2013真题数一答案
2013年高考文科数学真题及答案全国卷
2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。
【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A.B .11+i 2- C . D .【答案】B【考点】本题主要考查复数的基本运算。
【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-.3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .B .C .12y x =±D .【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。
【解析】∵5e =5c a =2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。
2013-数一真题大全及答案
2013年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)已知极限0arctan limkx x xc x →−=,其中,c k 为常数,且0c ≠,则( )(A )12,2k c ==−(B )12,2k c ==(C )13,3k c ==−(D )13,3k c ==(2)曲面2cos()0x xy yz x +++=在点(0,1,1)−处的切平面方程为( ) (A )2x y z −+=− (B )2x y z ++= (C )23x y z −+=− (D )0x y z −−=(3)设1()2f x x =−,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9()4S −=( )(A )34 (B )14(C )14−(D )34−(4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33()(2)(1,2,3,4)63ii l y x I y dx x dy i =++−=⎰,则()i MAX I =( )(A )1I (B )2I (C )3I (D )3I(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(6)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =−≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量~(),~(1,),X t n Y F n 给定(00.5),a a <<常数c 满足{}P X c a >=,则2{}P Y c >=( ) (A )α (B )1α−(C )2α (D )12α−二、填空题:9−14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设函数()f x 由方程(1)x y y x e−−=确定,则1lim (()1)n n f n→∞−= .(10)已知321xxy e xe =−,22xxy e xe =−,23xy xe =−是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为y = .(11)设sin sin cos x t y t t t=⎧⎨=+⎩(t 为参数),则224t d y dx π== .(12)21ln (1)xdx x +∞=+⎰.(13)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则(14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{1|}P Y a Y a ≤+>=________。
2013全国卷1文科数学高考真题及答案
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x (5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年考研数一真题答案解析
考点:矩阵分块、等价向量组及逆矩阵的理论.
解 将矩阵 A, C 按列分块,令 A (a1, a2,…, an ),C (c1, c2,…, cn ),
b11, b12 …b1n
由于
AB
C
,故(
a1,
a2
…an
)
b21
,
b22
……
…b2
n
=( c1, c2 …cn )
注:此题如果作为解答题出现,使用洛必达法则来讨论严格地说是错误的.
2.曲面 x2 cos(xy) yz x 0 在点 (0,1, 1) 处的切平面方程为( )
A. x y z 2 B. x y z 0 C. x 2y z 3 D. x y z 0
解 当 x 0 时, y 1,将方程两端对 x 求导,有 y '1 (1 y)ex(1y) ,故 y '(0) 1,从而
lim n(
f
(1) 1)
lim
f
(1) n
f
(0)
f
'(0)
y '(0)
1
n
n
n
1
n
典型错误:没有发现 lim n( f (1) 1) f '(0)
n
n
10.已知 y1=e3x –xe2x,y2=ex –xe2x,y3= –xe2x 是某二阶常系数非齐次线性微分方程的 3 个解, 则该方程的通解 y= 。
答: C1ex C2e3x xe2x 考点:线性常微分方程解的结构.
解 由题意, y2 y3 ex 为该二阶常系数非齐次线性微分方程所对应的齐次方程的一个解,
2013考研数一真题及解析
【答案】1 − 1 e
【解析】
f
(y)
=
e− y, y > 0, 0, y ≤ 0,
{ { { ∫∫ P
Y
≤ a +1Y
> a} =
P
Y
> P
a,Y Y>
≤a
a}
+
1}
=
a +1
a +∞
f ( y)dy f ( y)dy
=
e−a
− e−(a+1) e−a
=1− 1 e
a
三、解答题:15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证
1
f (x)d
0x
0
x = 2 f (x)
x
1 0
−2
1 0
x f ′(x)dx
= 2 f (1) − 2∫1 ln(x +1) xdx = −2∫1 ln(x +1) dx = −4∫1ln(x +1)d x
0x
0x
0
∫ ∫
= −4 ln(x +1)
x
1 0
−
1
x
dx = −4 ln 2 + 4
【答案】A
【解析】曲面在点 (0,1,-1) 处的法向量为
→
n =(Fx′,Fy′,Fz′) (0,1,-1) =(2x-y sin (xy)+1,-x sin (xy)+z,y) (0,1,-1) =(1,-1,1) 故曲面在点 (0,1,-1) 处的切面方程为 1⋅ (x-0)-(y-1)+(z+1)=0, 即 x − y + z = −2 ,选 A
2013考研数学一(真题及答案)无水印详细解释word版
2013考研数学一真题及答案解析第一部分:数一真题及答案解析1.已知极限0arctan limkx x xc x →-=,其中k ,c 为常数,且0c ≠,则() A.12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案:D解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x cx kx kx x k x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案:A 解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34-答案:C解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。
2013年考研数学一真题及答案全集解析
2013考研数学一真题及答案解析目录第一章总论............................................................. 错误!未定义书签。
1.1项目提要........................................................... 错误!未定义书签。
1.2结论与建议....................................................... 错误!未定义书签。
1.3编制依据 .......................................................... 错误!未定义书签。
第二章项目建设背景与必要性............................. 错误!未定义书签。
2.1项目背景........................................................... 错误!未定义书签。
2.2项目建设必要性 .............................................. 错误!未定义书签。
第三章市场与需求预测......................................... 错误!未定义书签。
3.1优质粮食供求形势分析 .................................. 错误!未定义书签。
3.2本区域市场需求预测 ...................................... 错误!未定义书签。
3.3服务功能 .......................................................... 错误!未定义书签。
3.4市场竞争力和市场风险预测与对策.............. 错误!未定义书签。
2013年考研数学一真题及答案
2013年考研数学一真题及答案2013年的考研数学一科目是众多考生备战考研的重要内容之一。
下面将为大家详细解析该年度的数学一真题,并提供对应的答案,帮助考生更好地复习和备考。
