一章分子生物学绪论.ppt

合集下载

分子生物学第一章绪 论

分子生物学第一章绪 论

Avery 在1944年更精密的实验设计
• 提取可能的转化因子:DNA、RNA、蛋白质、荚膜进行试 验
• 分别用降解DNA、RNA、蛋白质的酶作用于S型菌细胞抽 提物
• 组分提纯试验结果:DNA组分纯度越高,转化效率越高。
结论:使R型菌变为S型菌的物质是S型菌的DNA
• Avery在1944年的报告中这样写道:当溶 液中酒精的体积达到9/10时,有纤维状物 质析出;如稍加搅动,这种物质便会像棉 线绕在线轴上一样绕在硬棒上,溶液中的 其他成分则以颗粒状沉淀留在下面。溶解 纤维状物质并重复沉淀数次,可提高其纯 度。这一物质具有很强的生物学活性,初 步实验证实它很可能就是DNA。
4.假基因 不能合成出功能蛋白质的失活基因 。
5.重叠基因 不同基因的核苷酸序列有时是可以共用的 即重叠 的。
1983年,McClintock由于在50年代提出并发 现了可移动遗传因子(jumping gene或称 mobile element)而获得Nobel奖。
Barbra McClintock
• 阐明这些复杂的结构及结构与功能的关系是分子生 物学的主要任务。
一、基因的发展
1. Mendel的遗传因子阶段 2. 摩尔根的基因阶段 3. 顺反子阶段 4. 现代基因阶段
Mendel的遗传因子阶段
• Mendel提出:生物的某种 性状是由遗传因子负责传 递的。是颗粒性的,体细 胞内成双存在,生殖细胞 内成单存在。遗传因子是 决定性状的抽象符号。
T2噬菌体感染试验 (1952年,Hershey & Chase)
病毒重建试验
杂种病毒的感染 特征和蛋白质外 壳的特性是由其 中的RNA决定的, 而不是蛋白质决
定的
结论

第一章 绪论3分子生物学课件

第一章 绪论3分子生物学课件

1.3 分子生物学与生物化学之间的关系
分子生物学发展的三大支撑学科: 1、细胞学:研究细胞的结构与功能。细胞的化学组
成,细胞器的结构,细胞骨架,生物大分子在细胞中
的定位及功能。 2、遗传学:研究基因的遗传与变异。基因结构,基 因复制,基因表达,基因重组,基因突变。 3、生物化学:研究活性物质代谢规律。
第一个细菌基因的克隆,开创了基因工程新纪元,标志
着人类认识生命本质并能主动改造生命的新时期开始,
1980年。
5. 1975年,Kohler和Milstein巧妙地创立了
淋巴细胞杂交瘤技术,获得了珍贵的单克隆抗体;
1984年。
6. 1975-1977年,Sanger和Gilbert发明了 DNA序列测定技术;1977年第一个全长5387个核苷 酸的Φ X174基因组序列由Sanger测定完成;1980年, 1958年。
划,2003年4月14日美、英、日、法、德和中国科学家经
过13年努力共同绘制完成了人类基因组序列图)。
3. PCR技术的建立(1983年,Mullis,PCR被喻 为加速分子生物学发展进程的一项“简单而晚熟”的 技术,1993年)。 4. 单克隆抗体及基因工程抗体的发展和应用 (生物制品生产,如酶、细胞因子、干扰素、生长激 素、胰岛素等,疾病的诊断、治疗和研究)。 5. 基因表达调控机理(反义RNA技术、RNAi干扰、 基因芯片)。 6. 细胞信号转导机理研究成为新的前沿领域(G 蛋白、细胞凋亡、细胞癌变、细胞分化)。 7. 基因组学、蛋白质组学、生物信息学成为新 的前沿领域。
分子结构生物学 分子发育生物学 分子细胞生物学 分子免疫学 分子遗传学 分子数量遗传学
分子神经生物学
分子育种学 分子肿瘤学

