坐标方程之间的转换,点到直线的距离公式的应用,正弦函数性质的应用,考查学生的运算能力和转化能力,属于基础题. 18、(1)$0.21y x =+;(2)见解析. 【解析】 【分析】(1)根据题设中的数据,求得5x =,2y =,利用公式ˆ0.2b=,进而得到ˆ1a =,即可得到回归直线的方程;(2)求得第x 年山羊养殖的只数2ˆˆ0.4430yz x x ⋅=-++,①代入1x =,即可得到第一年的山羊的养殖只数;②根据题意,得20.443033.6x x -++<,求得9x >,即可得到结论 【详解】(1)设y 关于x 的线性回归方程为ˆˆˆybx a =+, 则12345678959x ++++++++==,1.2 1.5 1.6 1.6 1.82.5 2.5 2.6 2.729y ++++++++==,则91921()()12ˆ0.260()iii ii x x y y bx x ==--===-∑∑,所以ˆˆ20.251a y bx=-=-⨯=, 所以y 关于x 的线性回归方程为ˆ0.21yx =+。
(2)估计第x 年山羊养殖的只数2ˆˆ(0.21)(230)0.4430yz x x x x ⋅=+-+=-++, ①第1年山羊养殖的只数为0.443033.6-++=,故该县第一年养殖山羊约33.6万只; ②由题意,得20.443033.6x x -++<,整理得(9)(1)0x x -->, 解得9x >或1x <(舍去)所以到第10年该县山羊养殖的数量相比第1年缩小了。