一、选择题1. 设函数f(x)=x^2-3,g(x)=2x+1,若f(g(x))=0,则函数g(f(x))的根是:答案:x=-2,32. 已知整数n,下列命题中正确的是:A. 若n为奇数,则n(n+1)(n+2)为偶数;B. 若n为奇数,则n^2+n为偶数;C. 若n^2+n为偶数,则n为奇数;D. 若n(n+1)(n+2)为偶数,则n为奇数。
答案:B3. 已知复数z满足|z-1+i|=2,则z可能的值为:答案:z=3, -1-i4. 设等差数列{a_n}的公差不为0,若lim(n→∞)(a_n+a_{n+1})=2,则lim(n→∞)a_n的值是:答案:15. 设函数f(x)=x^3-3x+p,若f(x)在区间[-2,2]上有且仅有一个零点,则p的值为:答案:-4二、填空题1. 已知向量a=(1,2,3),b=(4,5,6),则|a+b|的值为:答案:√992. 设随机变量X的概率密度函数为f(x)={k(x^2-x+1), 0<a≤x≤b; 0, 其他},则k的值为:答案:1/(b^2-b-a^2+a)3. 设y=f(x)是定义在R上的奇函数,若f(e^3)=2,则f(ln2)的值为:答案:-24. 设f(x)是定义在[-1,1]上的连续函数,且f(0)=0,当x≠0时,|f(x)|≤x^2,则f(x)的最大值是:答案:15. 设f(x)=a_0+a_1x+a_2x^2+…+a_nx^n,若f(1)=f'(1)=f''(1)=0,则f(0)的值为:答案:0三、解答题1. 已知数列{a_n}的通项公式为a_n=(-1)^{n+1}/n,试求其前n项和S_n。
解答:数列{a_n}的前n项和可以表示为S_n=∑_{k=1}^n a_k,代入通项公式,得到S_n=∑_{k=1}^n (-1)^(k+1)/k。
2013年高考真题——数学全国卷1(完整试题+答案+解析)
绝密★启用前2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .155.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是 A .6π B .3π C .4π D .2π 6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC -=等于A .1B .2C .3D .4 8.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15 9.函数xx x f 1lg )(-=的零点所在的区间是 A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .211.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .8512.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若题图第130=⋅FN FM ,则a 的值为A .916 B .59 C .925 D .516第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题. 二、填空题:本大题共4小题,每小题4分,共16分. 13.如图所示的程序框图输出的结果为__________.14. 若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为__________.15.地震的震级R 与地震释放的能量E 的关系为)4.11(lg 32-=E R .2011年3月11日,日本东海岸发生了9.0级特大地震,2008年中国汶川的地震级别为8.0级,那么2011年地震的能量是2008年地震能量的 倍. 16.给出下列命题: ①已知,,a b m都是正数,且bab a >++11,则a b <; ②已知()f x '是()f x 的导函数,若,()0x R f x '∀∈≥,则(1)(2)f f <一定成立; ③命题“x R ∃∈,使得2210x x-+<”的否定是真命题; ④“1,1≤≤y x 且”是“2≤+y x ”的充要条件.其中正确命题的序号是 .(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)第14题图已知向量),2cos 2sin 3()2cos ,1(y xx b x a +==→→与共线,且有函数)(x f y =.(Ⅰ)若1)(=x f ,求)232cos(x -π的值; (Ⅱ)在ABC ∆中,角C B A ,,,的对边分别是c b a ,,,且满足b c C a 2cos 2=+,求函数)(B f 的取值范围.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知四棱锥BCDE A -,其中1====BE AC BC AB ,2=CD ,ABC CD 面⊥,BE ∥CD ,F 为AD 的中点. (Ⅰ)求证:EF ∥面ABC ; (Ⅱ)求证:面ACD ADE 面⊥; (III )求四棱锥BCDE A -的体积.20.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度y 与腐蚀时间x 之间对应的一组数据:AB CDEF现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得y 关于x 的线性回归方程26139134ˆ+=x y,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.21.(本小题满分12分)已知函数1)(2++=x bax x f 在点))1(,1(--f 的切线方程为03=++y x . (Ⅰ)求函数()f x 的解析式;(Ⅱ)设x x g ln )(=,求证:)()(x f x g ≥在),1[+∞∈x 上恒成立.22.(本小题满分14分)实轴长为34的椭圆的中心在原点,其焦点1,2,F F 在x 轴上.抛物线的顶点在原点O ,对称轴为y 轴,两曲线在第一象限内相交于点A ,且12AF AF ⊥,△12AF F 的面积为3.(Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A 作直线l 分别与抛物线和椭圆交于C B ,,若2=,求直线l 的斜率k .参考答案及评分标准一.选择题(本大题共12小题,每小题5分,共60分.)B D B A D B B D BC C B二.填空题(本大题共4小题,每小题4分,共16分.)13.2 14.π31915. 2310 16. ①③ 三.解答题17.(本小题满分12分) 解:(Ⅰ)∵→a 与→b 共线∴yxx x 2cos 2cos2sin 31=+21)6sin()cos 1(21sin 232cos 2cos 2sin 32++=++=+=πx x x x x x y …………3分∴121)6sin()(=++=πx x f ,即21)6sin(=+πx …………………………………………4分211)6(sin 21)3(cos 2)3(2cos )232cos(22-=-+=--=-=-ππππx x x x…………………………………………6分 (Ⅱ)已知b c C a 2cos 2=+由正弦定理得:CA C A C C A C ABC C A sin cos 2cos sin 2sin cos sin 2)sin(2sin 2sin cos sin 2+=++==+∴21cos =A ,∴在ABC ∆中 ∠3π=A …………………………………………8分21)6sin()(++=πB B f∵∠3π=A ∴320π<<B ,6566πππ<+<B …………………………………………10分∴1)6sin(21≤+<πB ,23)(1≤<B f∴函数)(B f 的取值范围为]23,1( …………………………………………12分 18.(本小题满分12分) 解:(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a …………………………………………2分 解得⎩⎨⎧==231d a , …………………………………………4分1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……………………………6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b …………………………………………7分 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=- ……………………9分n n n n T 3)12(3232323212+-⋅++⋅+⋅+=--nnn n n 323)12(31)31(3231⋅-=+---⋅+=- ∴n n n T 3⋅= …………………………………………12分19.(本小题满分12分)解:(Ⅰ)取AC 中点G,连结FG 、BG , ∵F,G 分别是AD,AC 的中点∴FG ∥CD,且FG=21DC=1 .∵BE ∥CD ∴FG 与BE 平行且相等∴EF ∥BG . ……………………………2分ABC BG ABC EF 面面⊂⊄,∴EF ∥面ABC ……………………………4分 (Ⅱ)∵△ABC 为等边三角形 ∴BG ⊥ACABCDEF G又∵DC ⊥面ABC,BG ⊂面ABC ∴DC ⊥BG ∴BG 垂直于面ADC 的两条相交直线AC,DC ,∴BG ⊥面ADC . …………………………………………6分 ∵EF ∥BG ∴E F ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …………………………………………8分 (Ⅲ)连结EC,该四棱锥分为两个三棱锥E -ABC 和E -ADC .43631232313114331=+=⨯⨯+⨯⨯=+=---ACD E ABC E BCDE A V V V .………………………12分 另法:取BC 的中点为O ,连结AO ,则BC AO ⊥,又⊥CD 平面ABC ,∴C CD BC AO CD =⊥ , , ∴⊥AO 平面B C D E ,∴AO 为BCDE A V -的高,43232331,2321)21(,23=⨯⨯=∴=⨯+==-BCDE A BCDE V S AO . 