离散数学课件 第五章 代数结构_1

合集下载

《离散数学》代数系统的一般性质-1

《离散数学》代数系统的一般性质-1

定义 设 S 为集合,函数 f:S×S→S 称为 S 上的 二元运算, 简称为二元运算. 也称 S 对 f 封闭. 特点: - 变量和函数值的取值限定在同一个集合上。 例1 - (1) N 上的二元运算:加法、乘法. - (2) Z 上的二元运算:加法、减法、乘法. - (3) 非零实数集 R* 上的二元运算: 乘法、除 法. - (4) 设 S = { a1, a2, … , an}, ai ∘aj = ai , ∘ 为 S 上二元运算.

二元运算的特异元素 5.1 二 元 运 算 及 其 性 质 单位元
定义 设∘为S上的二元运算,如果存在el(或er)S,使得 对任意x∈S 都有 el ∘x =x (或x∘er =x), 则称el(或er )是S中关于∘运算的左(或右)幺元(单位元). 若e∈S关于∘运算既是左单位元又是右单位元,则称 e 为S上关于∘运算的幺元. 例:N上加法的幺元是0,乘法的幺元是1 Mn(R)上加法的么元是0矩阵,乘法的幺元是单位阵
第5章 代数系统的一般 性质
代数结构
【引例】 (1)在Z集合上,x∈Z,
5.1 二 元 运 算 及 其 性 质
则f(x)=-x是将x映为它的相反 数。-x是由x唯一确定的,它是对一个数施行求相反数运 算的结果。这个运算可表示为函数: f :Z→Z
(2)在R+ 集合上,x∈R+,则f(x)= 1/x是将x映为它的倒 数。1/x是由x唯一确定的,它是对R+中的一个数施行倒数 运算的结果。这个元算可以表示为函数 f : R+ → R+。 (3)设a,b∈R,则f(a,b)=a+b(a-b,a×b)是将两个数a, b映为R中的唯一的一个数,它是对R中的两个数施行加 (减,乘)法运算的结果。这个运算可以表示为函数f : R2 → R。

第五章 1代数系统的概念

第五章 1代数系统的概念

5-1 代数系统的引入
例2 下面均是二元运算的例子。 (1) A为集合,2A为其幂集。f : 2A×2A →2A 。f 可以 是∩、∪、-、。 (2) A={0,1}。f:AAA。f 可以是∧、∨、、 。
一般地,二元运算用符号“”、“◦”、“•”、 “△”、“◇”、“☆”等等表示,并将其写于 两个元素之间,如Z×Z→Z的加法:
定义5-2.1 设“”,“◦”均为集合A上的二元运 算。 (1) 若x, y∈A,都有xyA,则称“”运算在A 上是封闭的(Closed) 。即
xy( x A y A x y A) 在A上封闭
(2) 若x, y∈A,都有xy=yx,则称“”运算在A 上满足交换律(Commutativity) 。即
离散数学
(Discrete Mathematics)
第五章 代数结构(Algebraic Structure)
❖ 以具体代数为研究对象的经典代数,其研究内容、 基本理论和方法,主要反映在初等代数和高等代数 (工科的线性代数)两部分的现代教育中。
❖ 从19世纪早期由法国数学家Galois(1811-1832)创始, 近200年来经历起伏、逐渐成熟的代数系统,常被 人们冠以代数结构、抽象代数及近世代数(Modern Algebra)等美称。
xy(x A y A x y y x)
在A上可交换
5-2 运算及其性质
(3) 若x, y, z∈A,都有x(yz)=(xy)z,则称“” 运算在A上满足结合律(Associativity) 。即
在A上可结合 xyz( x A y A z A
x(y z) (x y) z)
(4) 若x, y, z∈A,都有x(y◦z)=(xy)◦(xz) ,则称 “”运算对“◦”运算满足左分配律; 若x, y, z∈A,都有(x◦y)z=(xz)◦(yz) ,则称“” 运算对“◦”运算满足右分配律。若二者均成立, 则称“”运算对“◦”运算满足分配律 (Distributivity) 。

