成像光谱仪一体化设计
HyMap成像光谱仪系统和高光谱数据应用
![HyMap成像光谱仪系统和高光谱数据应用](https://img.taocdn.com/s3/m/4d2c2021fad6195f302ba61d.png)
HyMap成像光谱仪系统及其应用1.HyMap成像光谱仪系统简介HyMap机载成像光谱仪是由澳大利亚集成光电公司(ISPL)研制生产的,投入商业性运营的机载成像光谱仪。
经过近5年的发展,它已成为技术较为完善、系统较为配套的新一代使用型航空高光谱成像仪的代表。
HyMap于1997年开始应用于商业勘探领域,尤其在地质勘探领域特别是矿物填图方面得到了广泛应用。
为了推进成像光谱技术在我国地质找矿中的应用,中国地质调查局于2002年通过租用澳大利亚机载成像光谱仪的方式,开展了新疆东天山地区航空成像光谱飞行、数据获取、数据处理,以及应用研究工作,为澳大利亚机载成像光谱仪引进和成像光谱技术推广应用奠定了基础。
并于2012年通过天津中科遥感信息技术有限公司,与澳大利亚集成光电公司(ISPL)签订了HyMap的购买合同。
图1 HyMap成像光谱仪及其获取的影像2.HyMap成像光谱仪系统的主要组成HyMap成像光谱仪系统主要有硬件和软件系统组成,其中硬件系统包括:HyMap-C主机,由4个探测器组织,每个探测器有32个通道;以及备用探测器 集成稳定平台(GSM3000)POS(IMU/DGPS)系统主机和稳定平台之间的PAV30的适配环定标设备电子部件和备用电子设备控制部件、数据传输与存储等部件、存储介质(SSD硬盘)软件系统包括:飞行管理系统数据预处理及几何校正软件无缝拼接软件大气校正,光谱重建和矿物提取软件3.HyMap成像光谱仪的成像模式HyMap的分光器件为色散型成像光谱仪,其扫描方式为光机旋转式。
光栅色散型成像光谱仪其原理为:入射狭缝位于准直系统的前焦面上,入射的辐射经准直光学系统准直后,经棱镜和光栅狭缝色散后由成像光谱系统将光能按波长顺序成像在探测器的不同位置上。
具有一个成45°斜面的扫描镜,在电机的带动下进行360°旋转,其旋转水平轴与遥感平台前进方向平行。
线阵列探测器用于探测任一瞬时视场内目标点的光谱分布。
显微光谱成像装置研制实验设计研究-实验设计论文-设计论文
![显微光谱成像装置研制实验设计研究-实验设计论文-设计论文](https://img.taocdn.com/s3/m/f76c59e176c66137ef061988.png)
显微光谱成像装置研制实验设计研究-实验设计论文-设计论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:基于已完成的自组荧光显微镜实验教学装置,研制了一套通过有序控制光谱仪和振镜实现显微光谱成像的装置,并开发了配套的光谱图像采集分析软件。
利用该装置完成了量子点荧光样品的荧光光谱测量、白光照明成像和显微光谱成像等实验内容。
该光谱成像装置的研制和实验设计能帮助学生掌握光谱成像的原理、实验操作方法和成像数据处理方法,拓展学生的研究内容和视野,提高学生的创新能力。
关键词:光谱成像装置;显微成像;荧光光谱显微光谱成像技术是一种通过有机整合光学显微成像技术和光谱分析技术,给出待测样品光学分辨率下的空间位置信息和与之相对应的光谱信息的成像探测技术。
该技术实现了空间显微成像分辨能力和光谱探测能力的优势互补,可以完成光学分辨率下的空间成像和位置定位,同时可以提供样品的光谱成分分析以及不同光谱成分的选择性成像。
显微光谱成像技术在生物荧光成像、医学成像、荧光材料研制等领域都有着广泛应用,是在这些领域中进行科研的有效实验手段[1-6]。
近些年来,如何将科学研究中常用的一些实验技术融合到实验教学中是高校实验教学改革的热点课题之一[7-8]。
目前,南开大学物理实验教学中心在已开设的物理实验课程基础上,依托本校优势学科和已设立的自制实验教学仪器设备等项目,正在逐步将部分研究成果转化为具体的物理实验教学内容,为物理实验教学改革提供有益的尝试。
基于此,本实验中心尝试研制了显微光谱成像装置,并自行编写了该装置的控制和成像软件。
该装置主要通过振镜将激发光束反射进入显微物镜聚焦在样品某一位置处,此位置处的样品经激发后发出荧光,荧光被同一物镜收集,透过双色镜后进入荧光采集光路,探测器获取该位置处的荧光和光谱数据;通过有序控制光谱仪和振镜,计算机将有序采集的某一区域的光谱信号和相应位置信息进行数据处理,获得该区域样品的显微光谱图像。
多光谱、超光谱成像技术在军事上的应用
![多光谱、超光谱成像技术在军事上的应用](https://img.taocdn.com/s3/m/0c3f5e6c7e21af45b307a878.png)
587—602.
【2】 EISM^NN M T,CEDERQUIST J N,SCHwARTZ C R.
In6[ared mul蛀spec仃a1 taI苫et,back铲∞nd丘eld me雒ure】mnts【C】
脚b,1994,2235:130—147. ,,Pl佻∞曲呜s of SPm,SigIlal and Data PI眦essi呜0f Sm棚
Chi船.Beijing:Aviation Academy of Cllina(刘永鹏,高金元,张 平。捷联式酝羚成豫导零|头光轴稳定疆究.孛国舷燮学会控铡 与应用第十一属学术颦会论文集.j£京:牵国航空学会),
2003:663—667.