20.(本小题满分12分)解:(Ⅰ)设6组数据的编号分别为1,2,3,4,5,6.设抽到不相邻的两组数据为事件A ,从6组数据中选取2组数据共有15种情况:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6),其中事件A 包含的基本事件有10种. …………………………………………3分所以321510)(==A P .所以选取的2组数据恰好不相邻的概率是32. ………………………6分(Ⅱ) 当10=x 时,;2|1026219|,262192613910134ˆ<-=+⨯=y ……………………………………9分 当30=x 时,;2|1626379|,263792613930134ˆ<-=+⨯=y所以,该研究所得到的回归方程是可靠的. …………………………………………12分 21.(本小题满分12分)解:(Ⅰ)将1-=x 代入切线方程得2-=y ∴211)1(-=+-=-ab f ,化简得4-=-a b . …………………………………………2分222)1(2)()1()(x xb ax x a x f +⋅+-+=' 12424)(22)1(-===-+=-'bb a b a f . …………………………………………4分解得:2,2-==b a∴122)(2+-=x x x f . …………………………………………6分 (Ⅱ)由已知得122ln 2+-≥x x x 在),1[+∞上恒成立化简得22ln )1(2-≥+x x x即022ln ln 2≥+-+x x x x 在),1[+∞上恒成立 . …………………………………………8分 设22ln ln )(2+-+=x x x x x h ,21ln 2)(-++='xx x x x h ∵1≥x ∴21,0ln 2≥+≥xx x x ,即0)(≥'x h . …………………………………………10分 ∴)(x h 在),1[+∞上单调递增,0)1()(=≥h x h∴)()(x f x g ≥在),1[+∞∈x 上恒成立 . …………………………………………12分22.(本小题满分14分)解(1)设椭圆方程为22221(0)x y a b a b+=>>,12,AF m AF n ==由题意知⎪⎪⎩⎪⎪⎨⎧==+=+6344222m n n m c n m …………………………………………2分解得92=c ,∴39122=-=b .∴椭圆的方程为131222=+y x …………………………………………4分 ∵3=⨯c y A ,∴1=A y ,代入椭圆的方程得22=A x ,将点A 坐标代入得抛物线方程为y x 82=. …………………………………………6分(2)设直线l 的方程为)22(1-=-x k y ,),(),,(2211y x C y x B 由2= 得)22(22212-=-x x ,化简得22221=-x x …………………………………………8分联立直线与抛物线的方程⎪⎩⎪⎨⎧=-=-yx x k y 8)22(12,得0821682=-+-k kx x∴k x 8221=+① …………………………………………10分联立直线与椭圆的方程⎪⎩⎪⎨⎧=+-=-124)22(122y x x k y得0821632)2168()41(2222=--+-++k k x k k x k∴22241821622k kk x +-=+② …………………………………………12分 ∴2222418216)228(222221=++---=-kkk k x x 整理得:0)4121)(2416(2=+--k kk∴42=k ,所以直线l 的斜率为42 . …………………………………………14分。
2013河北专接本数学真题和答案(数一,数二,数三)
5 x
D
2
ydxdy ,其中 D 是由 x 0, y 0与x 2 y 2 1 所围成的位于第
一象限内的图形 四、证明(或应用)题(本题 10 分,从以下两题中任选一题给出证明或解答,将证明或解 答的主要过程、步骤和答案填写在答题纸的相应位置上,写在其它位置上无效) 20.当 b a 0 时,证明
D. 无法判定
z z 9.设 e xyz ,则 ( x
A.
yz e xy
z
B.
xz e xy
z
C.
yx e xy
z
D. 无法判定
10.矩阵 A
1 2 1 的逆矩阵 A ( 1 3 3 2 B. 1 1
)
3 2 A. 1 1
2a11 3a12 2a21 3a22 2a31 3a32
D. 6
a13 a23 ( a33
)
a31
A.12
a23 1 ,则 D1 2a21 a33 2a31
C.6
B 12
9.用待定系数法求微分方程 y 2 y 3 的特解时,应设特解为(知矩阵
B. y* ax 2
C. y* ax
)
D. y* ax 2 bx
2 5 1 1 X 2 1 ,则 X =( 1 3 7 8 B. 3 3
7 8 A. 3 3
7 8 C. 3 3
2 2
z 2 z , x xy
电话:400-808-1998
网址:
接本成功 必选精通
2 x1 x2 x3 2 18.已知线性方程组 x1 2 x2 x3 ,当 取何值时,方程组有解?并求出其全部 2 x1 x2 2 x3
2013年上海市夏季高考数学真题(理科)试卷含答案
2013年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题1.计算:20lim ______313n n n →∞+=+2.设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,则________m =3.若2211x xx y y y=--,则______x y +=4.已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c ,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)5.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =.6.方程1313313x x -+=-的实数解为________7.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________.8.盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示) 9.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,2BC =,则Γ的两个焦点之间的距离为________10.设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能地取值12319,,,,x x x x ,则方差_______D ξ=11.若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y +=.12.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________13.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________14.对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y fx -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =二、选择题15.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D)[2,)+∞16.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()(A)充分条件 (B)必要条件 (C)充分必要条件 (D)既非充分也非必要条件17.在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==)则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28 (C)48 (D)6318.在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d .若,m M 分别为()()i j k r s t a a a d d d ++⋅++的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( ). (A) 0,0m M => (B) 0,0m M <> (C) 0,0m M <= (D) 0,0m M <<三、解答题19.(本题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.20.(6分+8分)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.C 11A21.(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>; (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值.22.(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”;(3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”. 23.(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.2013年 上海 高考理科数学(参考答案)一. 填空题1.13 2. -2 3. 0 4. 1arccos 3π- 5. -2 6. 3log 47. 12+ 8.13189.10. 30d ² 11.23 12. 87a ≤- 13. 2216ππ+ 14. 2三. 