分子生物学PPT课件

分子生物学PPT课件

顺式作用元件〔cis-acting element〕 反式作用因子〔trans-acting
element〕 真核生物启动子 增强子 转录因子〔trans-criptional factor,
TF) 转录过程
近启动子:〔核心启动子〕,-40~ +5,决定转录起始的准确位置。远启
动子:〔上游控制元件〕,-165~ -40,影响转录的频率。
膜受体介导的信息传递
cAMP -A激酶 途径
磷脂酰肌醇途径
酪氨酸蛋白激酶 途径
胞内受体介导的信息传递
rRNA
RNA的加工成熟
tRNA mRNA
转录起始的选择 选择性加工 mRNA的稳定性
mRNA的构造 翻译的起始调节 可溶性蛋白因子的修饰与翻译起始
调控 选择性翻译 小分子RNA的调控〔反义RNA、干
制 复制的过程
复制的保真性
复制的调控
定义
半保存复制 特点
类型〔线型、环状〕
参与DNA复制的物质
底物 模板 引物 DNA聚合酶 解链酶 引物酶 单链结合蛋白 拓扑异构酶 连接酶
复制起始 复制的过程 延伸
终止
复制起始点 复制方向 引发体的形成
DNApolⅠ和 Ⅲ的3′-5′活性 RNA引物起始复制,引物最终除去,
扰RNA、微小RNA、时序RNA〕 翻译的自我调节 翻译后程度的调控
谢谢
染色质构造对基因表达的影响 DNA的甲基化与去甲基化 染色体(质)丧失 基因扩增 基因重排
顺式作用元件 反式作用因子〔类型、构造〕 转录起始的调节〔转录起始复合物、
反式作用因子的活性、作用方式〕 RNA聚合酶 真核基因转录调控的主要形式 应答元件的作用机制 真核基因转录后程度上的调控

分子生物学 PPT课件

分子生物学 PPT课件

• 使细胞生物学、遗传学、发育生物学、神经 生物学和生态学由原来的经典学科变成了生命科 学的真正前沿科学,形成了一系列交叉学科,如 分子遗传学、分子生态学、分子免疫学、分子病 毒学、分子病理学、分子肿瘤学和分子药理学等。 分子生物学是生命科学的核心前沿。
• 不同种属生物的表现形式多种多样和千姿百 态,但是,生命活动的本质却是高度一致的。例 如绝大多数生物遗传取决于DNA;除少数例外, 遗传密码在整个生命世界中都是一致的。又如核 酸一级结构和蛋白质一级结构的对应关系以及蛋 白质的有序合成,也表现出高度一致性。
• (五)小分子RNA研究进展
• 1993年,Lee RC等发现线虫(C.elegans) lin-4基 因编码的小分子RNA,其长度为22~61个核苷 酸——反义RNA。
• 反义RNA能与lin-14 mRNA的3ˊ非翻译区 (untranslated region,UTR)反义互补结合,阻 断lin-14的翻译,降低线虫早期发育阶段lin-14 蛋白的水平。
• 因此,分子生物学技术已成为推动生物 科学的各个领域向分子水平发展的重要 工具或手段,也是服务于人类和社会, 推动医药和工、农业发展的强大动力。
二、分子生物学的研究内容
• 分子生物学的研究内容主要包括以下三个方面。 • 1、核酸分子生物学: • 主要研究核酸的结构及其功能。 • 2、蛋白质分子生物学:
• 例如DNA及RNA的印迹转移、核酸分子杂 交、DNA克隆或重组DNA、基因体外扩增、 DNA 测序等等,以及研究蛋白质一级结构、 二级结构和三维结构与功能的分析技术。
• 其中重组DNA(recombinant DNA)技术是现代分 子生物学技术的核心。
• 重组DNA技术又称为基因操作(gene manipulation )、分子克隆(molecular cloning)、基 因克隆(gene cloning) 或基因工程(gene engineering)等。