离散数学代数结构

离散数学代数结构

因此当x 1/2时,x/(1+2x)是x的逆元,1/2无逆元.
1
群的性质:消去律
设G = {a1, a2, … , an}是n阶群,令aiG = {ai aj | j=1,2,…,n} 证明 aiG = G. 证 由群中运算的封闭性有 aiGG. 假设aiGG,即 |aiG| < n. 必有aj , ak∈G使得 ai aj = ai ak (j ≠ k) 由消去律得 aj = ak , 与 |G| = n矛盾.
4
子群判定定理3
设G为群,H是G的非空有穷子集,则H是G的子群当且仅当
a,b∈H有ab∈H. 证 必要性显然. 为证充分性,只需证明 a∈H有a1∈H. 任取a∈H, 若a = e, 则a1 = e∈H. 若a≠e,令S={a,a2,…},则SH. 由于H是有穷集,必有ai = aj(i<j). 根据G中的消去律得 aji = e,由a ≠ e可知 ji>1,由此得 a ji1a = e 和 a a ji1 = e 从而证明了a1 = a ji1∈H.
图2
14
6
陪集的基本性质
设H是群G的子群,则a,b∈G有 a∈Hb Ha=Hb 证 充分性. 若Ha=Hb,由ea∈Hb 可知必有 a∈Hb. 必要性. 由 a∈Hb 可知存在 h∈H 使得 a =hb,即b =h1a 任取 h1a∈Ha,则有 h1a = h1(hb) = (h1h)b∈Hb 从而得到 Ha Hb. 反之,任取h1b∈Hb,则有 h1b = h1(h1a) = (h1h1)a∈Ha 从而得到Hb Ha. 综合上述,Ha=Hb得证.
3
子群判定定理2
G为群,H是G的非空子集. H是G的子群当且仅当a,b∈H 有ab1∈H. 证 必要性显然. 只证充分性. 因为H非空,必存在a∈H. 根据给定条件得aa1∈H,即e∈H. 任取a∈H, 由e,a∈H 得 ea1∈H,即a1∈H. 任取a,b∈H,由上步知b1∈H, 从而a(b1) 1∈H,即ab∈H. 综合上述,可知H是G的子群.

离散数学代数结构部分-PPT

离散数学代数结构部分-PPT
所以乘法运算就是封闭得。 而对于加法运算A上得 二元运算,如果对于任意得x,y∈A,都 有x*y=y*x,则称该二元运算*就是可 交换得。
例5、2 设Q就是有理数集合,*就是Q上得 二元运算,对任意得a,b∈Q,a*b=a+ba· b,问运算*就是否可交换。
例5、3 设A=Z,“+”就是整数中得加法: 则
“+”在Z中适合结合律。 “。”就是整数中得减法:则特取
而 运算“。”不满足结合律
➢定义5、4 设*就是定义在集合A上得 一个二元运算,如果对于任意得x∈A, 都有x*x=x,则称运算*就是等幂得。
例5、4 设P(S)就是集合S得幂集,在P(S) 上定义得两个二元运算,集合得“并”运 算∪和集合得“交”运算∩,验证∪,∩ 就是等幂得。
➢ 定理6、19 设
例6、16 例6、17 设
➢ 定义6、18 设 例6、18 设
➢ 定义6、19 设 例6、19 4元置换
➢ 定义6、20设
➢ 定理6、20
➢ 定义6、21
例6、20 如图 进行旋转,也可以围绕她得对称轴进行翻转,但 经过旋转或翻转后仍要与原来得方格重合(方格 中得数字可以改变)。如果把每种旋转或翻转看 作就是作用在
➢定理5、2 设*就是S上得二元运算,
如果S中既存在关于运算*得左幺元 el ,
又存在关于运算得右幺元 er
则S中必存在关于运算*得幺元e并且
2、 零元 ➢定义5、8 设*就是S上得二元运算,
在自然数集N上普通乘法得零元就是0, 而加法没有零元。
➢ 定理5、3 设 *就是S上得二元运算,如果S 中存在(关于运算*得)零元,则必就是唯一得。 所以零元就是唯一得。
证明: 略。 推论6、1