[2】ZHANG辑n_yi,QI Z拽i文ang,CUI Ying-ying,et a1.The
T.n锄al 【3】 S(HW筒RTZ C R,EISMANN M
mnmspccⅡal
detcction of mimtal_y vehides in vege诅ted and desen
backgrounds【C】,,Pr∞∞曲嘈s of SPm,T嗣I飕ets and Back‘ gro哪ds:Ch锻赦蛔ri2棚on粕d Repres明la蜢蛐Ⅱ,1996,2742:
m
带宽,中心波长为8.7、9.15、9.35斗m的三个波段为热红
图4多光谱探测前视红外系统(H原)通,用l组、件,如图8所 示,导引 头光 Fig?轴j_·偏?。离!己初;;始jj≥位i一鬣‘的 二二角j≤度0i毒接蠡薯近专于_ 零。瞬8
(● a)、i(≮b)●分≥别≥为≥y、j; z坐o标 j毫的;稳。定毫误j差主。≥毒
参考文献:
【l】 删Yong卞eng,aAO JiIl_yuaIl,ZHm婚№g.Research on
高分辨宽光谱微型拉曼光谱仪的设计
![高分辨宽光谱微型拉曼光谱仪的设计](https://img.taocdn.com/s3/m/4835b0413d1ec5da50e2524de518964bcf84d206.png)
高分辨宽光谱微型拉曼光谱仪的设计谈梦科;郑海燕;田胜楠;郭汉明【摘要】为了同时满足光谱分辨率、光谱范围、探测器(CCD)上光谱信号覆盖区域要求,提出一种基于Czerny-Turner(CT)结构拉曼光谱仪的综合设计方法,通过Zemax软件采用逐步手动调节光栅倾斜,自动优化聚焦镜、柱面镜以及CCD间倾角和距离的方式,设计出全波段光谱分辨率优于4 cm-1,光谱波数范围为80~3 967 cm-1,光学结构尺寸为90 mm×130 mm×40 mm的微型拉曼光谱仪.%In this paper,to simultaneously meet the requirements of the spectral resolution,spectral range and the spectrum signal coverage area on detector(CCD),we used Zemax to adjust the grating angle gradually and manually,optimize the focusing mirror,the cylindrical lens,the CCD angles and distances between all of them automatically.We proposed a comprehensive design method of Raman spectrometer,which is based on the Czerny-Turner(CT) structure,and successfully designed this micro-Raman spectrometer that owned the full-band spectral resolution better than 4 cm-1,wave number spectral range of 80~3 967 cm-1and the optical structure size of 90 mm×130 mm×40 mm.【期刊名称】《光学仪器》【年(卷),期】2017(039)003【总页数】7页(P75-81)【关键词】拉曼光谱仪;光学设计;Czerny-Turner结构;Zemax【作者】谈梦科;郑海燕;田胜楠;郭汉明【作者单位】上海理工大学光电信息与计算机工程院, 上海 200093;上海理工大学教育部光学仪器与系统工程研究中心, 上海 200093;上海理工大学上海市现代光学系统重点实验室, 上海 200093;上海理工大学上海市现代光学系统重点实验室, 上海 200093【正文语种】中文【中图分类】O436光谱仪是进行光谱研究和物质成分分析的仪器,有着广泛的应用[1]。
offner成像光谱仪的设计方法
![offner成像光谱仪的设计方法](https://img.taocdn.com/s3/m/c42e2395cf2f0066f5335a8102d276a200296028.png)
offner成像光谱仪的设计方法英文回答:Designing an Offner imaging spectrometer involves several key steps and considerations. The Offner configuration is a popular choice for its compactness and ability to provide high spectral resolution. Here is a step-by-step guide to designing an Offner imaging spectrometer:1. Determine the spectral range and resolution requirements: The first step is to define the desired spectral range and resolution for the spectrometer. This will depend on the specific application and the types of samples or phenomena that need to be analyzed.2. Select the correct optics: The Offner configuration consists of two concave mirrors and a convex grating. The choice