解答题19. 【解答】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC1平行于平面DA 1C;直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯= 而1AD C ∆中,11AC DC AD ==132AD C S ∆= 所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.20.【解答】(1)根据题意,33200(51)30005140x x x x+-≥⇒--≥又110x ≤≤,可解得310x ≤≤(2)设利润为y 元,则4290031161100(51)910[3()]612y x x x x =⋅+-=⨯--+故6x =时,max 457500y =元.21.【解答】(1)因为0ω>,根据题意有34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩ (2) ()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈,即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=. 23. 【解答】:(1)C 1的左焦点为(F ,过F的直线x =C 1交于()2±,与C 2交于(1))±,故C 1的左焦点为“C 1-C 2型点”,且直线可以为x =(2)直线y kx =与C 2有交点,则 (||1)||1||||1y kxk x y x =⎧⇒-=⎨=+⎩,若方程组有解,则必须||1k >; 直线y kx =与C 2有交点,则 2222(12)222y kx k x x y =⎧⇒-=⎨-=⎩,若方程组有解,则必须212k < 故直线y kx =至多与曲线C 1和C 2中的一条有交点,即原点不是“C 1-C 2型点”。
2013年考研数学一真题及答案
2013年考研数学一真题及答案2013年考研数学一真题及答案2013年考研数学一真题是考研数学考试中的一道难题,对于考生来说是一个重要的参考资料。
本文将对2013年考研数学一真题及答案进行分析和解读,帮助考生更好地理解和掌握这道题目。
首先,我们来看一下2013年考研数学一真题的具体内容。
这道题目是一道概率题,涉及到随机变量的概念和性质。
题目要求考生计算一个随机变量的期望和方差,以及给出一个概率的近似估计。
在解答这道题目时,我们首先需要理解随机变量的概念和性质。
随机变量是一个数值的函数,它的取值是由一个随机事件的结果决定的。
在这道题目中,随机变量X表示一个随机事件的结果,我们需要计算X的期望和方差。
计算随机变量的期望和方差是概率论的基本操作。
期望是随机变量的平均值,可以看作是随机变量的中心位置。
方差是随机变量离其期望值的平均偏离程度的平方根,可以看作是随机变量的离散程度。
在解答这道题目时,我们可以利用随机变量的定义和性质,结合概率的计算方法,进行计算。
首先,我们需要计算随机变量的期望。
根据随机变量的期望的定义,我们可以将随机变量的取值和对应的概率相乘,然后将所有的乘积相加,即可得到期望的值。
接下来,我们需要计算随机变量的方差。
根据随机变量的方差的定义,我们需要计算每个取值与期望的差的平方,然后将所有的平方相加,再乘以对应的概率,即可得到方差的值。
最后,题目还要求给出一个概率的近似估计。
在概率的近似估计中,我们可以利用大数定律和中心极限定理进行计算。
大数定律指出,随着试验次数的增加,样本平均值会趋近于总体平均值。
中心极限定理指出,随机变量的和在一定条件下会近似服从正态分布。
在解答这道题目时,我们可以利用大数定律和中心极限定理,进行概率的近似估计。
首先,我们需要进行多次试验,计算每次试验的结果。
然后,我们将每次试验的结果相加,再除以试验次数,即可得到概率的近似估计。
综上所述,2013年考研数学一真题是一道概率题,涉及到随机变量的期望和方差的计算,以及概率的近似估计。
2013年考研数学一真题及答案解析
2013考研数学一真题及答案解析目录第一章总论........................................................... 错误!未定义书签。
1.1项目提要......................................................... 错误!未定义书签。
1.2结论与建议..................................................... 错误!未定义书签。
1.3编制依据 ........................................................ 错误!未定义书签。
第二章项目建设背景与必要性........................... 错误!未定义书签。
2.1项目背景......................................................... 错误!未定义书签。
2.2项目建设必要性 ............................................ 错误!未定义书签。
第三章市场与需求预测....................................... 错误!未定义书签。
3.1优质粮食供求形势分析 ................................ 错误!未定义书签。
3.2本区域市场需求预测 .................................... 错误!未定义书签。
3.3服务功能 ........................................................ 错误!未定义书签。
3.4市场竞争力和市场风险预测与对策............ 错误!未定义书签。
第四章项目承担单位情况................................... 错误!未定义书签。
2013年高考黑龙江理科数学真题及答案
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{an }的前n项和为Sn,已知S3= a2+10a1,a5= 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A)1+ + +…+(B)1+ + +…+(C )1+ + +…+(D )1+ + +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则 (A )c >b >a (B )b >c >a (C )a >c >b (D)a >b >c (9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B)(C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减 (D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x (C )y2=4x 或y2=16x (D )y2=2x 或y2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是(A )(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)x ≥1,x+y ≤3, y ≥a(x-3). {第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
2013年考研数学真题及参考答案(数学一)
⑻ 设随机变量 X t ( n) ,Y F (1, n) ,给定 (0 0.5) ,常数 c 满足 P X c , 则P Y c
2
(
)
(A) (B) 1 (C) 2 (D) 1 2 二、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸 指定位置上. ... ⑼ 设函数 y f ( x) 由方程 y x e ⑽ 已知 y1 e
x3 x y )e 的极值. 3
z 0 , z 2 所围成的立体为 . (Ⅰ)求曲面 的方程; (Ⅱ)求 的形心坐标.
(20) (本题满分 11 分) 设A
1 a 0 1 ,B ,当 a, b 为何值时,存在矩阵 C 使得 AC CA B ,并 1 0 1 b
ቤተ መጻሕፍቲ ባይዱ
(1 x 2
Di
y2 )dxdy . 2
2
1 2 1 y 0 x2 y 2 1 , 所 以 被 积 函 数 在 2 2 1 1 D1 : x 2 y 2 1 内,恒有 f ( x, y ) 0 ;且 x 2 y 2 1 时,有 f ( x, y ) 0 2 2
(0,1, 1)
{1, 1,1} ,
于是切平面方程为 x ( y 1) ( z 1) 0 ,故应选(A). ⑶ 应选(C) . 【分析】本题考查傅里叶级数的收敛定理.先将函数延拓成 ( 1,1) 上的奇函数 F ( x) .对
9 F ( x) 使用傅里叶级数的收敛定理(狄里赫雷定理)得到 S ( ) 的值. 4
(D) a 2, b 为任意常数
N (0,1) , X 2
N (0, 22 ) , X 3
2013考研数一真题答案及详细解析
—勹 B = fxy (1,
= e-½'
—勹 C = fyy (1,
= e-½
(1.-f) 因为 A>o,AC — B2 =2e气>O, 所以
是极小值点,极小值为
(-+ !(1, —:片) =
+½)e··½ = -e勹 .
(18) 证 CI)设F(x)= f(x)-.1::, xE[—1,l].
·; f(x) 是奇函数,:. f(O)=0.
解 记A�[�: �'考察矩阵A的特征值为2,b,O的条件.
首先,显然1At�:, 因L是A的特征值.
其次,矩阵A的迹tr(A) =2 -t-b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个 特征值于是 “ 充要条件 ” 为2是A的特征值.由
lzE —Al = — a 2-b —a = — 4a 2 =O气=O.