分子生物学--绪论 ppt课件

分子生物学--绪论  ppt课件

• 第二个实验室是加州理工学院的大化学家 莱纳斯·鲍林(Linus Pauling)实验室。在此 之前,鲍林已发现了蛋白质的α螺旋结构。
• 第三个则是个非正式的研究小组,沃森到 剑桥大学做博士后时,虽然其真实意图是 要研究DNA分子结构,挂着的课题项目却 是研究烟草花叶病毒。比他年长12岁的克 里克当时正在做博士论文,论文题目是 “多肽和蛋白质:X射线研究”。
• 在同一期Nature上,还发表了弗兰克林和威尔金 斯的两篇论文,以实验报告和数据分析支持了沃 森、克里克的论文。
威尔金斯(Maurice Wilkins 1916~2004) 英国物理 学家,剑桥大学
弗兰克林(Rosalind Franklin 1920~1958)英国 物理学家,剑桥大学 分辨出了DNA的两种构型,并成功地拍摄了它 的X射线衍射照片。
分子生物学
主要内容
• 分子生物学的开端 • 生物大分子 • DNA的复制和修复 • 转录 • 翻译 • 分子生物学的研究方法
第一章 分子生物学的开端
内容提要 • 分子生物学开端的标志事件 • 证明DNA就是遗传物质的主要历史事件 • 分子生物学的学科特征
问题1:
科学史上哪些事件和分子生物学的诞生 关系密切?
• 1951年,23岁的生物学博士沃森来到卡文迪什实 验室做博后。到剑桥之前,曾经做过用同位素标 记追踪噬菌体DNA的实验,坚信DNA就是遗传物 质。
关于卡文迪什实验室
• 素以世界物理学家的圣地“麦加”和培养人才的 “苗圃”著称的英国剑桥大学卡文迪什实验室, 由于面向世界广揽优秀的科学人才,在放射性、 原子物理、核物理、分子生物学、射电天文学和 凝聚态物理等方面,取得了大量举世关注的重大 成就。
• 第一个学说是“序列假说”,它认为一段核酸的 特殊性完全由它的碱基序列所决定,碱基序列编 码一个特定蛋白质的氨基酸序列,蛋白质的氨基 酸序列决定了蛋白质的三维结构。

分子生物学 第一章 绪论 PPT课件

分子生物学 第一章 绪论  PPT课件

Friedrich Miescher (1844-1895)
1869年 法国的米歇尔从白细胞核中分离出DNA
1879年
德国生物学家弗莱明发现细胞核内的染色体 1903年
Wilhelm Ludwig Johannsen 1857~1927
美国细胞学家萨顿提出了遗传的染色体学说
1909年
丹麦生物学家约翰逊创造了基因(gene)一词
解决可能引发的伦理,法律和社会问题
物种 DNA数量
HBV 3.2kb
噬菌体 49kb
大肠杆 4000kb
酵母 17000kb
果蝇 164000kb
人 3000000kb
分级鸟枪测序法
基因组DNA细菌人工染色体 DNA克隆的排序(物理作图)
分段测序
随机打断后克隆 DNA测序
DNA序列的组装
基因组测序 的一般流程
诺贝尔生理和医学奖
诺贝尔生理和医学奖
诺贝尔化学奖 诺贝尔生理和医学奖
1975年 D.Baltimore 逆转录酶,DNA病毒
诺贝尔生理和医学奖
H.M.Temin
R.Dolbeco
1978年 W.Arber
DNA限制性内切酶
诺贝尔生理和医学奖
D.Nathens
H.O.Smith
1980年 P.Berg
1994 Transgenic tomatoes sold in the shops
Two methods of producing transgenic mice
转基因 动物的 一般制 备过 程。
转基因动 物的一般 制备过程 (续)。
1988 Transgenic sheep
1989 a transgenic pig

现代分子生物学(第四版)朱玉贤课件 PPT 第1章 绪论

现代分子生物学(第四版)朱玉贤课件 PPT 第1章 绪论
特别是基因的一般结构与生物功能,基因活 性的修饰与调节; 4. 掌握分子克隆与DNA重组的基本技术与原 理,了解现代分子生物学基本研究方法; 5.了解基因组与比较基因组学的新成果, 新进展。
主要教材与参考书
1.《现代分子生物学》 第3版(2007)朱玉贤、李毅、郑晓峰
2. 现代生物学精要(Instant Notes)系列 《分子生物学》第二版(2002)刘进元 《Molecular Biology》2e P.C.turner,et al 3. Principles of Biochemistry
1994 Gilman Rodbell 美国
1995
Lewis Nusslein-Volhard Wieschaus
美国 德国 美国
建立DNA测序方法
诺贝尔生理医学奖
建立和发展了单克隆抗体技术
诺贝尔生理医学奖
发现可移动癌基因
诺贝尔化学奖 诺贝尔生理医学奖
G蛋白在细胞内信息传导中的作用 诺贝尔生理医学奖
发现了控制果蝇体节发育的基因
诺贝尔生理医学奖
年份
科学家
Doherty 1996 Zinkernagel
国籍
澳 瑞士
1997 Prusiner