of optics is crucial to achieve the desired performance. The mirrors should have a high reflectivityand low scattering, while the grating should have a high diffraction efficiency and low stray light.3. Calculate the design parameters: The design parameters of the Offner spectrometer include the focal lengths of the mirrors, the radius of curvature of the grating, and the distance between the mirrors. These parameters need to be carefully calculated to ensure proper imaging and dispersion.4. Consider aberrations: Offner spectrometers are prone to various aberrations, such as astigmatism and coma. These aberrations can degrade the spectral and spatial resolution. It is important to analyze and minimize these aberrations through careful design and optimization.5. Optimize the system: Once the initial design is complete, it is necessary to optimize the system for better performance. This can involve adjusting the mirror curvatures, grating position, or other parameters toachieve the desired spectral resolution and image quality.6. Test and calibrate: After the design and optimization, the Offner spectrometer needs to be tested and calibrated. This involves measuring the spectral and spatial resolution, as well as characterizing any remaining aberrations or distortions. Calibration methods, such as using known spectral sources or calibration standards, can help ensure accurate measurements.7. Consider practical constraints: Finally, it is important to consider practical constraints in the design, such as size, weight, and cost. Offner spectrometers can be quite compact, but trade-offs may need to be made to meet specific requirements.中文回答:设计Offner成像光谱仪涉及到几个关键步骤和考虑因素。
微型近红外光谱仪系统的设计模板
![微型近红外光谱仪系统的设计模板](https://img.taocdn.com/s3/m/6ba8f35cdd3383c4ba4cd2b8.png)
微型近红外光谱仪系统的设计1微型近红外光谱仪系统有关理论1.1近红外光谱仪系统的工作原理近红外光谱是因为分子振动能级的跃迁(同时陪伴转动能级跃迁)而产生的。
近红外剖析技术是依照被检测样品中某一化学成分对近红外光谱区的汲取特征而进行定量检测的一种方法,它记录的是分子中单个化学键基频振动的倍频和合频信息,它的光谱是在 700--2500 nm 范围内分子的汲取辐射。
这与惯例的中红外光谱定义同样,汲取辐射致使原子之间的共价键发生膨胀、伸展和振动,中红外汲取光谱中包含有C-H 键、 C-C 键以及分子官能团的汲取带。
但是在NIR 丈量中显示的是综合波带与谐波带,它是R-H 分子团 (R 是 O、C、N 和 S)产生的汲取频次谐波,并经常受含氢基团X-H(C-H 、N-H 、 O-H)的倍频和合频的重叠主导,所以在近红外光谱范围内,丈量的主假如含氢基团X-H 振动的倍频和合频汲取。
图 1.1 是近红外技术的剖析过程图,左边箭头是建模过程,右边箭头是检测过程。
图 1.1 近红外技术剖析过程图1.2 近红外光谱仪光学系统基本理论在近红外光谱剖析系统中,用于丈量近红外光谱的近红外光谱仪是系统的基础,而分光光学系统是光谱仪的中心。
1.2.1 色散原理色散系统是光谱剖析仪器中的重要构成部分,色散系统的选择与设计直接关系到光谱仪器的性能。
按其工作原理可分为空间色散型和干预调制型。
空间色散型包含物质色散、多缝衍射和多光束干预;而调制型主要为傅里叶变换分光、哈达玛变换分光和光栅调制分光等,这里主要介绍衍射色散分光。
在物理光学中,能够把光波当作在空间散布的标量电磁场,因为光波的颠簸性质,当光波经过拥有必定宽度狭缝时,会发生衍射现象。