故应选C.
二、填空题
(9) 1
解 把 X = O代入方程有八0)=1 . 方程y-X = exO-y)两端同时对x求导有 f'(工)-1= e[l-f(x)] [1-f(x)-xf'(x)J.
把 X =O代入上式得厂(0)=2 - f(O)=l.
f 又 lim 釭) - ]-= f'(O)=l,
x-o
厂 +厂 1
O
lnx +x)
2
dx=
_
lnx l+x
+=
1
1
dx
=O+ln
x
+=
1 =O — ln_l= ln2
O+x)x
l+x 1
2
(13) -1
2013年考研数学一真题完整版【带答案word版】
2013硕士研究生入学考试数学一真题及解析1. 已知极限0arctan lim k x x xc x →-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x c x kx kx x k x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。
3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( ) A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。
91111()()()()44444s s s f -=-=-=-=-。
2013年考研数一真题答案解析
一、选择题(1) D解用洛必达法则 1 l—x arctanx 1 + x 2 1 + x 2—11X l im· =l im =l i m =—hm =c #-O ,x 丑X, 一-ok x k -lx-0 k x k -l (1 +X z) k x 勺x k -11因此k -1 =Z, 一-c ,即k=3,c -一故应选D.k3CZ) A解F:=zx-ys i n(xy)+L F:=-xs i n(xy)+z, F:=y曲面x 2+c os(xy) + y z十X =0在点(0'1,—1)处的切平面的法向晕n={l ,-1,1},切平面方程为:1• (x—0)—(y—1) + 1• (z + 1)= 0, 即x—y +z --Z故应选A.(3)C解观察到S(x)是f(x)的正弦函数,对J进行奇延拓,其周期为z 故S(x)f(x). 9 1 1 s (-—) =S(--—s -=- 1 144) (4)1(了)=勹一故应选C(4)D解由格林公式得I ,-f (y +f )山+(Zx -�) d y =』(1—x 2-f )心d y'其中D 1:x z+y z冬1,D 2:x 2+y 2�z,D3:f +y 2冬1,yD 口x z+��l.z显然在几内有y y l-x 2 -—>O , 在队外有l -x 2-—<O ,z z又如图有D1C D4 ,D4 C D z 由重积分性质知I1>I1,I4>Iz.y 又D4=几+D4\D 5,几=D5+D3\D 5,在D3\D 5上l -x 2--<0,在D4\D5上z1 2 y-x -—z>O ,2013年(数一)真题答案解析故J4=II (1-x 2—f)dxd y + II (1—X 2 --f )dxd y D5D八D s>13=』(1y —x 2勹)dxdy + I I (1—.亢2飞)dxdy. 故应选D.D5D叭D5(5) B解由千A B =C,那么对矩阵A,C按列分块,有,、`丿,,“` , . . . , 2”, ,1”, ( _ --n nn 12…nb b b ��…�22212…”b b b11112…n b b b) "" , . . . ,2", 1 "( Y1 =b 11a1 +b心+…+b.1a.,即{了:,�b ,,a +b 心+…+b .,a.,r. =b1na1 +b z.az +…+ b n.an. 这说明矩阵C的列向最组r 口rz '…,r. 可由矩阵A的列向量组a1,a2, …, a. 线性表出.又矩阵B可逆,从而A=CB飞那么矩阵A的列向量组也可由矩阵C的列向械组线性表出.由向量组等价的定义可知,应选B .(6) B解记A�[�:�'考察矩阵A的特征值为2,b ,O的条件.首先,显然1At �:,因L是A的特征值.其次,矩阵A的迹t r (A )=2 t -b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个特征值于是“充要条件”为2是A的特征值.由lzE—A l=—a 2-b—a =—4a 2 =O 气=O .—l -al因此充要条件为a =O,b为任意实数,故应选B.(7) A解将随机变量义和x3化成标准正态后再比较其大小.P 1 =P {—2�X1�2} =<P (2) -中(—2)'—2X z2Pz=P {-2�X三2}=P {—《—《—}气(1)-<P (-1)'22 2 p3 =P {-2�X3�2} -2—5 x3—5 2-5 =P {3� —3� 2 } =iP (-1)—叶习=<P行)-<P(l )'由右图正态分布曲线下的面积所代表的概率可知P1 > Pz > p 3.故应选A .x7l 3(8)C解当X-t(n)时,X 2-FO,n),又Y-FO,n),故Y与xz同分布.当C > 0时,由t 分布的对称性有P{Y>c 2}=P{X 2>c 2}==P{ X >c}=P{X>cUX<—c}=2P{X>c}=2a.故应选C.二、填空题(9)1解把X =O 代入方程有八0)=1. 方程y -X = e xO -y )两端同时对x 求导有f'(工)-1 = e [l -f(x )] [1-f (x ) -x f'(x ) J . 把X =O 代入上式得厂(0)=2 -f(O) =l.又limf 釭)-]-=f '(O)=l,x-oX1三卢—1]飞巴!(-;;}—l气尸�1nOO)C 1e 立+c z 产-xe红解由常系数非齐次线性微分方程解的性质可得Y 1 -Y 3 = e3x,Y 2 -Y 3 = ex是相应二阶齐次线性微分方程的两个特解.故相应二阶齐次线性微分方程的通解为Y O = C I e 3·x + C 2 e .所以所求非齐次方程的通解可表示为y = C1e x + C 2芒—X e2x•(11)心解•• dxdy· —= cost , -= t c ost ,dt dt. dy tcost•• -= =t,dxcost 叶店)d 2y d dy dt -=--(—)=—一=-1 c!x2 dx cl x clxcostc!t心1从而dx 2,-f =亢=迈.cos—4(12)lnZ解厂l n x2dx = _ l n x += +厂dx =O+l n x1+==O —l n _l =ln 2 1O+x)l+x 1 2 l+x 1 1O+x)x(13) -1解题设条件"a ;;+A ;; = 0 "即A T =—A*'于是A =—[Al'可见A只可能是0或—1.又r(A)= r (A T ) = r (-A *) = r (A 天),则rCA)只可能为3或0.而A为非零矩阵,因此r (A)不能为o ,从而r(A) = 3 , A [ #-0 , [ A [ = -1.或,用特例法.取一个行列式为—1的正交矩阵满足A T=-A勹故应填-1.104)1——e解由于X�E(l),a>O,则由指数分布的分布函数有P{Y冬a+IY>a}=P{Y>a,Y,s;:;a+l } =P{a<Y,s;:;a+l}P {Y >a}1—P{Y冬a}1-e 一(a +])—0-e -")e -a —e -a -1 1 = = =l —e -1 = 1—— l —(1—e -a )-a e e 三、解答题05)解由条件显然有J(l )=O, J'(x)=由分部积分法及换元积分法有『八x)d x =2f J(x)d 左。