离散数学代数结构

离散数学代数结构

第一节 代数结构的定义
2020年11月5日星期四
代数结构的定义 一个代数结构< S, f1, f2, …, fm >通常由两个部分组成:
一个集合S ,叫做代数的载体; 定义在载体上的运算(operator) f1, f2, …, fm
代数结构
2020年11月5日星期四
一个集合,叫做代数的载体 载体,是我们将要处理的数学目标的集合 如整数集合、实数集合、符号集合等 一般不讨论载体是空集合的代数结构
例5.1.2: 代数结构 < N, ×>与< Z, - > 具有相同的构成成分 因为它们都有一个二元运算 代数结构 < {F, T}, ∧, ∨> 与 < P(S), , >具有相同 的构成成分,它们都具有两个二元运算
子代数
2020年11月5日星期四
子代数 设< S, f1, f2, …, fm >是一个代数结构
⊙0 1 000 101
这种表称为运算表或复合表,它由 运算符、行表头元素、列表头元素 和复合元素组成。
运算⊙具有封闭性:运算表中的每个元素都属于S
结合律
2020年11月5日星期四
一、结合律
设有代数结构< S, ⊙ >,若 (x)(y)(z)(x,y,z S (x⊙y)⊙z=x⊙(y⊙z)) 则称运算⊙满足结合律,或⊙是可结合的
代数结构
2020年11月5日星期四
代数结构 有时还在代数结构的表示中加入特异元素k,记做 < S, f1, f2, …, fm , k > 载体中的特异元素,也叫做代数常数 有些运算存在么元和零元,它们在运算中起着特殊的作用
代数结构示例
2020年11月5日星期四

《离散数学概述》PPT课件

《离散数学概述》PPT课件

同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律

交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。

离散数学-耿素云PPT(第5版)5.1

离散数学-耿素云PPT(第5版)5.1
图论
1
图论部分
第5章 第6章 第7章
图的基本概念 特殊的图 树
2
第5章 图的基本概念
5.1 无向图及有向图
5.2 通路, 回路和图的连通性
5.3 图的矩阵表示
5.4 最短路径, 关键路径和着色
3
5.1 无向图及有向图
无向图与有向图 顶点的度数 握手定理 简单图 完全图 子图 补图
10

例 d+(a)=4, d-(a)=1, d(a)=5, d+(b)=0, d-(b)=3, d(b)=3, +(D)=4, +(D)=0, (D)=3, (D)=1, (D)=5, (D)=3.
11
图论基本定理——握手定理
定理 任意无向图和有向图的所有顶点度数之和都等 于边数的2倍, 并且有向图的所有顶点入度之和等 于出度之和等于边数. 证 G中每条边(包括环)均有两个端点,所以在计 算G中各顶点度数之和时,每条边均提供2度,m 条边共提供2m度. 有向图的每条边提供一个入度 和一个出度, 故所有顶点入度之和等于出度之和等 于边数. 推论 任意无向图和有向图的奇度顶点个数必为偶数.
4
无向图
多重集合: 元素可以重复出现的集合 无序积: AB={(x,y) | xAyB} 定义 无向图G=<V,E>, 其中 (1) 顶点集V是非空有穷集合, 其元素称为顶点 (2) 边集E为VV的多重子集, 其元素称为无向边,简称边. 例如, G=<V,E>, 其中 V={v1, v2, …,v5}, E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)}

离散数学代数系统-PPT

离散数学代数系统-PPT
如果存在 f : AB、 使 x, yA, f (x y) = f (x) f (y)
则称 f 就是V1到V2得一个同态映射。
如:< R+, ×> ~ < R,+> (只要定义f : R+R, f (ab) = lgab = lga+lgb = f (a)+f (b))
同态象:设V1
=
<
A,
>