假如光波同时经过两个相邻的狭缝时,由两狭缝发出的光波将在产生干预的同时还会遇到单缝衍射的调制。
由此类推,关于多缝衍射,能够以为多缝衍射光强是多光束干预光强被单缝衍射光重申制的结果,这就是衍射光栅的工作原理。
轻小型高光谱成像仪前置望远系统设计_汤天瑾
![轻小型高光谱成像仪前置望远系统设计_汤天瑾](https://img.taocdn.com/s3/m/bc5a123cbd64783e08122b08.png)
三反结构参数基础上优化而来的。同轴三反基本结 构如图 2 所示,主镜 M1、次镜 M2 和三镜 M3 的顶 点曲率半径分别为 R1、R2 和 R3,主镜与次镜、次镜 与三镜、三镜与焦面的间隔分别为 d1、d2、d3,l2、
l2 、 l3 和 l3 分别为次镜和三镜对应的物距和像距,
系统像方焦距为 f ,主镜的焦距为 f1 。 对于望远系统,假定物体位于无穷远,入瞳位 于主镜上,主镜、次镜及三镜的二次曲面系数分别 为 e12 、 e22 和 e32 。 本文所设计的光谱仪前置望远系统需要实现像 方远心,为了满足这一要求,需要将孔径光阑设置 在次镜上, 并使孔径光阑到三镜的距离为三镜顶点曲率半径的一半, 即孔径光阑位于三镜的物方焦点处,
同轴三反基本结构如图分别为次镜和三镜对应的物距和像距系统像方焦距为对于望远系统假定物体位于无穷远入瞳位于主镜上主镜次镜及三镜的二次曲面系数分别本文所设计的光谱仪前置望远系统需要实现像方远心为了满足这一要求需要将孔径光阑设置在次镜上并使孔径光阑到三镜的距离为三镜顶点曲率半径的一半即孔径光阑位于三镜的物方焦点处同轴三反望远系统结构fig2coaxialthreemirrortelescopesystemconfiguration462015年第36分别为次镜对主镜三镜对次镜的放大率求解非球面二次非球面系数的值校正球差彗差像散和匹兹万场曲得到多组解
结构特点,分析了高光谱成像仪前置望远系统的设计特殊性,利用同轴反射系统的几何光学理论求解方 法,给出了一种长焦距、大视场的高光谱成像仪前置望远离轴三反远心系统的设计思路和设计结果,光 学系统焦距 2 500 mm,视场角达到 12°。分析表明,该设计在奈奎斯特频率 71.4 线对/mm 处调制传递函 数接近衍射极限,结构紧凑,不仅适用于 Offner 型光谱仪前置望远光学系统,还可用于其它大视场远心 光学系统。 关键词 高光谱成像 前置望远系统 离轴三反 初始结构 像质 空间遥感 中图分类号: TN21 文献标志码: A 文章编号: 1009-8518(2015)01-0043-06
安捷伦CARY630FTIR光谱仪
![安捷伦CARY630FTIR光谱仪](https://img.taocdn.com/s3/m/946ea73dc5da50e2524d7f59.png)
DialPath 的优势
安捷伦独特的 DialPath 技术的优势: • 使得测试液体透射光谱如同 ATR 一样容易 • 定性分析和定量分析的理想选择——可在三个工厂校准的,固定光
程 30 到 250 微米的样品池之间迅速转换 • 较低浓度的样品选择较长光程,较高浓度的样品选择较短光程的样
品窗
• 光路中不需要垫片,因此没有漏液现象,也没有干涉条纹现象 • 加样无需使用自动进样器或进样针 • 有效处理不同粘度和挥发性的液体
使用 DialPath 测试样品的三个步骤
1确保晶体 是清洁的
2 将您的样品 放置在样品 窗上
3将 DialPath 旋转到您需 要的光程进 行分析
5 要想了解更多信息,请访问:/chem/cary630
安捷伦科技
工业品、特种化学品和精细化学品应用
专为常规的质量分析/质量控制和其它多用户、高负荷实验室设计,安捷伦 Cary 630 FTIR 出众 的坚固耐用性和通用性将会改变您所知道的有关 FTIR 分析的一切。
满足您的应用需求
安捷伦致力于为您的应用提供解决方案。我们能提供您、特种化学品和
材料
精细化学品
食品
通过与自带谱库进行谱图对比,对塑料、橡胶制品和 粘合剂材料进行定性分析 复合材料、涂料和薄膜的组成和质量进行鉴定 分析半导体加工和太阳能电池制备中污染物 确认配方产品和最终产物符合既定技术指标 跟踪测定油漆固化和组成 测定塑料中紫外线稳定剂、抗氧化剂或填充物的浓度 测定固化程度和橡胶组成 分析并测量聚合物和金属表面蜡或油厚度均匀性
• 干涉仪拥有 25 毫米的光学孔径和极短的内部光学路径,能够提供 与大型实验室系统相媲美的性能
• 光学部件永久准直,无需调校,便于使用和进行可靠操作 • 干涉仪的动镜采用独特的 Flexture 系统,实现长期持久的可靠性 • 固态激光器寿命长,操作可靠且精确,同时减小了仪器体积 • 标准透射样品仓附件、DialPath/TumblIR 专利液体分析附件、钻石晶
便携式拉曼光谱仪的光学系统设计与研制
![便携式拉曼光谱仪的光学系统设计与研制](https://img.taocdn.com/s3/m/927f6fa5846a561252d380eb6294dd88d0d23df4.png)
便携式拉曼光谱仪的光学系统设计与研制一、本文概述拉曼光谱学作为一种重要的无损检测技术,已在化学、物理、生物、材料科学等领域展现出广泛的应用前景。
便携式拉曼光谱仪,作为一种新型的、可随身携带的分析工具,其便携性、快速性和准确性使得现场实时分析成为可能,对于现场检测、环境监测、食品安全等领域具有重要的应用价值。
本文旨在探讨便携式拉曼光谱仪的光学系统设计与研制,通过对光学系统的深入研究与优化,以期提升便携式拉曼光谱仪的性能和实用性。
文章首先概述了拉曼光谱学的基本原理和便携式拉曼光谱仪的发展背景,阐述了便携式拉曼光谱仪在各个领域的应用价值。
接着,文章详细分析了便携式拉曼光谱仪光学系统的设计原则和技术要求,包括激光光源的选择、光学元件的匹配、光路的布局与优化等方面。
在研制过程中,我们注重光学系统的紧凑性和稳定性,通过合理的光路设计和精确的元件选型,实现了光学系统的高效、稳定运行。