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、已知极限0arctan limk x x xc x→-=,其中,k c 为常数,且0c ≠,则( ) (A )12,2k c ==- (B )12,2k c ==(C )13,3k c ==- (D )13,3k c ==【答案】(D )【考点】泰勒公式;洛必达法则 【难易度】★★【详解】方法1:333300011(())()arctan 33lim lim lim k k k x x x x x x o x x o x x x c x x x→→→--++-=== 13,3k c ⇒==.因此,选(D ).方法2:用洛必达法则.2221121000011arctan 11limlim lim lim (1)kk k k x x x x x xx x x c x kx kx x k x---→→→→--+====+因此,123k k -=⇒=,13c =. 2、曲面2cos()0x xy yz x +++=在点(0,1,1)-的切平面方程为( ) (A )2x y z -+=- (B )0x y z ++= (C )23x y z -+=- (D )0x y z --= 【答案】(A ) 【考点】平面方程 【难易度】★★【详解】设2(,,)cos()F x y z x xy yz x =+++,则(,,)2sin()1(0,1,1)1x x F x y z x y xy F ''=-+⇒-=(,,)sin()(0,1,1)1y y F x y z x xy z F ''=-+⇒-=-(,,)(0,1,1)1z z F x y z y F ''=⇒-=所以该曲面在点(0,1,1)-处的切平面方程为(1)(1)0x y z --++=即2x y z -+=-,故选(A ).3、设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰L ,令1()sin n n S x b n x π∞==∑,则9()4S -=( ) (A )34 (B )14 (C )14- (D )34- 【答案】(C )【考点】函数在[-l,l]上的傅里叶级数 【难易度】★★★【详解】11,[0,]122()112,[,1]22x x f x x x x ⎧-∈⎪⎪=-=⎨⎪-∈⎪⎩将()f x 作奇延拓,得周期函数()F x ,周期2T = 则()F x 在94x =-处连续,从而99111()()()()44444S F F f -=-=-=-=-.故选(C ). 4、设221:1L x y +=,222:2L x y +=,223:22L x y +=,224:22L x y +=为四条逆时针方向的平面曲线,记33()(2)(1,2,3,4)63ii L y x I y dx x dy i =++-=⎰,则{}1234max ,,,I I I I =( )(A )1I (B )2I (C )3I (D )4I 【答案】(B )【考点】格林公式 【难易度】★★★【详解】记36y P y =+,323x Q x =-,则2222211()22Q P y y x x x y ∂∂-=---=-+∂∂ 3322()(2)()[1()]632ii ii L D D y x Q P y I y dx x dy dxdy x dxdy x y ∂∂=++-=-=-+∂∂⎰⎰⎰⎰⎰用i D 表示i L 所围区域的面积,则有1D π=,22D π=,34D D ==,1342D D D D <=<.又因为被积函数221()02y x -+≥,所以1342I I I I <=<.故选(B ). 5、设A 、B 、C 均为n 阶矩阵,若AB=C ,且B 可逆,则( ) (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的列向量组与矩阵B 的列向量组等价 【答案】(B )【考点】等价向量组 【难易度】★★【详解】将矩阵A 、C 按列分块,1(,,)n A αα=L ,1(,,)n C γγ=L由于AB C =,故111111(,,)(,,)n n n n nn b b b b ααγγ⎛⎫⎪=⎪ ⎪⎝⎭L L M M L L 即1111111,,n n n n nn n b b b b γααγαα=++=++L L L 即C 的列向量组可由A 的列向量组线性表示.由于B 可逆,故1A CB -=,A 的列向量组可由C 的列向量组线性表示,故选(B ).6、矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与20000000b ⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件是( )(A )0,2a b == (B )0,a b =为任意常数 (C )2,0a b == (D )2,a b = 为任意常数【答案】(B )【考点】矩阵可相似对角化的充分必要条件 【难易度】★★【详解】题中所给矩阵都是实对称矩阵,它们相似的充要条件是有相同的特征值.由20000000b ⎛⎫ ⎪ ⎪⎪⎝⎭的特征值为2,b ,0可知,矩阵1111a A a b a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值也是2,b ,0.因此,22111122022401120a a E A ab a b a a a aa-----=---=---=-=---0a ⇒= 将0a =代入可知,矩阵10100101A b ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值为2,b ,0.此时,两矩阵相似,与b 的取值无关,故选(B ).7、设123,,x x x 是随机变量,且1x ~(0,1)N ,2x ~2(0,2)N ,3x ~2(5,3)N ,{}22(1,2,3)j j P P x j =-≤≤=,则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >> 【答案】(A )【考点】正态分布 【难易度】★★【详解】{}1122(2)(2)2(2)1P P X =-≤≤=Φ-Φ-=Φ-,{}2220202022(1)(1)2(1)1222X P P X P ----⎧⎫=-≤≤=≤≤=Φ-Φ-=Φ-⎨⎬⎩⎭,12P P ∴>{}3335777221(1)()()(1)3333X P P X P --⎧⎫=-≤≤=≤≤-=Φ--Φ-=Φ-Φ⎨⎬⎩⎭,23P P ∴>123P P P ∴>>.故选(A ).8、设随机变量()X t n ~,(1,)Y F n ~,给定(00.5)αα<<,常数c 满足{}2P X c >=,则{}2P Y c >=( )(A )α (B )1α- (C )2α (D )12α- 【答案】(C )【考点】t 分布;F 分布 【难易度】★★★【详解】()X t n ~,则2(1,)X F n ~{}{}{}{}{}22222P Y c P X c P X c P X c P X c α>=>=>+<-=>=二、填空题:9~14小题,每小题4分,共24分.请将答案写在答.题纸..指定位置上. 9、设函数()y f x =由方程(1)x y y x e--=确定,则1lim (()1)n n f n→∞-= .【答案】1【考点】导数的概念;隐函数的导数 【难易度】★★ 【详解】由(1)x y y x e--=,当0x =时,1y =.