Furchgott

1998
Ignarro Murad
1999 Blobel

Carlsson

2000 Greengard
预计到2020年,生物医药占全球药品的比重 将超过1/3,生物质能源占世界能源消费的比 重将达5%左右,生物基材料将替代10%-20%的 化学材料。
生物制造、生物能源、生物环保等一 批新兴产业正在快速形成。
据Ernst&Young研究报告,2010年生 物环境、生物工业处理、生物海洋技术世界市 场规模将达到 134亿美元、327亿美元、288 亿美元。

第1章-分子生物学与基因工程绪论

第1章-分子生物学与基因工程绪论
它将被酶切成7个片段, 可用凝胶电泳方法将其分 离。
采用几种限制性内切酶组合可以使DNA分 子产生特定的片段.
– e.g. EcoRI + HindIII
DNA连接酶(DNA ligase )
1967年在三个实验室同时发现的。 活性:封闭DNA链上缺口,借助ATP或
NAD水解提供的能量催化DNA链的5’PO4与另一DNA链的3’-OH生成磷酸二 酯键。 要求:这两条链必须是与同一条互补链 配对结合的(T4DNA连接酶除外),而且 必须是两条紧邻DNA链才能被DNA连接 酶催化成磷酸二酯键。
分子生物学的研究内容
DNA重组技术 基因表达调控研究 生物大分子的结构功能研究——结构
分子生物学 基因组、功能基因组与生物信息学研

基因工程(DNA重组技术)
将不同的DNA片段按照人们的设计定 向连接起来,在特定细胞中复制、表 达,产生影响受体细胞的新的遗传性 状
DNA重组技术是核酸化学、蛋白质化 学、酶工程及微生物学、遗传学、细 胞学长期深入研究的结晶,限制性内 切酶、DNA连接酶及其它工具酶发现 与应用则是这一技术得以建立的关键。
DNA双螺旋结构模型的意义
DNA双螺旋模型结构同时表明了DNA复制的明显方式— —碱基互补配对原则上的半保留复制。
提示了基因和多肽成线性对应的一个可能理由:DNA核 苷酸顺序规定该基因编码蛋白质的氨基酸顺序;DNA中 的遗传信息就是碱基序列;并存在某种遗传密码,将核 苷酸序列译成蛋白质氨基酸顺序。
鲍林研究小组 威尔金斯、富兰克林研究小组 沃生、克里克研究小组
鲍林(Pauling)研究小组
主要工作: – 鲍林等1951年(提出蛋白质α-螺旋模型后)开始研究DNA 分子结构。

分子生物学01绪论ppt课件

分子生物学01绪论ppt课件
The PCR Revolution
PCR has greatly facilitated and revolutionized molecular diagnostics. Its most powerful feature - large amount of copies of the target sequence generated by its exponential amplification, which allows the identification of a known mutation within a single day.
One of the most important biological discovery in the 20th century
Discovery of DNA Structure
Rosalind E. Franklin 1920–1958
The structure of DNA was determined using X-ray diffraction techniques. Much of the original X-ray diffraction data was generated by Rosalind E. Franklin.
2
General Introduction
History of Molecular Biology Contents of Molecular Biology Prospects of Molecular Biology
3
1. General Introduction
If you get the gene, you will get the protein.
10