文章还介绍了便携式拉曼光谱仪的实验验证与性能测试,包括光谱分辨率、信号稳定性、测量速度等关键指标的评价。
实验结果表明,本文设计的便携式拉曼光谱仪光学系统具有良好的性能表现,能够满足现场快速检测的需求。
文章总结了便携式拉曼光谱仪光学系统设计与研制的主要成果和经验,并对未来的发展方向进行了展望。
我们相信,随着光学技术和制造工艺的不断进步,便携式拉曼光谱仪将在更多领域发挥重要作用,为现场检测和实时监测提供有力支持。
二、拉曼光谱仪的基本原理拉曼光谱学是一种散射光谱学,其基本原理基于拉曼散射现象,这是一种非弹性散射过程,涉及到光与物质分子的相互作用。
当入射光照射到物质表面时,大部分光会被反射或折射,但还有一小部分光会与物质分子发生相互作用,导致光子的能量和方向发生改变,这种改变就是拉曼散射。
拉曼散射过程中,光子与物质分子发生能量交换,使得散射光的频率发生变化。
如果散射光的频率小于入射光的频率,那么这个过程被称为斯托克斯拉曼散射;反之,如果散射光的频率大于入射光的频率,那么这个过程被称为反斯托克斯拉曼散射。
宽视场成像光谱仪前置远心离轴三反光学系统设计
![宽视场成像光谱仪前置远心离轴三反光学系统设计](https://img.taocdn.com/s3/m/cf75ad01eff9aef8941e064c.png)
以共轴三反系统成像理论[ 13] 为基础, 选择一次 成像结构对远心三反成像系统进行研究。
如图 1 所示, f 为共轴三反系统的焦距, 三个反 射镜 M 1 、M 2 和 M 3 的顶点曲率半径分别为 R 1 、R2 和 R3 , 主镜 M1 与次镜 M 2 间隔为 d1 , 次镜 M 2 与三 镜 M3 间隔为 d2, 三镜 M3 与像面的间隔为 d3 , 即 图 1中的 l3 。
e23 1 ( 1+
1)4 -
2 1
(
1
+
1)( 1-
1)2 ,
( 9)
S II =
1 4
e22 ( 1 - 1 ) ( 1 + 1 ) 3 +
e23 (
2 1
-
2) ( 1+
1)3 -
5 1
+
2
4 1
+
3 1
-
3
2 1
-
1
,
( 10)
S III =
1 41
e22 ( 1 -
1)5 +
e23 (
2 1
0622004 1
开展了远心离轴 三反系统的研 究设 计, 如: Jun ichi 等[ 11] 设计的远心离轴三反系统焦距 为 700 mm 、F 数为 4、IF OV 为 6 , 主镜为双曲面镜、 次镜为球面镜、三镜为扁椭球面镜; 李欢等[ 12] 设计 的远心离轴三反系统焦距为 720 m m、F 数为 4、视 场角为 10 , 主镜为 6 次非球面镜、次镜和三镜为椭 球面镜。
Abstract I n order to meet the needs of the wide field of view ( FOV ) imaging spectrometer development, the problem about optical design of telecentric, wide FOV, large relative aperture, off axis three mirror system is studied, and the expressions of initial configuration parameters and the third order aberrations for flat field, telecentric, three mirror system are educed. With the specific requirements of 0. 4~ 2. 5 m spectral range, F number is 4, 720 mm focal length, 10 FOV, a flat field, telecentric, off axis three mirror imaging system is designed, in which the secondary mirror is convex spheric mirror, the primary mirror and the third mirror are concave conicoid and coplanar, and all the three mirrors are coaxial. The design result indicates that the imaging quality of the designed system approaches the diffraction limit at full FOV in the required wave band. Key words optical design; off axis three mirror system; telecentric; wide field of view; imaging spectrometer OCIS codes 220. 4830; 220. 3620; 120. 6200
轻小型高光谱成像仪前置望远系统设计
![轻小型高光谱成像仪前置望远系统设计](https://img.taocdn.com/s3/m/b7f00e38773231126edb6f1aff00bed5b9f3733f.png)
轻小型高光谱成像仪前置望远系统设计轻小型高光谱成像仪前置望远系统设计一、引言近年来,随着综合技术的不断发展和成熟,高光谱成像技术成为了遥感等领域应用的主要手段之一。
轻小型高光谱成像仪,作为高光谱成像技术的重要设备,可以广泛应用于地球科学研究、资源勘探、环境监测、农业等领域。
与传统的各向同性成像仪相比,高光谱成像仪具有更高的光谱分辨率和更好的空间分辨率。
本文主要介绍了轻小型高光谱成像仪前置望远系统的设计,通过对不同望远镜结构的比较,确定了采用折反式望远镜结构,并采用了特殊的锥面反射镜设计,以优化系统的性能。