方程两边求导得 (1)1(1)x y y e y xy -''-=⋅--将0x =,1y =代入计算得(0)1y '=01()11()(0)lim (()1)lim lim (0)11n n x f f x f n n f f n xn→∞→∞→--'-=== 10、已知321x x y e xe =-,22x x y e xe =-,23xy xe =-是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y = . 【答案】3212()xx x x y C ee C e xe =-+-,12,C C 为任意常数.【考点】简单的二阶常系数非齐次线性微分方程 【难易度】★★【详解】312x xy y e e -=-,23x y y e -=是对应齐次微分方程的解.由分析知,*2xy xe =-是非齐次微分方程的特解. 故原方程的通解为3212()xx x x y C ee C e xe =-+-,12,C C 为任意常数.11、设sin ,sin cos x t y t t t=⎧⎨=+⎩(t 为参数),则224t d y dx π== .【考点】由参数方程所确定的函数的导数【难易度】★★ 【详解】11cos cos dy dy dt dy t t t dx dx dt dx dt tdt=⋅=⋅=⋅= 2211cos dy d d y dt dx dx dx dt dx tdt=⋅==2241cos 4t d y dx ππ=⇒==12、21ln (1)xdx x +∞=+⎰. 【答案】ln 2【考点】无穷限的反常积分 【难易度】★★ 【详解】21111ln ln 110ln 0ln ln 2(1)1(1)12x x x dx dx x x x x x +∞+∞+∞+∞=-+=+=-=++++⎰⎰ 13、设()ij A a =是3阶非零矩阵,A 为A 的行列式,ij A 为ij a 的代数余子式,若0(,1,2,3)ij ij a A i j +==,则A = .【答案】-1【考点】伴随矩阵 【难易度】★★★【详解】**0T Tij ij ij ij a A A a A A AA AA A E +=⇒=-⇒=-⇒=-= 等式两边取行列式得230A A A -=⇒=或1A =- 当0A =时,00TAA A -=⇒=(与已知矛盾) 所以1A =-.14、设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{}1P Y a Y a ≤+>= .【答案】11e-【考点】指数分布;条件概率的计算 【难易度】★★【详解】由题意可知,,0,()0,y e y f y y -⎧>=⎨≤⎩{}{}{}1(1)(),1111()a a a a aaf y dyP Y a Y a e e P Y a Y a P Y a e e f y dy+--++∞->≤+-≤+>====->⎰⎰三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)计算1⎰,其中1ln(1)()x t f x dt t +=⎰.【考点】积分上限的函数及其导数;定积分的分部积分法;定积分的换元法【难易度】★★★ 【详解】1ln(1)ln(1)()(1)0,()xt x f x dt f f x t x++'=⇒==⎰110002()2(2()f x f x x dx '==-⎰⎰⎰1102(1)224ln(1)f x =-=-=-+⎰⎰⎰004[ln(]4ln 24x =-+-=-+⎰⎰ 其中21111222000001222(1)2(arctan )2(1)1114t t tdt dt dt t t t t t π⋅==-=-=-+++⎰⎰⎰ 所以,原式=4ln 28(1)824ln 24ππ-+-=--16、(本题满分10分)设数列{}n a 满足条件03a =,11a =,2(1)0(2)n n a n n a n ---=≥,()S x 是幂级数nn n a x∞=∑的和函数.(Ⅰ)证明:()()0S x S x ''-=;(Ⅱ)求()S x 的表达式. 【考点】二阶常系数齐次线性微分方程 【难易度】★★★【详解】(Ⅰ)证明:0()nn n S x a x∞==∑,11()n nn S x na x∞-='=∑,222()(1)(2)(1)n n n n n n S x n n a xn n a x ∞∞-+==''=-=++∑∑20()()[(2)(1)]n n n n S x S x n n a a x ∞+=''-=++-∑因为2(1)0n n n n a a ---=,0n ≥,所以2(2)(1)0n n n n a a +++-= 所以()()0S x S x ''-=(Ⅱ)()()0S x S x ''-=为二阶常系数齐次线性微分方程,其特征方程为210λ-=,从而1λ=± 于是微分方程的通解为12()xx S x C eC e -=+由0(0)3S a ==,1(0)1S a '==,得1212123,1,21C C C C C C +=⎧⇒==⎨-+=⎩所以()2xx S x ee -=+17、(本题满分10分)求函数3(,)()3x yx f x y y e +=+的极值.【考点】多元函数的极值 【难易度】★★★ 【详解】先求驻点,令323()0132(1)033x y x y f x x y e x x f x y y e y ++⎧∂=++==-⎧⎪∂⎪⎪⇒⎨⎨∂=-⎪⎪=++=⎩⎪∂⎩或143x y =⎧⎪⎨=-⎪⎩再求驻点处的二阶偏导数22321(22)3x y f x x y x e x +∂=+++∂, 2231(1)3x y f x y x e x y +∂=+++∂∂, 2321(2)3x yf y x e y +∂=++∂, 由于在点2(1,)3--处,52322(1,)3f A e x---∂==-∂,5232(1,)3f B e x y ---∂==∂∂,52322(1,)3f C e y---∂==∂20AC B ⇒-<,0A <,所以点2(1,)3--不是极值点.同样在点4(1,)3-处,12324(1,)33f A e x--∂==∂,1234(1,)3f B e x y --∂==∂∂,12324(1,)3f C e y--∂==∂20AC B ⇒->,0A >,所以点4(1,)3-是极小值点,极小值为134(1,)3f e --=-.18、(本题满分10分)设奇函数()f x 在[1,1]-上具有二阶导数,且(1)1f =,证明: (Ⅰ)存在(0,1)ξ∈,使得()1f ξ'=; (Ⅱ)存在(1,1)η∈-,使得()()1f f ηη'''+=. 【考点】罗尔定理 【难易度】★★★【详解】(Ⅰ)由于()f x 在[1,1]-上为奇函数,故(0)0f =令()()F x f x x =-,则()F x 在[0,1]上连续,在(0,1)上可导,且(1)(1)10F f =-=,(0)(0)00F f =-=.由罗尔定理,存在(0,1)ξ∈,使得()0F ξ'=,即()1f ξ'=.(Ⅱ)考虑()()1(()())(())xxxxf x f x e f x f x e e f x e ''''''''+=⇔+=⇔=[()]0x x e f x e ''⇔-=令()()xxg x e f x e '=-,由于()f x 是奇函数,所以()f x '是偶函数,由(Ⅰ)的结论可知,()()1f f ξξ''=-=,()()0g g ξξ⇒=-=.由罗尔定理可知,存在(1,1)η∈-,使得()0g η'=,即()()1f f ηη'''+=. 19、(本题满分10分)设直线L 过(1,0,0)A ,(0,1,1)B 两点,将L 绕z 轴旋转一周得到曲面∑,∑与平面0z =,2z =所围成的立体为Ω. (Ⅰ)求曲面∑的方程;(Ⅱ)求Ω的形心坐标. 