f V2
=
<
B,
>,

称< f (A), > 就是V1在 f 下得同态
象、 同态的性质:设V1 = < A, > ~f V2 = < B, >,
(1) 如果f : AB就是满射,则说f为V1到V2满同态 得 (2) 如果f就是单射, 则说f 为V1到V2单同态 得 (3) 如果f就是双射, 则说f为V1与V2同构, 记作V1 V2
(z1 z1)R(z2 z2 )
三、同余关系得判定:<A, >与< B, >就是两个 代数系统。 f:AB就是同态映射。 利用f 规定A上得二元关系R:aRb当且 仅当 f (a)=f (b),则R就是同余关系。
证明:(1) R就是等价关系
(2) x, y, u, vA,如果xRy, uRv,则 (xu)R(yv)。 这就是因为:xRy即f (x)=f (y); uRv即f (u)=f (v)、 由同态映射得定义知: f (xu) = f (x) f (u) f (yv) = f (y) f (v) 所以 f (xu) = f (yv), 即(xu)R(yv)
§6、4 群
一、几个基本概念
半群:代数系统V = < A, >中, 就是非空集合 A上得二元运算, 且在A中就是可结合 得,即x, y, zA (xy) z = x (yz)

离散数学讲解第五章PPT课件

离散数学讲解第五章PPT课件

17
又例如 (a2)3 a6 因为 (a2)3(a (2)1)3(a2)1(a2)1(a2)1
(aa)1(aa)1(aa)1
根据结合(a律 a )(a 1a1)(a1a1)(aa)e 所以 (a a)1 a1a1 因此 (a2) 3 (a1a1)(a1a1)(a1a1)
a 1a 1 a1a1a1a1 (a 1)6 a 6
2021/4/8
7
定理5-2:设h是从代数系统V1= <S;*>到V2= <S;>的 满同态,其中运算*和都是二元运算,则 (1)若V1是半群,则V2也是半群; (2)若V1是独异点,则V2也是独异点。
2021/4/8
8
四、有限独异点的幂等元 设<S;*>是生成元为g的有限循环独异点,考虑无限序列: e,g,g2,g3,.... ,gn-1,gn,gn+1,......
证明:对任意的a∈S,令Sa={ a0,a1,a2,...,an,...} 因为S有限,而SaS,所以Sa也有限。 可以验证<S; * >是一具有生成元a的有限循环独异点。 因此,至少有一幂等元akl,这里的k和l如前定义。 记j=kl,即aj是幂等元。 注:这里j≥1,有可能aj=e
2021/4/8
(1)令FA={f|f:AA},则<FA;>是一个群。 (N)
(2)令EA = {f|f:AA是双射}, 则<EA;>是一个群。 (Y )
(3)EA 定义同上,<EA;>是一个交换群。 (N)
(4)EA 定义同上,<EA;>是一个循环群。 (N )
2021/4/8
25
5.3 群的性质
一、关于相约性 定理5-6 设<G;*>是一个群,则对任意的a,b G, (1)存在唯一的元素xG,使a*x=b; (2)存在唯一的元素yG,使y*a=b。

离散数学_第5章_代数系统(学生用)

离散数学_第5章_代数系统(学生用)

2013-7-31
离散数学
22
吸收律
定义5-2.5:设<A, *,△>,若x,y,zA, 有x*(x△z)=x称运算*满足吸收律; 有x△(x*y)=x称运算△满足吸收律。 【例】 N为自然数集, x,yN,x*y=max{x,y},x△y=min{x,y}, 试证:*,△满足吸收律。 证明: x,yN,x*(x△y)=max{x,min{x,y}}=x ∴ *满足吸收律 x,yN,x△(x*y)=min{x,max{x,y}}=x ∴ △满足吸收律。
离散数学
24
【例】设ρ(s)是集合S的幂集,在ρ(s)上定义的两个 二元运算,集合的“并”运算∪和集合的“交” 运算∩,验证∪,∩满足幂等律。
证明:对于任意的A∈ρ(s),有A∪A=A和A∩A=A,
因此运算∪和∩都满足等幂律。 【例】普通的加法和乘法不适合幂等律。但0是加法 的幂等元(0+0=0),0和1是乘法的幂等元( 0*0=0且1*1=1)。

2013-7-31
离散数学
9
例:以下哪些运算是封闭的?
(1) 自然数集合N上的减法运算。 不封闭
(2) 整数集合I上的除法运算。 不封闭
(3) 设A={1,2,3,…,10},二元运算x*y=质数p的个数,
使得x ≤p≤y。 不封闭,当x=y=4时,x与y之间的质数个数为0, 而0不属于A集合。
2013-7-31 离散数学 26
特殊元素