二、轻小型高光谱成像仪前置望远系统设计轻小型高光谱成像仪前置望远系统的主要功能是将物体载荷上的目标进行放大,并且将其成像在光谱分析单元中。
由于高光谱成像仪的空间分辨率较低,因此需要配备一套高质量的望远镜以提高成像的精度。
在望远镜结构的设计上,本设计采用了折反式望远镜结构。
相对于其他的结构形式,折反式望远镜结构具备结构简单,造价低廉,重量轻等优点。
此外,由于望远镜是空间载荷中的组成部分之一,因此在设计上需要兼顾性能和重量的优化。
由于折反式望远镜结构能够很好地实现优化的性能和重量,因此在此背景下选择折反式望远镜结构是非常明智的。
在反射镜镜面设计方面,考虑到人造卫星环境的特殊性,本设计选择了特殊的锥面反射镜设计。
通过对反射镜的设计和优化,能够非常好地实现镜面的拼接和优化。
同时,由于反射镜具有较大的结构强度和较小的重量,因此可以很好地满足空间载荷对结构强度和质量的要求。
三、实验结果与分析在实验中,本设计采用了锥面反射镜和折反式望远镜的组合,实现了对目标的高精度成像。
通过对镜面的测试和试验,本设计证实了选用锥面反射镜能够很好地实现成像,同时也证明了折反式望远镜结构的选择和优化是非常切合实际的。
四、结论本设计着重介绍了轻小型高光谱成像仪前置望远系统的设计。
本设计通过对不同的望远镜结构形式的比较,选择了折反式望远镜结构,并采用了特殊的锥面反射镜设计,以实现系统性能的优化。
高光谱-激光共光路联测设计与试验
![高光谱-激光共光路联测设计与试验](https://img.taocdn.com/s3/m/16e7a7fd541810a6f524ccbff121dd36a22dc450.png)
高光谱-激光共光路联测设计与试验付成群;方亮;谢立军;王勇【摘要】为解决同时对空中、地面和水下等目标进行精确的距离、方位和光谱属性探测问题,提出了高光谱-激光雷达共光路探测原理和计算模型,以及原理样机设计方法,并进行高光谱-激光雷达共光路探测试验.试验生成了高光谱与激光雷达合成数据,每个点具有坐标信息和光谱信息,对合成前后数据进行对比,可以实现对不同目标识别伪装,并对目标进行精确定位.试验结果表明,高光谱-激光雷达共光路联测方法具有可行性.【期刊名称】《兵工学报》【年(卷),期】2016(037)011【总页数】8页(P2002-2009)【关键词】兵器科学与技术;高光谱成像;激光扫描数据;同步联测;设计与试验【作者】付成群;方亮;谢立军;王勇【作者单位】解放军理工大学野战工程学院,江苏南京210007;解放军理工大学野战工程学院,江苏南京210007;61175部队,江苏南京210049;解放军理工大学野战工程学院,江苏南京210007;解放军理工大学野战工程学院,江苏南京210007【正文语种】中文【中图分类】TN958.98在揭露伪装目标与精细目标识别方面,急需能够快速同步获取该目标的空间位置信息和光谱属性特征信息。
然而,常规的航空摄影系统、卫星遥感系统以及高光谱成像和微波系统等传统的对地探测手段都存在一个共同的局限——难以同时对空中、地面和水下等目标进行精确的距离、方位和光谱属性探测。
高光谱对于伪装目标识别具有优势,但缺乏精确的三维坐标数据,识别精细目标受限制[1];激光扫描技术可快速获取高精度战场环境数据[2],但缺乏光谱特征数据,揭露伪装能力弱,将二者结合可以实现空间目标的精确定位和属性识别。
目前国外有能同时探测采集光谱数据和空间坐标数据的机载系统,如瑞典AHAB公司的鹰眼、龙眼、蝙蝠系列产品及奥地利Riegl公司的CP-680-EAGLE系统等,这些系统集成了差分定位、惯性测量、数字相机、激光扫描仪和高光谱成像仪[3-5],但是该系统的各个模块相互独立,光谱数据、空间坐标数据和影像数据之间的匹配是通过一系列后处理步骤完成的。
成像光谱仪分光技术概览_郑玉权
![成像光谱仪分光技术概览_郑玉权](https://img.taocdn.com/s3/m/9e6bb029a5e9856a56126066.png)
文章编号:1007-4619(2002)01-0075-06成像光谱仪分光技术概览郑玉权,禹秉熙(中国科学院长春光学精密机械与物理研究所,吉林 长春 130022)摘 要: 论文介绍了多种成像光谱仪的分光技术。
棱镜或光栅色散型成像光谱仪技术成熟,应用广泛;在发散光束中使用光栅的方法,克服了准直光束用法中的一些缺陷;傅里叶变换光谱仪是遥感探测可见和红外弱辐射的有力工具;光楔成像光谱仪结构简单,随着渐变滤光片工艺技术的成熟,已走向实用化;采用可调谐滤光片的成像光谱仪由于滤光片水平的限制,投入应用还有待时日;采用二元光学元件的成像光谱仪结构紧凑,体积小,扫描速度快,已研制出地面实用型产品;层析成像光谱仪原理新,目前还处在实验阶段;三维成像光谱仪可以同时获取二维影像和一维光谱信息,可实现对迅变目标的观测。
关键词: 成像光谱仪;分光技术;傅里叶变换光谱仪;可调谐滤光片;二元光学元件;层析;三维成像光谱仪中图分类号: TP702 文献标识码: A1 引 言成像光谱仪(即超光谱成像仪)是20世纪80年代开始在多光谱遥感成像技术的基础上发展起来的新一代光学遥感器,它能够以高光谱分辨率获取景物和目标的超多谱段图像,在大气、海洋和陆地观测中正在得到广泛的应用。
成像光谱仪是成像技术和光谱技术的有机结合,它的光学系统一般由望远系统和光谱仪系统组成,光谱仪系统采用的分光技术直接影响着整个成像光谱仪的性能、结构的复杂程度、重量和体积等。
本文在介绍传统的棱镜、光栅色散型成像光谱仪的基础上,概括了新发展起来的成像光谱仪分光技术,主要包括傅里叶变换光谱仪、采用可调谐滤光片的凝视型成像光谱仪、渐变滤光片(光楔)成像光谱仪、采用二元光学元件的成像光谱仪、层析成像光谱仪和完全无动件的三维成像光谱仪。
2 棱镜、光栅色散型成像光谱仪2.1 在准直光束中使用棱镜或光栅的分光技术 棱镜和光栅色散型成像光谱仪出现较早、技术比较成熟,绝大多数航空和航天成像光谱仪均采用了此类分光技术,棱镜和光栅的典型应用方式如图1所示。