【考点】旋转曲面;空间直线的对称式方程;形心 【难易度】★★★★【详解】(Ⅰ)直线L 过A 、B 两点,(1,1,1)AB =-u u u r ,所以直线L 的方程为1111x y z-==-1x zy z=-⎧⇒⎨=⎩ 所以其绕z 轴旋转一周的曲面方程为 2222222(1)222x y z z x y z z +=-+⇒+=-+22112()22x y z ⇒+--=(Ⅱ)设形心坐标为(,,)x y z ,Ω关于xoz ,yoz 对称,0x y ==.222222223222202220022214(22)73105(221)3x y z z x y z z zdzdxdyzdv z z z dz z dv zdz dxdy z z dz ππ+≤-+ΩΩ+≤-+-+=====-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰所以,Ω的形心坐标为7(0,0,)5. 20、(本题满分11分) 设110a A ⎛⎫=⎪⎝⎭,011B b ⎛⎫= ⎪⎝⎭,当,a b 为何值时,存在矩阵C 使得AC CA B -=,并求所有矩阵C.【考点】非齐次线性方程组有解的充分必要条件 【难易度】★★★【详解】由题意可知矩阵C 为2阶矩阵,故可设1234x x C x x ⎛⎫=⎪⎝⎭.由AC CA B -=可得 12123434101011011x x x x a x x x x b b ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 整理后可得方程组2312413423011x ax ax a ax x x x x ax b-+=⎧⎪-++=⎪⎨--=⎪⎪-=⎩ ① 由于矩阵C 存在,故方程组①有解.对①的增广矩阵进行初等行变换:01001011110111101010001001011101010000101000a a a a aa a a ab b b -----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪---++⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭方程组有解,故10a +=,0b =,即1a =-,0b =.当1a =-,0b =时,增广矩阵变为10111011000000000000--⎛⎫⎪⎪⎪⎪⎝⎭34,x x 为自由变量,令341,0x x ==,代入相应齐次方程组,得211,1x x =-=令340,1x x ==,代入相应齐次方程组,得210,1x x ==故1(1,1,1,0)T ξ=-,2(1,0,0,1)T ξ=,令340,0x x ==,得特解(1,0,0,0)Tη= 方程组的通解为112212112(1,,,)Tx k k k k k k k ξξη=++=++-(12,k k 为任意常数)所以121121k k k C k k ++-⎛⎫= ⎪⎝⎭.21、(本题满分11分)设二次型2123112233112233(,,)2()()f x x x a x a x a x b x b x b x =+++++,记123a a a α⎛⎫ ⎪= ⎪ ⎪⎝⎭,123b b b β⎛⎫⎪= ⎪ ⎪⎝⎭(Ⅰ)证明二次型f 对应的矩阵为2T Tααββ+;(Ⅱ)若,αβ正交且均为单位向量,证明f 在正交变换下的标准形为22122y y +【考点】二次型的矩阵表示;用正交变换化二次型为标准形;矩阵的秩 【难易度】★★★ 【详解】(Ⅰ)证明:2123112233112233(,,)2()()f x x x a x a x a x b x b x b x =+++++1111123212321232123233332(,,)(,,)(,,)(,,)a x b x x x x a a a a x x x x b b b b x a x b x ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112323(,,)(2)T T T x x x x x x Ax x ααββ⎛⎫⎪=+= ⎪ ⎪⎝⎭,其中2T T A ααββ=+所以二次型f 对应的矩阵为2TTααββ+. (Ⅱ)由于,αβ正交,故0TT αβαβ== 因,αβ均为单位向量,故1α==,即1T αα=.同理1T ββ=2(2)22T T T T T T A A ααββαααββααααββαα=+⇒=+=+=由于0α≠,故A 有特征值12λ=.(2)T T A βααββββ=+=,由于0β≠,故A 有特征值21λ=又因为()(2)(2)()()()1123T T T T T Tr A r r r r r ααββααββααββ=+≤+=+=+=<, 所以0A =,故30λ=.三阶矩阵A 的特征值为2,1,0.因此,f 在正交变换下的标准形为22122y y +.22、(本题满分11分)设随机变量X 的概率密度为21,03,()0,x x f x a ⎧<<⎪=⎨⎪⎩其他,令随机变量2,1,,12,1,2x Y x x x ≤⎧⎪=<<⎨⎪≥⎩(Ⅰ)求Y 的分布函数;(Ⅱ)求概率{}P X Y ≤.【考点】连续型随机变量的概率密度的性质;连续型随机变量分布函数的计算;条件概率的计算【难易度】★★★★ 【详解】(Ⅰ)依题意有()1f x dx +∞-∞=⎰,即122300119193x dx x a a a a===⇒=⎰Y 的分布函数 {}()Y F y P Y y =≤由Y 的概率分布知,当1y <时,()0Y F y =; 当2y >时,()1Y F y =;当12y ≤≤时,{}{}{}{}{}()1111Y F y P Y y P Y P Y y P Y P X y =≤==+<≤==+<≤{}{}32232111121(18)9927y P X P X y x dx x dx y =≥+<≤=+=+⎰⎰所以Y 的分布函数为30,1,1()(18),12,271,2Y y F y y y y <⎧⎪⎪=+≤≤⎨⎪>⎪⎩(Ⅱ){}{}32211912927P Y P X x dx ==≥==⎰,{}{}1201121927P Y P X x dx ==≤==⎰,{}71227P Y <<=. {}{}{}{}{}1122P X Y P X Y Y P Y P X Y Y P Y ≤=≤==+≤== {}{}1212P X Y Y P Y +≤<<<<{}{}{}191712272727P X P X P X X =≤+≤+≤ 2201911171911878272727927272727272727x dx =⨯++=⨯+⨯+=⎰23、(本题满分11分)设总体X 的概率密度为23,0,(;)0,x e x f x x θθθ-⎧>⎪=⎨⎪⎩其他,其中θ为未知参数且大于零,12,,,n X X X L 为来自总体X 的简单随机样本.(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.【考点】矩估计法;最大似然估计法 【难易度】★★★ 【详解】(Ⅰ)223200(;)()x x x EX xf x dx x e dx e dx e d x x xθθθθθθθθθ---+∞+∞+∞+∞-∞==⋅==-=⎰⎰⎰⎰ 令EX X =,则X θ=,即X θ=,其中11ni i X X n ==∑.(Ⅱ)对于总体X 的样本值12,,,n x x x L ,似然函数为2311()(;)in nx i i iL f x exθθθθ-====∏∏(0i x >),31ln ()(2ln ln )ni i iL x x θθθ==--∑,令11ln ()2121()0n n i i i i d L n d x x θθθθ===-=-=∑∑,得121n i inx θ==∑θ的最大似然估计量12ˆ1ni inX θ==∑.。