在某些代数系统中存在着一些特定的元素,它们 对于系统的一元或二元运算起着重要的作用。 例:<Z,+>中的+运算有单位元0。 例:矩阵乘法运算中的单位矩阵。 将这些特殊元素作为代数系统的性质进行讨论, 这时称这些元素为该代数系统的特异元素或代数 常数。

离散数学 第五-六章

离散数学 第五-六章
例如 实数集上对+可分配,但+ 对不可分配; 集合上的运算, ;,命题集合P上的,都是相互可分配
例 题4
设集合A={ ,}, A上定义的二元运算如表所示. 对*可分配吗? * 对 ?
代数结构 >运算性质
定义5-2.6 设,△是定义在集合A上的两个二元运 算,如果对 x y∈A,都有 x (x△y) = x x△(x y) =x 则称运算和运算△满足吸收律。
代数系统 >代数系统的引入
二元运算的例子 • N上 +, 是N上二元运算,而-, 不是. • 整数集I上 +,-, 是I上的二元运算, 而 不是. • R-{0}上的 , 是R-{0}上的二元运算,而+,-不是. • 矩阵的 +, 是N阶实矩阵集合上的二元运算,但不是 全体实矩阵集合上的二元运算. • ,,, 是真值集合{0,1}上 的二元运算. • ,, 是幂集P(A)上的二元运算. 一元运算的例子 • R上的 求绝对值|X|运算. • 整数 I上求负运算是一元运算,但不是N上的一元运算.
n 例如 实数集上的+, ; 集合上的运算, ;,命题 集合P上的,都是可结合的.
例题3
A为非空集合,*定义为:对任意的a,bA,有 a*b=b. 证*可结合的.
代数结构 >运算性质
定义5-2.4 设是定义在集合A上的一个二元运算, x∈A,若xx=x,称x是等幂元; 若对x∈A,都有
2 独异点(monoid)
定义5-3.3 含有幺元的半群称为独异点。 独异点的判定: 对给定集合S 及运算*, 1)是封闭的, 即对x,y∈S, 有 xy∈S (是代数系统) 2)是可结合的,即对x,y,z∈S, 有(x y) z= x (y z) 3) 有幺元,即e∈S, 对x∈S,有ex=xe=x. 例如 <R, +>是独异点,幺元为0, <I+,+ >不是. <R, * >, <I, * >都是独异点,幺元为1 <{0,1}, > , <{0,1}, >都是独异点,幺元分别为0和1. < P(S), >和 < P(S), >是独异点?

《离散数学》代数系统--代数系统的基本概念 ppt课件

《离散数学》代数系统--代数系统的基本概念 ppt课件

解:(1) 封闭、可交换、等幂、幺元是b、无零元
b-1=b a-1=c c-1=a
(2) 封闭、不可交换、无等幂性、幺元是a、
无零元,d是左零元、
a-1=a b-1=b c-1=b b-1=c
23
P184
作业
(1)(2)
24
16
定理2:*是A上的二元运算,且在A中有关于*的左零元l和右零元 r,则l = r = ,且A中零元是唯一的。
证明:(1) r = l * r = l = (2) 设’也是A中关于*的零元,则 * ’= ’ 又∵ 是A中关于*的零元, ∴ * ’= ∴ = ’
定理3:设<A,*>是一个代数系统,且 | A |>1,若<A,*>中存在幺元e 和零元,则e ≠ 。 证明: 假设 = e ,则 对于A中任意元素,有x=e*x= *x= =e 即A中所有元素都是 ,也都是e,所有元素都相同, ∴ | A |=1 与已知矛盾,假设错 ∴e≠
例:代数系统<I,+>满足消去律。
11
代数系统的组成
N元运算法则
如+、-
×………
特异元素
如×中的1和0
代数载体
(集合:如实数集、整数集)
代数系统
12
4. 代数常元
幺元
定义3:设*是集合A上的二元运算 若elA,对于xA ,都有el*x=x,则称el为A中 关于运算*的左幺元; 若erA,对于xA ,都有x*er=x,则称er为A中 关于运算*的右幺元; 若eA,对于xA ,都有e*x=x*e=x,则称e为A 中关于运算*的幺元。
15
零元
定义4:设*是集合A上的二元运算 若lA,对于xA ,都有l*x=l ,则称l为A中关于运 算*的左零元; 若rA,对于xA ,都有x*r=r ,则称r为A中关于 运算*的右零元; 若A,对于xA ,都有*x=x*=,则称为A中关于 运算*的零元。