现代分子生物学第一章 绪论 PPT课件

现代分子生物学第一章 绪论 PPT课件
25
序列图:核苷酸组成的序列图。
一般说来,“基因组学”主要解决的问题是基因组的 “结构”,即上述4张结构图,目前,HGP已经初步完 成,并由“结构”向“功能”转移,即:“后基因组学” (post-genomics)。
26
(四)后基因组学大致包含下述内容 1. 人类基因的识别和鉴定 2. 基因功能信息的提取和鉴定 1) 人类基因突变体的系统鉴定 2) 基因表达图谱的绘制 3) “基因改变一功能改变”的鉴定 4) 蛋白质水平,修饰状态和相互作用的探测 3. 基因表达的调控 4. 信号传导
论文6000~8000篇,平均篇/10.8秒问世。 (二)人类科技知识,19世纪是每50年增加1倍,当前是 每
3~5年增加1倍。工程师知识半衰期是5年。
3
(三)1973年,Cohen Group利用重组DNA技术第一 次实现了细菌遗传性状转移(terr+NerSr→terrNer), 导致 了基因工程技术诞生。至今不到30年,人类已 拥有克隆羊、克隆猪……的技术,可以复制1个生命 体。
5
(三)当代科学技发展有2种形式:一是突破,二是融 合。突破是线性的,即从研究开发新一代科技成果取 代原有一代的科技成果。融合是非线性的,即混合原 有不同领域科技,进而发展新产品,造成革命性市场, 它们是互补和合作的结果。
(四)基因工程技术既是突破,也是融合,既是科学,
也是技术。它们是分子生物学,生物化学,遗传学、
7
二、分子生物学与其它学科的交叉
生命过程是一个多层次、连续的整合过程。基因和分子 研究是认识生命过程的深入层次,这个层次的研究结果对 于基因后生命现象如生理表现,病理表现,病生理表现, 具有重要意义。
生命科学中一些最重要的课题需要分子生物学渗入, 如细胞生长、分化、衰老,凋亡,个体发育和神经活动等 研究。分子生物学与这些研究活动结合在一起,形成新的 生长点和新的边缘学科,较为突出的者有:

现代分子生物学(课堂PPT)

现代分子生物学(课堂PPT)