NicoletiS50傅立叶变换红外光谱仪-ThermoFisherScientific
![NicoletiS50傅立叶变换红外光谱仪-ThermoFisherScientific](https://img.taocdn.com/s3/m/6952e8c3b9f3f90f76c61b6d.png)
推荐范围 (cm-1)
12500 350
11700 800
11700 600
11700 400
11700 650
27000 8600
13000 2000
12000 3800
11500 1850
6400 200
700
50
600
15
10000 400
智能标准大样品仓设计 • 适用所有智能附件 • 自动识别、自动诊断 • 兼容所有商业附件
Nicolet iS50 傅立叶变换红外光谱仪
创新发展的红外光谱技术
全功能分析站
高智能、模块化的 Nicolet iS50 型红外光谱仪突破性的光学和电子设计,集成各种检测功能于一自动 光学系统,释放出超越传统红外光谱仪极限的应用功能和操作控制方式,充分展现傅里叶变换红外 光谱的技术的又一创新和发展
• 优于 0.2nm 的动镜位置准确度 • 5-1000 Hz 相调制 • 0.5-4.5 λ633 幅调制 • 纳秒级时间分辨
10
用户至上的一键式操作理念
GC
光纤
ATR “一键式”设置
显微镜
积分球
主样品仓 / Raman 模块 / TGA
Specta 一键式混合物自动分析软件
• 专利混合物和异物分析软件 • 适合红外和拉曼数据 • 自动分析,无人为偏差,结果可靠
6
智能气相色谱 - 红外联用
• 与气质技术互为补充 • 各种复杂天然 / 合成化学品、燃料、 药物的成
分剖析 • 药物的异构体分析 •GC-FID 和 GC-IR 同步检测 • 支持同步触发器和自动进样器等,分析更高效 • Mercury GC——自动数据分析功能 • 一键式按钮自动切换采集模式
棱镜 光栅型高光谱成像光谱仪优化设计及集成技术研究
![棱镜 光栅型高光谱成像光谱仪优化设计及集成技术研究](https://img.taocdn.com/s3/m/63a96d5111a6f524ccbff121dd36a32d7375c7dd.png)
参考内容
光栅光谱仪是一种广泛应用于科学实验和日常生活中的重要光学仪器。它利用 光栅的特殊性质,将入射光分成多个不同波长的单色光,并通过对这些单色光 的精确测量来获得光谱信息。本次演示将详细介绍光栅光谱仪的原理及设计。
一、光栅光谱仪的原理
光栅光谱仪的核心部件是光栅,它由一系列精密刻划的平行线组成。当一束光 线入射到光栅上时,由于光线的波动性质,会发生衍射现象。不同波长的光线 衍射角度不同,因此,通过测量衍射光的角度,就可以确定入射光的波长。
通常,机械系统包括以下几个部分: (1)进样装置:用于将样品送入光谱仪内部; (2)移动平台:用于控制光学元件的位置和运动;
(3)步进电机:用于驱动移动平台;
(4)控制器:用于控制整个机械系统。
机械系统的设计需要考虑到许多因素,如热稳定性、抗干扰能力、维护便利性 等。因此,在设计过程中需要综合考虑各种因素,以确保机械系统的稳定性和 精度。
1、光路设计:采用折反射式光路设计,将入射光经过一次反射后,分成多个 子光束分别进入棱镜和光栅进行分束。这样可以减少光学元件的数量,简化光 学系统,提高系统的稳定性。
2、光学元件选择:选用高质量的光学元件,如高精度平面反射镜、低色散棱 镜和刻划光栅等。此外,选用具有高灵敏度和宽带宽特性的探测器,以实现高 光谱分辨率和低噪声水平。
3、集成技术:采用先进的集成技术,将光学系统、电学系统、控制系统等有 机地结合在一起,实现整体结构的优化和各系统之间的协同工作。此外,可以 利用计算机视觉技术和机器学习算法对系统进行自动化标定和优化,降低调试 和维护的难度。
1、在保证空间分辨率基本不变 的前提下
2、通过集成技术的应用
结论与展望
3、数据处理系统设计
数据处理系统是光栅光谱仪的重要组成部分,它负责处理和分析从光谱中获取 的数据。数据处理系统需要具备高效性、稳定性和可扩展性。
北京中研环科科技有限公司_企业报告(供应商版)
![北京中研环科科技有限公司_企业报告(供应商版)](https://img.taocdn.com/s3/m/261d9fc76394dd88d0d233d4b14e852458fb39ab.png)
企业基本信息
企业名称: 营业范围:
北京中研环科科技有限公司
技术开发;经济信息咨询;会议服务;承办展览展示;销售仪器仪表、五金交电、金属材料、 陶瓷制品、化工产品(不含危险化学品)、建筑材料、计算机软件及辅助设备、电子产品、 电子元器件、工艺品、机械设备、汽车配件、日用品、针纺织品、装饰材料、照明器材、木 制品、医疗器械(限一类)、钢材;货物进出口;代理进出口;技术进出口;维修仪器仪表; 实验分析仪器制造;光学仪器制造。(市场主体依法自主选择经营项目,开展经营活动;以 及依法须经批准的项目,经相关部门批准后依批准的内容开展经营活动;不得从事国家和本 市产业政策禁止和限制类项目的经营活动。)
北京航空航天大学
中标金额 (万元)
145.8
63.2
9.9
4
化学学院化学器件采购比价结果公 示
化学学院
8.4
5
北京航空航天大学化学学院实验用 品采购比价结果公示
北京际环科科技有限公司
7.5
6
中国科学院高能物理研究所 X 射线 拉曼散射谱仪小像素探测器采购项 目
中国科学院高能物理研究 所
\
7
原位高温 XRD 反应装置(清设比选 20221742 号)成交结果公告
*项目金额排序,最多展示前 10 记录。
本报告于 2023 年 02 月 18 日 生成
3 / 13
1.4 地区分布
近 1 年北京中研环科科技有限公司中标项目主要分布于北京、天津、陕西等省份,项目数量分布为 8 个、4 个、4 个,占比企业近 1 年项目总数的 47%。从中标金额来看,天津、北京、江苏的中标总金 额较高,表现出较高的地区集中度。