第5章 代数系统的一般性质 [离散数学离散数学(第四版)清华出版社]

第5章 代数系统的一般性质 [离散数学离散数学(第四版)清华出版社]
3/19/2010 5:50 AM 第三部分:代数结构(授课教师:向胜军) 13
证明: 证明: (2) θl = θlθr θlθr = θr ∴ θl = θr , 把θl = θr记作θ,假设S中存在零元θ',则有: θ'= θ'θ = θ ∴ θ是S中关于运算的唯一的零元. (因为θl为左零元) (因为θr为右零元)
3/19/2010 5:50 AM 第三部分:代数结构(授课教师:向胜军) 3
§1 二元运算及其性质
DEFINITION 1.
设S为集合,函数 f :S×S→S称为S 为集合, :S×S→S称为S 称为 上的一个二元运算,简称为二元运算. 上的一个二元运算,简称为二元运算. 二元运算
如: f :N×N→N, f(<x,y>)=x+y就是自然数集合上 × , 就是自然数集合上 的一个二元运算,即普通的加法运算. 的一个二元运算,即普通的加法运算. 考虑,普通的减法是不是自然数集合上的二元运算? 考虑,普通的减法是不是自然数集合上的二元运算?
8
EXAMPLE 1
上的运算和 设S={1, 2},给出 ,给出P(S)上的运算 和⊕的 上的运算 运算表,其中全集为S. 运算表,其中全集为 xi {1} {2} {1,2}
3/19/2010 5:50 AM
xi {1,2} {2} {1}
⊕ {1} {2} {1,2}
{1}
{2} {1,2}
3/19/2010 5:50
3 3 1 4 2
4 4 3 2 1
10
第三部分:代数结构(授课教师:向胜军)
DEFINITION 3.
上的二元运算, 设和*为S上的二元运算, 为 上的二元运算 (1) 在S上可交换:x,y∈S, xy=yx. 上可交换: ∈ (2) 在S上可结合:x,y,z∈S, (xy)z=x(yz). 上可结合: ∈ (3) 适合幂等律:x∈S, xx=x. 适合幂等律 幂等律: ∈ x (4) *对可分配:x,y,z∈S, x*(yz)=(x*y)(x*z). 对 可分配: ∈ (5) 和*满足吸收律:x,y∈S, x*(xy)=x, 满足吸收律 满足吸收律: ∈ x(x*y)=x.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例:P182 例题9,10,11,12
例:设X={e,a,b,c,d},*是X上的二元运算,*的 运算表如下。 从表中可知,<X,*> * e a b c d 是代数系统,e是关于* e e a b c d 的幺元。X中无零元。 a a a a e e 表中 b*c=c*b=e; b b a a e e b*d=d*b=e,故c和d均 c c e e c c 为b的逆元,即b的逆元 d d e e c c 不唯一。原因在于运算 *不满足结合律。 从本例还可以看到a的逆元也是c, d。 运算*满足可交换性,但不满足等幂性。
子独异点
定义5-3.3 设代数结构<S,>为半群,若BS且 在B上封闭, B含有<S,>关于 运算的幺元,那么 <B, >称为子独异点,或子幺半群。
独异点举例
设Σ是一个非空有限集合,称为字母表,由 Σ中有限个字母组成的有序集合(即字符串)称 为Σ上的一个字,串中的字母个数m称为字长, m=0时,称为空字,即为单位元,记为e。Σ∗表示 Σ上的字的集合,Σ∗上的连接运算· 定义为α, β∈Σ∗,α· β=αβ,则<Σ∗,· >是一个代数系 统,而且是一个独异点, 是在计算机科学中自动 机理论及形式语言中最基本的结构。Σ∗的任一子 集就称为语言。
(2)如果对于任意的x,y,z∈S 有
(xoy)oz=xo(yoz),则称运算o在S上满足结合律。 (3)如果对于任意的x∈S有xox=x,则称o运算在 S上满足幂等律(等幂律)。