Frederick Sanger
酶法核苷酸测 序的设计者
Walter Gilbert 化学测序法的设计者
Paul Berg
DNA重组,在细菌中表 达胰岛素
DNA重组技术的元老
测定了牛胰岛素的化学结构而获 1958 年的 Nobel 化学奖
25
1984 Kohler(德) Milstein(美) Jerne(丹麦)
15
2、 重要机制的发现 * 1949 Chargaff 测定出不同来源的A、T、G、 C 四种核酸碱基 * 1950 Chargaff Markham A=T G=C * 1953 Watson &Crick DNA Double Helix Model
随着DNA双螺旋结构的提出和蛋白质空间结构的解析开始了分 子生物学时代,此后对遗传信息的载体DNA和生物功能的体现者 蛋白质的研究的研究也成为生命科学研究的主要内容
Francis Jacob Jacques Monod 提出并证实了Operon作为调节细菌细 胞代谢的分子机制 首次提出mRNA分子的存在
22
1969 Nirenberg(美) Holly & Khorana
Marshall W. Nirenberg
破译了遗传密码
Robert W. Holley 酵母Ala-tRNA的 核苷酸序列并证 明了所有tRNA三 级结构的相似性
断裂基因(splitting gene) PCR仪的发明者 基因定点突变
1994 Gilman & Rodbell 发现G蛋白在细胞信号传导中的作用
1995 Lewis(美)、Nusslein-Volhard(德)、Wieschaus(美) 20世纪40~70年代先后独立鉴定了控制果蝇( Drosophila ) 体节发育基因
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3’
5’
Restriction enzyme
Ligase
5’
2020/10/22
3’
Restriction enzyme
Ligase
Herbert
Boyer,
Stanley
Cohen
1972年获得 第一个重组 DNA分子
2020/10/22
Herbert Boyer
到目前为止,科学家已经几乎能随心所欲地把任何DNA分子切割
成一系列不连续的片段,再利用凝胶电泳技术将这些片段按照分子量大 小逐一分开,以供下一步研究。
但是,如果没有分离和富集单一DNA分 子的技术,科学家就无法对这类物质进 行直接的生化分析。
两大技术保证:
1.DNA的体外切割和连接
1962年Arber 发现限制性核酸内切酶,1967Gellert发现了 DNA 连接酶DNA ligase covalently links two DNA strands
Living S cells
Living R cells
capsule
Heat killed S cells
Heat killed S cells mixed with living R cells
Living S cells in blood sample from dead mouse
Bacterial Strain
Jacob and Monod
2 蛋白质结构与功能的深入研 究
2020/10/22
一个碱基突变—氨基酸变异—蛋白质变异—人类疾病 (镰刀性贫血病:谷氨酸—缬氨酸)
2020/10/22
2020/10/22
2020/10/22
2020/10/22
(三)初步认识生命本质并开始改造生命 的深入发展阶段
Injection
Results
2020/10/22
1952年Hershey和Chase证实噬菌体DNA侵染细菌实验
2020/10/22
(二)现代分子生物学的建立 和发展阶段
1 中心法则的建立和完善
2020/10/22
50年代末至60年代,相继提出了“中心法则”和操纵子 学说, 成功地破译了遗传密码,充分认识了遗传信息的 流动和表达。
1950年Pauling和Corey提出了α--角 蛋白的α-螺旋结构模型。
2020/10/22
生物遗传的物质是DNA
基因的分子载体是DNA而不是蛋白质,
1928 Frederick Griffith &1944 Oswald Avery Transformation of
Streptococcus pneumoniae肺炎双球菌转化因子实验
2020/10/22
2020/10/22
repliDcaN ttr Aiaon n scRrN itp Artainosnla Ptriootne
2020/10/22
reverse transcrirtion
(二)基因的表达调控
信号转导研究 转录因子(transcription factor )研究 RAN剪接
2020/10/22
以 质 粒 为 载 体 的
DNA 克 隆 过 程
2020/10/22
目录
DNA重组技术
1、可用于定向改造某些生物的基因组结构, 提高其经济价值; 2、可被用于 。
2020/10/22
2020/10/22
分子生物学
2020/10/22
第一章 绪 论
本章主要内容
一、分子生物学的基本含义 二、分子生物学的主要研究内容 三、分子生物学的发展简史 四、分子生物学在兽医上的应用
2020/10/22
2020/10/22
Why?
2020/10/22
一、分子生物学的基本含义
是从分子水平研究生命本质,以核酸和 蛋白质等生物大分子的结构及其在遗传信 息和细胞信息传递中的作用为研究对象的 一门新兴学科。
2020/10/22
信号转导研究
2020/10/22
转录因子研究
2020/10/22
真核基因结构的不连续性
真核生物帽子结构的加入在细胞 核内完成,而且是在RNA链开始 合成后即加入。
2020/10/22
真核基因结构的不连续性
2020/10/22
RNA剪辑
2020/10/22
RNA剪辑
2020/10/22
(三)生物大分子的结构功 能研究
2020/10/22
• 生物大分子在发 挥生物学功能时,必 须具备两个前提:
• A 它拥有特定的空间 结构(三维结构)
• B 在它发挥生物学功 能的过程中,必定存 在着结构和构象的变 化。
2020/10/22
(四)基因组、功能基因组与生物信息学研究
2020/10/22
2020/10/22
蛋白质是生命的主要物质基础
1897年,Buchner兄弟用不含细胞的酵母 提取液,实现了发酵,提出酶是生物催化剂。
1902年Email Fisher证明蛋白质结构 是多肽。
1953年Sanger和Thompson完成了第一 个多肽分子 --胰岛素A链和B链的氨基酸 全序列分析。
• 基因组:一个细胞(或生物体)内所有基 因的组合
• 功能基因组学:研究基因组内每个基因 的具体功能及其相互关系
• 蛋白质组计划:后基因组计划,研究蛋 白质的组成、功能
• 生物信息学:以计算机为工具对生物信息进
行储存、检索和分析
2020/10/22
2020/10/22
2020/10/22
染色体—DNA—氨基酸
2020/10/22
二 、分子生物学研究内容
● DNA重组技术(基因工程) ● 基因的表达调控 ● 生物大分子的结构和功能研究(结构分子生
物学) ● 基因组、功能基因组与生物信息学研究
2020/10/22
(一)DNA重组技术 目的是将不同DNA片段(如某个基因或基 因的一部分)按照人们的设计定向连接起来 ,在特定的受体细胞中与载体同时复制并得 到表达,产生影响 受体细胞的新的 遗传性状。
人染色体及其标准带纹 (常染色体和性染色体)
2020/10/22
三、分子生物学简史
20世纪70s以后
20世纪50s至20世纪70s 19世纪至20世纪50年代
改造生命的发展阶段 初步认识生命本质 建立和发展阶段 准备和酝酿阶段
2020/10/22
(一)准备和酝酿阶段
• 产生了两点对生命本质的认识上的重大突 破:即确定了蛋白质是生命的主要物质基础 和生物遗传的物质是DNA。
相关文档
最新文档