4 / 13
*按近 1 年项目金额排序,最多展示前 10 记录。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求也 随之提高 ,小型化 、 高光谱分 辨率 和高空 间分辨率 成为 发展趋势 ,这就要求设计者要不 断完 善和 优化设 计 。正是在 这样 一个背景下 ,提出 了成像光谱仪 一体 化设计 的方法 ,即 不单 纯地进行光谱仪分光 系统 的设计 , 而是将 光谱仪 分光系
收0 0 11 —9
第3卷 , 3 2 第 期
20 12年 3月
光
谱
学
与
光
谱
分
析
V 1 2 N . ,p 3 -4 o. , o 3 p 8 98 3 3
Mac r h,2 1 02
S e to c p n p c r lAn l ss p c r s o y a d S e ta ay i
一
统焦距: 一3 l; / 0 - 光学系统相对孔径: / mn D 厂一1 3 5 : :;
C S_ 等 ,这些 超光谱 成像 光谱 仪 主要应 用在机 载 和星 载 A I] 6
的有效载荷 当中。近年来我 国在军事 、民用等领 域对超 光谱
成像光谱仪 的需求也呈 上升趋势 , 各种用 途的超光 谱成像光
谱仪被广泛地应用 于国民经 济建设和 国防建设 当 中,对 于超 光谱成像技术 的研究也越来越 深入和广泛l ] _ 。 7 随着超光谱成像技术 的发展 , 对超光谱 成像光谱 仪 的要
设计思想 的正确性 。
在遥感平 台上 以高空 间分辨 率和高光谱分辨率获取物质光谱 图像 ,即获取被观测 区域 ( 物体) 或 的表观 图像信 息及理化 生
l 凸面光栅成像光谱仪一体 化设 计过程
1 1 凸面光栅 成像光谱仪基本原理 . 凸面光栅成像光谱仪 系统 由前 端望远系统和后端分光系 统组成 , 中分光 系统 是从 同心 O fe 三反射镜光学系统演 其 f r n 变而来的 , 其 中的第 二 反射 镜 改 为 凸面 光栅 ,既保 留 了 将
作者简介 : 崔继承 , 9 6 1 7 年生 , 中国科学 院长春光学精密机械与物理研究所副研究员
e a : i eg ci a o .o .n - i j hn _ u m l c _ @y ho cr c n
80 4
光谱学 与光谱分析
第3 2卷
的探测 目标 条带 经望远系统成像在狭缝 上 , 后经 凸面光栅分
物等物质构成光 谱信 息 , 是传 统光 谱分 析技 术 ( 即定性 、定 量分析) 向现代光谱分 析技术 ( 即定性 、定量 、定 时 、 位 分 定 析) 发展 的重要 载体 ,在 军事 侦察 、资源 勘查 、自然 灾 害监
控、 环境 污染评 估 、医学诊 断治疗 等诸 多领域 具有广 阔 的应
统置于整体结构 中进行整体 系统设计 和优化 ,从而实 现超光
引 言
超光谱成像光谱仪 是光 谱成像技术 的基 本设备 ,它是 在
传统光谱分析仪器基础 上发 展而成的遥感仪 器 。 用它可 以 利
谱成像光谱仪 的最佳设计 ,以近年来应用较 为广泛 的凸面光 栅成像光谱仪为例 ,介绍 了整个设计 过程 和测试 , 验证 了该
凸面光栅成像光谱仪 的测试验证 了该方法 的正确性 。 关键词 成像 光谱仪 ; 型化 ; 小 光谱 ;凸面光栅
文 献 标 识 码 :A D :1 . 9 4ji n 1 0—5 3 2 1 )30 3 —5 OI 0 3 6 /.s . 0 00 9 (0 2 0 —8 90 s
中 图分 类 号 : TH7 1 4 4 .
光系统分光形成 光谱像并 被探测器 接收。通过空 间连续推扫 方式获得 目标的成像 数据立方 , 目标进行空 间分析和光谱 对
统 中, 一 7 fl / 一 3 r, z l , rf r 0 n 因此 光学 系统 的视 场角 为 2, rn c c 2×6 6。 最终得到前端光学系统的设计参数如 : .6, 光学 系
用前 景 。自从 G ez o t 提出超光谱成像的概念至今经 过 2 [ O多
O nr f e 系统对称消像差 的特点又能实 现光谱分离 ,因此该结 构也称为 Of e 成像光谱仪 _ ] f r n 1 ,其结 构如图 1 所示 。
年的发展 , 各国已经在超光谱成像领域研 制 出了多种成像光 谱仪_ ,比较 具 有代 表 性 的有 AV RIE 2 ] I S ,HY C C 和 DI E5 ]
成 像 光 谱 仪 一体 化 设计
崔继承 , 玉娟 , 明忠 唐 玉 国 刘 潘 ,
i .中国科学 院长 春光学精 密机械 与物理研究所 ,吉林 长春 2 .中国科学 院研究 生院,北京 10 4 009 10 3 30 3
摘 要 随着超 光谱 成像技术的发展 ,超光谱成像光谱仪 的要求也 随之提高 , 型化 、高光谱分辨率和高空 小 间分辨率成 为发展趋势 , 这就要求设计 者在进行仪 器设计 的过程 中不 断完善 和优化设 计 。提 出了成像 光谱 仪一体化设计 的方法 ,即不单 纯地 进行光谱仪分 光系统 的设计 , 而是 将光 谱仪分 光系统 置于整 体结 构 中进 行整体 系统设计 和优化 , 从而 实现超光谱成像光谱 仪 的最佳设计 结果 ,并 以近年 来应用较 为广 泛 的凸面光 栅成像光谱仪 为例 , 较为详细地 阐述了成像光谱仪 一体化 设计 方法在 系统研 制过程 中 的应 用 ,并通过 对该
F g 1 Of n r s e t u i g n y tm fc n e r t g i. f e p c r m ma i g s se o o v x g a i n
凸面光栅 成像光谱仪工作原理如 图 2所示 。沿狭缝方 向
基金项 目:国家创新方法工作专项项 目(0 8M0 0 0 ) 2 0 I 4 7 0 ,吉林 省科技 支撑计 划项 目(0 O 0 1 资助 2161)