二元运算的主要算律(续)
定义 设o和*为S上两个不同的二元运算, (1)如果对于任意的x,y,z∈S有 (x*y)oz=(xoz)*(yoz) 和 zo(x*y)=(zox)*(zoy), 则 称o运算对*运算满足分配律。 (2)如果o和*都可交换,并且对于任意的x,y∈S 有xo(x*y)=x和x*(xoy)=x,则称o和*运算满足吸收 律。
含幺半群(独异点)
定义5-3.3 设代数结构<S,>为半群,若<S,>含 有关于 运算的幺元,则称它为独异点,或含幺半 群,有时也记为<S, , e>。
独异点的性质——运算表中任两行两列不相同
定理5-3.3 设<S,,e>是一个独异点,则在关于运 算的运算表中任何两行或两列都是不相同的。 例:设I是整数集合,m是任意正整数, Zm是由模m 的同余类组成的同余类集,在Zm上定义两个二元 运算+m和×m分别如下: 对于任意的[i],[j]Zm,有 [i] +m[j]=[(i+j)(mod m)] [i]×m[j]=[(i×j)(mod m)] 试证明在这两个二元运算的运算表中任何两行 或两列都是不相同的。
综上所述,< Zm,+m > 和 <Zm, ×m>都是独异 点。由定理5-3.3可知,这两个运算的运算表中任 两行或两列都不相等。
独异点的性质
定理5-3.4 设<S,,e>是一个独异点,如果对于任 意a,bS ,且a,b均有逆元,则 a) (a-1)-1=a b) ab 有逆元,且(ab)-1 =b-1 a-1 。 证明: a)因a-1和a为互为逆元,直接得到结论。 b)必须证明两种情况: (ab)(b-1a-1) = e 和 (b-1a-1)(ab) = e 利用结合律容易得出。
逆元的性质
注: 一般地,一个元素的左逆元不一定等于它的 右逆元。一个元素左、右逆元不一定同时存在。甚 至一个元素的左(右)逆元不一定是唯一的。 定理 设*为S上可结合的二元运算,e为该运算的 单位元,对于x∈S如果存在左逆元yl和右逆元yr,则 有yl = yr= y,且y是x的唯一的逆元。
证明: 因为 yl*x = e , x*yr = e, 故
练习:指出下面运算的性质,并求出幺元,零元, 可逆元素的逆元。 1、在Q集合上, x,y Q,x*y=x+y-xy
2、在I+集合上, x,y I+ ,x*y=lcm(x,y)
1、满足交换律、结合律,不满足幂等律,幺元为0, 零元为1,x的逆元x-1=x/(x-1) (x≠1)
2、满足交换律、结合律、幂等律,幺元为1,无零 元,只有1有逆元,其逆元为1。
幺元的性质
定理5-2.1 设*是定义在集合A上的一个二元运算, 且在A中有关于运算的左幺元el和右幺元er,则el= er= e,且A中的幺元是唯一的。 证明:(先证左幺元el=右幺元er=e) el= el er = er= e (再证幺元e是唯一的) 设还有一个幺元e’ A,则
e’ = e’ e = e
代数系统举例
(1) R上的“+”、“×”运算,构成一个代数系统 〈R,+,×〉; (2) ρ(S)上的“∩”、“∪”、“―”运算,构成 代数系统〈ρ(S),∩,∪,―〉,称集合代数; (3) 含有n个命题变元的命题集合A与A上的“∧”、
“∨”、“┐”运算,构成代数系统〈A,∧,∨,
┐〉,称之为命题代数。
零元的性质
定理5-2.2 设*是定义在集合A上的一个二元运算, 且在A中有关于运算的左零元l和右零元r,则l = r= ,且A中的零元是唯一的。 证明:(先证左零元l=右零元r= ) l = l r = r = (再证零元是唯一的) 设还有一个零元’ A,则 ’ = ’ =
第五章 代数结构
由于数学和其他科学的发展,人们需要对若干 不是数的事物,用类似普通计算的方法进行相似的 计算。如矩阵、向量等。 研究代数系统的学科称为“近世代数”或“抽
象代数”。
本章主要内容
1 2 3 4 1 5 2 6
代数系统与性质 集合的概念 集合的表示方法 半群 群与子群 阿贝尔群与循环群 集合的概念
5-2 二元运算的性质
定义 可以用 o 、*、·、⊕、 或一元运算,称为算符。 等符号表示二元
定义5-2.1 设*是定义在集合A上的二元运算,如果 对于任意的x,y∈A,都有x*y∈A,则称二元运算* 在A上是封闭的。
二元运算的主要算律
定义 设o为S上的二元运算, (1)如果对于任意的x,y∈S,有xoy=yox,则称运 算o在S上满足交换律。
特殊元素1:幺元(单位元)
定义5-2.7 设<A, >是二元代数系统, (1)若存在el∈A,使得对任意a∈A,都有 el a = a, 则称el是A中关于运算“”的一个左幺元(左单位 元) (2)若存在er∈A,使得对任意a∈A,都有 a er = a, 称er是A中关于运算“”的一个右幺元(右单位元) (3)若存在e∈A,对任意a∈A,都有 a e = e a = a, 则称e是A中关于运算“”的一个幺元(单位元)
典型的群
1、<Z,+> 2、<R+, ×> 3、<Z6,+6>,其中Z6 ={0,1,2,3,4,5},单位 元是0;1、5互为逆元,2、4互为逆元,3的逆元为 3,0的逆元为0。 注:<Z+,+>不是群,其不存在幺元,且每个元素也 不存在逆元。 而<N,+>存在幺元,除0以外,均不存在逆元, 故其只是半群。
特殊元素:逆元
定义5-2.9 设<A, >是二元代数系统,e是幺元, a∈A,若存在一个元素b∈A, (1)使得: (2)使得: (3)使得: b a = e, a b = e, a b = b a = e,
则称b是a的一个左逆元,记为al1;
则称b是a的一个右逆元,记为ar1。 则称a可逆,并称b是a的一个逆元,记为a1;
(2)〈(A),∪,∩〉
对运算∪,是幺元, A是零元,
对运算∩,A是幺元 ,是零元。
(3)〈N,+〉 有幺元0,无零元。
幺元、零元性质
定理5-2.3 如果代数结构<A,>有关于 运算 的零元 和幺元e ,且集合A中元素个数大于2,则 ≠e 。 证明:用反证法: 设幺元e =零元 ,则对于任意xA ,必有 x= e x = x= = e 于是,推出A中所有元素都是相同的,矛盾。
yl = yl*e = yl*(x*yr) = (yl*x)*yr = e*yr = yr
令yl = yr = y,则y是x的逆元。设y'∈S也是x的逆
ቤተ መጻሕፍቲ ባይዱ元,则
y'= y' *e = y' *(x*y) = (y'*x)*y = e*y = y
所以y是x唯一的逆元。
通过运算表观察二元运算的性质
1)封闭性:表中的每个元素都属于A。 2)可交换性:运算表关于主对角线是对称的。 3)等幂性:运算表的主对角线上的每一元素与它 所在行(列)的表头元素相同。 4)A中关于运算具有零元:该元素所对应的行和 列中的元素都与该元素相同。 5)A中关于运算具有幺元:该元素所对应的行和 列依次与运算表的首行和首列相一致。 6)A中关于运算具有幺元,a和b互逆:位于a行b 列的元素以及b行a列的元素都是幺元。
5-4 群与子群
定义5-4.1 称代数结构<G,>为群(groups),如果 (1) <G,>中运算是封闭的; (2) <G,>中运算是可结合的; (3) <G,>中有幺元e; (4) <G,>中每一元素x都有逆元x-1。
群举例
例题1 R={0°,60°,120°,180°,240°,300°}, *是R上的二元运算,a*b表示先旋转a再旋转b的角 度,并规定旋转360°等于原来的状态。运算表如 表5-4.1所示。验证代数结构<R,*>为群。 解题思路: 需证明<R,*>:(1)运算*封闭;(2)运算*是可 结合的;(3)有幺元0°;(4)每一元素x都有逆 元x-1。
相关文档
最新文档